
 

  

ABSTRACT—This paper aims to improve premature 

convergence and low precision of the differential evolution 

algorithm. An adaptive constrained differential evolution 

algorithm based on a probability interval update mechanism 

(PIMDE) is proposed. First, the interval probability update 

mechanism is developed to adaptively generate the mutation 

probability value, and the hybrid mutation strategy is 

formulated by effectively selecting complementary mutation 

strategies based on the mutation probability. Subsequently, the 

adaptive mechanism is employed to dynamically adjust the 

mutation strategy and parameters; as a result, the global 

detection and local search ability of the algorithm can be 

balanced, and the search efficiency of the algorithm can be 

enhanced. To verify determine the performance of the proposed 

algorithm, ten standard constrained optimization problems and 

five engineering optimization problems are analyzed. As 

revealed from experimental results, PIMDE can effectively 

solve COPs with high precision and robustness. 

 
Index Terms—Constrained optimization, differential 

evolution algorithm, parameter self-adaptive, ɛ-constraint 

processing technique 

I. INTRODUCTION 

HE models of constrained optimization problems 

(COPs) are derived from scientific research[1] and 

engineering applications[2,3]. Without loss of 

generality, the COPs (minimization problems) are defined 

below: 
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. . ( ) 0, 1,2,..., ;
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where 1 2[ , , , ]nX x x x=  K denotes the decision variable. 

  represents the feasible region that meets the following 

boundary constraints: 
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 , 1, 2,..., ,d d dLow x Upper d D  =  (2) 

where ( )( ) 1,2, ,ig X i m= K  and ( )( ) 1, ,jh X j m n= + K  

denote the ith inequality constraint and the n-jth equality 

constraint, respectively. The D-dimensional real number 

space 
1
[ , ]

D

d di
S Low Upper

=
=  consisting of dLow  and 

dUpper (respectively the lower and upper boundaries of dx ) 

is termed as the decision space, and S  . 

To effectively solve COPs, Runarsson and Yao [4] 

proposed a stochastic sorting based differential evolution 

algorithm (SRDE) in 2000. In 2006, Tessema [5] developed 

an adaptive penalty based differential evolution algorithm 

(SPDE). In 2010, An ensemble of constraint handling 

techniques (ECHT) was presented by Malleepeddi et al. [6] 

to comprehensively exploit various existing constraint 

processing techniques. 

Differential evolution (DE) refers to an efficient and robust 

heuristic optimization algorithm proposed by Storn and Price 

[7] in 1995. In [8], Brest proposed an approach termed as jDE, 

capable of controlling parameters F and Cr by an adaptive 

scheme. Mohamed [9] presented a novel constrained 

differential evolution (NDE) algorithm based on triangular 

mutation. To solve high-dimensional optimization problems 

in a continuous space, Mohamed et al. [10] integrated the 

triangular mutation with DE/rand/1/bin and then proposed 

the differential evolution algorithm (ANDE). In [11], Wang 

presented a modified CoDE-based approach termed as 

CCoDE, capable of solving constrained optimization 

problems. 

The setting of control parameters and the selection of 

evolution strategy are critical to determine the performance 

of constrained DE (CDE). Overall, when an adaptive CDE 

algorithm complies with multiple mutation strategies, it 

usually adopts a fixed mutation probability and overlooks the 

variation of population. To effectively select the mutation 

strategy, this study proposes an adaptive constrained 

differential evolution algorithm based on the probability 

interval mechanism (PIMDE). First, the algorithm splits the 

given continuous range into intervals and gives the 

probability. According to the two initial values of the interval, 

two consecutive values are generated as the mutation 

probability. A hybrid mutation strategy is presented by 

exploiting the mutation probability to adaptively select 

mutation strategies and balance the global search and local 

search. Subsequently, the novel population is taken with the 

ɛ-constraint processing technique, and the re-initialization 

scheme is employed to jump out of the local optimum and 

enhance the population diversity. Next, to promote the 

algorithm to be more robust and adaptable, the adaptive 
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parameter control mechanism is introduced again.  

II. ADAPTIVE CONSTRAINED DIFFERENTIAL EVOLUTION 

ALGORITHM 

To remedy the defects of DE premature convergence and 

low optimization precision, an adaptive constrained 

differential evolution algorithm proposed in this study is 

primarily improved from according to the selection of 

mutation strategies. First, the algorithm presents a hybrid 

mutation strategy that exploits mutation probabilities to take 

mutation strategies (e.g., DE\rand\1, triangle mutation 

strategy, and DE\best\2). Subsequently, the algorithm 

introduces an interval probability update mechanism to 

reward and update the mutation probability, as an attempt to 

ensure that an appropriate mutation strategy is adopted. The 

scaling factor F of the mutation strategy is adaptive. Next, the 

algorithm adopts a binomial crossover strategy, with the 

adaptive crossover probability factor Cr. Afterwards, the 

algorithm adopts the constraint handling method to update 

population. Lastly, the algorithm substitutes the poor 

individuals with a restart plan and re-initializes the mutation 

for each of the worst individuals to maintain the diversity of 

populations. 

A. Hybrid Mutation Strategy 

1. Introduction to Mutation Strategies 

The triangular mutation was first presented in 2003 by Fan 

and Lampinen [14]. Subsequently, Mohamed [9] improved 

triangular mutation to enhance the local search performance 

of the DE algorithm, balance the global exploration 

capability and local development trend, and expedite the 

convergence. Set V as the mutation vector, and the triangle 

mutation (expressed as DE\rand\ triangular) is expressed as 

follows: 

 

1

2

3

( )

      ( )

      ( ).

c best better

best worst

better worst

V X F X X

F X X

F X X

= +  −

+  −

+  −

 (3) 

The basic vector cX is calculated by: 

 1 2 3c best better worstX w X w X w X=  +  +   (4) 

where 1rX , 2rX , and 3rX ( 1 2 3r r r i   ) denote three 

individuals that are randomly selected from the parent 

population Pop . bestX , betterX , and worstX  are obtained by 

classifying them from good to bad in accordance with the 

objective function value and the degree of constraint 

violation with the  -constraint handling method [15]. 1F , 2F , 

and 3F  indicate mutation coefficients generated from 

uniform distribution in [0, 1]. , 1,2,3iw i = represents the 

weight satisfying 0iw   and
3

1
1ii

w
=

= ,which is calculated 

by: 

 
3

1
/ , 1,2,3,i i ii

w p p i
=

=    =  (5) 

Further, pi  holds that: 

 1 2 3 21, (0.75,1), (0.5, )p p rand p rand p= = =  (6) 

where ( , )rand a b  denotes a uniform random sampling 

function between a and b. Besides the triangular mutation 

operator, this study also adopts other common mutation 

operators (e.g., DE\rand\1 and DE\best\2) as follows: 

DE\rand\1: 

 1 2 3( )r r rV X F X X= +  − ; (7) 

DE\best\2:  

 1 2 3 4( ) ( )best r r r rV X F X X F X X= +  − +  − , (8) 

where F denotes the scaling factor between [0, 1]; 1r , 2r , 3r , 

4r , 5r  are randomly selected in the range [1, NP], and they 

differ from each other. The bestX  indicates the individual 

exhibiting the optimal fitness in the current population. 

2. Interval Probability Update Mechanism 

Different mutation strategies in DE exhibit different 

performance. For hybrid strategies, how to select different 

mutation strategies based on the actual problems is 

considered a difficult issue. An interval probability update 

mechanism is developed in the present section to 

dynamically adjust the probability values of the probability 

points 1W  and 2W . The initial values of 1W and 2W  are 

generated randomly with the roulette method; subsequently, 

they are updated in line with the performance of the mutation 

strategies. 

① Initial Value Selection  

Most hybrid strategies generally exploit a fixed probability 

value, while overlooking the middle probability value, 

thereby adversely affecting the performance of the mutation 

strategy. In contrast, the present section designs an interval 

probability selection mechanism in which the values from a 

given probability interval are randomly taken as the mutation 

probability; as a result, more mutation probability values can 

be selected. Meanwhile, the probability interval is adjusted 

regulated dynamically based on the performance of the 

mutation strategy. To select the mutation probability, interval 

[0, 1] is first split into multiple sub-intervals, from which two 

sub-intervals are randomly selected. From the mentioned two 

sub-intervals, 1W and 2W  are respectively generated. Assume 

that 1 2W W , the continuous value produced is expressed as: 

 ( ), 1,2iW S rand S S i= +  − =  (9) 

where S  and S  respectively denote the front and rear 

endpoints of the subinterval; rand  represents a uniform 

random number between [0, 1]. The pseudocode for this 

mechanism is shown in Algorithm 1. 

 
Algorithm 1: Pseudocode of the initial probability value selection 

mechanism. 

1: 1 2 1 1 2 21 1 , 1 , , 1 ; 2 2 , 2 , , 2 ;set nr set nrr r r r r r r r K K w1p and w2q are the 

probabilities of the intervals in 1setr and 2setr , respectively; 

2：Q1(1) = w1p(1);Q2(1) = w2q(1); 

3：for  k=2: length(w1p)  do 

4：  Calculate the cumulative probability 1Q and 2Q for w1p and w2q, 

respectively, to prepare for roulette; 

5：end for 

6：   Randomly generate two numbers between 0 and 1,  perform roulette 

selection, and set them as the Lower boundary of the intervals 

1setr and 2setr ; 

7： if 1 2set setr r  then; 

8：  2setr  should be regenerated to ensure 1 2set setr r ； 

9： end if 

10： generate 1W  and 2W  such that ( ), 1,2iW S rand S S i= +  − = . 

 

②  Probability Interval Update 

1W and 2W ( 1 2W W ) are updated by the probability interval; 
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they do not pertain to the identical interval. The two mutation 

probabilities 1W  and 2W  take values in (0, 0.9) and (0.1, 1), 

respectively, and both interval widths reach 0.1. Assume that 

K  intervals 1{ , , }kA a a= L  are adopted, and ( )aq t is set as the 

known empirical evaluation of interval a , which is updated 

as: 

 ( 1) ( ) [ ( ) ( )]a a a aq t q t r t q t+ = +  −  (10) 

where (0,1]   denotes the adaptation rate; the initial value 

of ( )aq t  is zero; ( )ar t  represents the reward that interval a  

obtains when running at time t is as: 

 1
( )

( )

aS

ai
a

a

S i
r t

S

==


 (11) 

where aS  denotes the probability of successful parent 

individual replacement in each interval of 1W and 2W  

complying with the mutation strategy. 

Based on the empirical evaluation value, the interval 

probability ( )( 1,2)iW t i =  is updated as follows: 

 ,min ,min

1

( 1)
( 1) (1 )

( 1)

a
i i i K

ii

q t
W t W K W

q t
=

+
+ = + − 

+
 (12) 

where ,min (0,1)iW   denotes the smallest probability value of 

( )( 1,2)iW t i = , which is employed to ensure that ( )iW t  is not 0. 

In 2010, Gong et al. [13] proposed to select the appropriate 

mutation strategy based on a probability matching technique 

and update the strategy by complying with the fitness 

variation of the applied strategy. In this study, the developed 

interval probability update mechanism generates mutation 

probability based on the probability interval, and then the 

adaptive mutation strategy is selected. 

3. Hybrid Mutation Strategies 

An ideal constrained optimization search algorithm strikes 

a balance between diversity and convergence, as well as a 

balance between constraints and objective functions. Thus, 

three different mutation strategies, i.e., DE\rand\1, DE\best\2, 

and DE\rand\ triangular, are involved in the search algorithm 

designing as a hybrid mutation strategy. The hybrid mutation 

strategy operates as follow. If the random number is in (0, 1W ], 

the DE\rand\1 strategy is adopted for the global search; if it 

falls in ( 1W , 2W ], the triangle mutation strategy is adopted to 

facilitate local search; otherwise, it falls in ( 2W , 1), and the 

DE\best\2 strategy is employed to expedite the local search 

convergence speed. The hybrid mutation strategy is 

expressed as: 

1

1 2

2

\ \1, (0, ];

= \ \ , ( , ];

\ \ 2 ( ,1

 

).

i

i

i

DE rand rand W

DE rand triangular rand W W

DE b

mutation strate

es W

gy

t rand

                 


 
                  

 (13) 

B. Parameter Adaptation 

In 2017, Zhou et al. [12] proposed a parameter adaptive 

control method. Assuming that iF  and iCr  are generated 

independently based on the successful parameters of the 

previous generation, the formula of 
iCr  is written as: 

 ( ,0.1)i i CrCr randn =  (14) 

where ( ,0.1)i Crrandn   denotes the generation of a uniformly 

distributed random value; 0.1 represents the standard 

deviation; 
Cr  represents the mean value, which is calculated 

by: 

 (1 ) ( )Cr Cr A Crc c mean S = −  +   (15) 

where ( )Amean x  denotes the commonly used arithmetic 

mean; 
CrS  refers to a set of successful crossover probabilities 

of the previous generation; c  is a constant between 0 and 1, 

which is set to 0.001 in this study after repeated trials and 

comparison. The adaption process of 
iF  is similar to that of 

iCr : 

 
2

( ,0.1);

(1 ) ( );

( ) / .
F F

i i F

F F L F

L F S S

F randc

c c mean S

mean S F F



 

 =


= −  + 


=  

 (16) 

where ( ,0.1)i Frandc   denotes a random value with Cauchy 

distribution based on parameter value F  and 0.1; 

( )L Fmean S  represents the Lamer mean [12]; 
FS  refers to the 

set of mutation factors promoting the offspring to 

successfully replace with the parent. 

C.  -constraint Handling Method 

The  -constraint handling method [15] is employed to 

solve constraints in this study. For solutions ix  and 
jx , ix  is 

preference to 
jx if both of them meet the following 

conditions: 

 

( ) ( ), ( ) ( ) ;

( ) ( ), ( ) ( );

( ) ( ),

i j j j

i j i j

i j

f x f x if G x G x

f x f x if G x G x

G x G x otherwise

         


      =


      

 (17) 

where   decreases with the growth of its iterative generation; 

its calculation formula is as follows： 

 0(1 ) , ;

0 , .

cpt t
if p

T T

otherwise





−      

= 
                    

 (18) 

 0log

log(1 )
cp

p

 +
= −

−
, (19) 

where  is initialized as 0 0.2( )PSV X = ; 0.2*PSX  denotes the top 

0.2×PSth individual according to violation degree, and   is 6. 

max max[0.1 ,0.8 ]T T T    are the control parameter ranges, 

and [2,10]cp  .  

D. Re-initialization 

For some nonlinear programming problems coupled with 

extremely complicated constraints, the infeasible regions 

have highly nonlinear and multi-modal properties. In this 

scenario, the population is easily stagnant in the infeasible 

area, causing population diversity to decline. To solve this 

problem, this study adopts a restart mechanism, similar to 

[10], when the standard deviation of the overall constraint 

violation degree or the standard deviation of the overall 

objective function value is less than a predefined threshold 

(overall set to 
81.0 e−  ). if the population is not feasible, the 

restart plan is triggered, and all individuals are randomly 

generated in the decision space. Meanwhile, the worst 

individual is substituted with randomly generated one. 

E. Algorithm Flow 

In this study, the flowchart of the adaptive constrained 

differential evolutionary algorithm based on the interval 

Engineering Letters, 29:4, EL_29_4_14

Volume 29, Issue 4: December 2021

 
______________________________________________________________________________________ 



 

probability mechanism (PIMDE) is illustrated in Fig 1. The 

detailed steps are presented below.  

 
Fig. 1.  Flow chart of the PIMDE algorithm 

 

Step 1:  Initialize the population. 

Step 2:  Set the initial probability value of intervals w1p (0, 

0.9) and w2q (0.1, 1). Subsequently, mutation strategies 

DE\rand\1, DE\rand\triangular, and DE\current2best\1 

are selected. In addition, goodCR=goodF=0.5. The initial 

value of   is
0 0.2( )PSV X = . 

Step 3: For each individual, the values of F and Cr are 

generated by exploiting uniform distribution and Cauchy 

distribution, respectively. 

Step 4:  The adaptive interval probability update mechanism 

is employed to generate W1 and W2, NP random numbers 

rand ( 1, , )i i NP= L  are generated, and the test vector is 

yielded by adaptively adopting a strategy. 

Step 5: Perform a binomial crossover to obtain a test 

population. 

Step 6: Select the population pop with the  -constraint 

handling technique. Meantime, the novel interval 

probabilities w1p and w2q are generated by the 

probability update mechanism. 

Step 7: Restart the worst individual [9] to yield the next 

generation of Pop. 

III. ALGORITHM TESTING AND ANALYSIS 

To verify the effectiveness of the proposed algorithm, 

PIMDE is compared with other algorithms in terms of ten 

standard Constrained Optimization Problems, abbreviate as 

COPs, and five engineering COPs. The five engineering 

COPs consist of tension-pressure spring design, welded beam 

design, pressure vessel design, hydrodynamic thrust bearing 

design, as well as butterfly spring design. The algorithms are 

operating independently for 30 iterations. The optimal value 

(MinBest), an average value (MinMean), and standard 

deviation (Std) of the 30-iterations results act as the 

performance assessment indexes. A statistical analysis is 

conducted according to the obtained results. Three statistical 

analysis methods (i.e., the Mann-Whitney rank-sum test, 

Iman-Davenport test, and Wilcoxon signed-rank test) are 

adopted for statistical analysis. 

A. Result Analysis of Standard COPs 

The maximum number of fitness function assessment, 

abbreviate as MaxFEs, for ten standard test problems are set 

to 500,000. The population sizes of the PIMDE, CCoDE [11], 

ECHTEP [6], NDE [9], SPDE [4], SRDE [4], and jDE [8] are 

all set to 100. The initial values of F and CR  are set to 0.5, 

and the other parameters are identical to those of the original 

papers. The test results are listed in Table I, which are 

represented with four fonts. The skewed and bold font 

represents the results of the PIMDE algorithm. As revealed 

by the regular font, the results of the comparative algorithm 

are worse than those of PIMDE. The bold font suggests that 

the results of PIMDE are similar to those of the other 

algorithms. The bold font and gray shading cell indicate that 

the numerical results of the algorithms outperform those of 

the PIMDE algorithm. The “NAN” means that the 

corresponding feasible solution is not identified.  

To compare the degree of difference between different 

algorithms for the identical problem, the Mann-Whitney 

rank-sum test results with a significance level of 0.05 are 

listed in Table II. In Table II, where ‘+’, ‘≈’, and ‘−’ denote 

that the results of PIMDE is superior to, similar to, or slightly 

worse than those of the other algorithms, respectively. 

As presented in Table I, the PIMDE, CCoDE, ECHTEP, 

NDE, and jDE algorithms can achieve feasible solutions for 

all the problems, except for SPDE and SRDE algorithms. The 

numerical results of g01, g04, g05, g06, g11, g12, and g13 

solved by PIMDE are superior to or similar to those by 

algorithms (e.g., CCoDE, ECHTEP, NDE, SPDE, SRDE, 

and jDE). For function g02, the numerical results of PIMDE 

are better than those of ECHTEP, SPDE, and SRDE, and they 

are slightly inferior to those of CCoDE and NDE. For 

function g08, the results of the proposed algorithm 

outperform those of SPDE, SRDE, and jDE, while those are 

slightly worse than those of ECHTEP. In terms of function 

g09, the numerical results of the proposed algorithm are 

better than those of ECHTEP and SRDE, while they are 

slightly worse than those of CCoDE, NDE, SPDE, and jDE. 

As revealed from the comparison of the Mann-Whitney 

rank-sum test results in Table II, the results of PIMDE 

outperformed those of other algorithms on 1, 6, 3, 8, 9, and 3 

of 10 functions. Furthermore, the results of PIMDE tied with 

those of the other algorithms for six functions 7, 3, 5, 1, 1, and 

5. Finally, the results of the PIMDE are worse than those of 

the other algorithms for functions 2, 1, 2, 1, 0, and 2. 

The Iman-Davenport test is performed on the mean 

(MinMean) and the best value (MinBest) to compare the 

differences of all the algorithms in terms of different test 

problems.  

According to the Iman-Davenport test in Table II, CCoDE 

ranks first for the average value, and the ranks of PIMDE and 
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TABLE I 

EXPERIMENTAL RESULTS OF STANDARD COPS 

Algorithm Statistics g01 g02 g04 g05 g06 

 MinBest -1.50E+01 -8.02E-01 -3.07E+04 5.13E+03 -6.96E+03 

PIMDE MinMean -1.50E+01 -8.00E-01 -3.07E+04 5.13E+03 -6.96E+03 

 MinStd 0.00E+00 4.21E-03 1.09E-11 9.09E-13 1.82E-12 

 MinBest -1.50E+01 -8.04E-01 -3.07E+04 5.13E+03 -6.96E+03 

CCoDE MinMean -1.50E+01 -8.03E-01 -3.07E+04 5.13E+03 -6.96E+03 

 MinStd 0.00E+00 2.87E-03 1.09E-11 9.09E-13 1.82E-12 

 MinBest -1.50E+01 -8.04E-01 -3.07E+04 5.13E+03 -6.96E+03 

ECHTEP MinMean -1.50E+01 -7.91E-01 -3.07E+04 5.13E+03 -6.96E+03 

 MinStd 1.85E-10 1.02E-02 1.09E-11 9.21E-02 1.82E-12 

 MinBest -1.50E+01 -8.02E-01 -3.07E+04 5.13E+03 -6.96E+03 

NDE MinMean -1.50E+01 -8.00E-01 -3.07E+04 5.13E+03 -6.96E+03 

 MinStd 8.25E-11 1.92E-03 1.09E-11 2.86E+01 1.82E-12 

 MinBest -1.50E+01 -8.04E-01 -3.39E+04 6.55E+04 -6.96E+03 

SPDE MinMean -1.36E+01 -7.94E-01 -3.38E+04 6.55E+04 -6.96E+03 

 MinStd 2.24E+00 1.24E-02 7.04E+01 NAN 1.47E+00 

 MinBest -1.50E+01 -3.03E-01 -3.39E+04 6.55E+04 -6.56E+03 

SRDE MinMean -1.28E+01 -2.35E-01 -3.39E+04 6.55E+04 6.55E+04 

 MinStd 1.11E+00 2.74E-02 5.09E+00 NAN NAN 

 MinBest -1.50E+01 -8.04E-01 -3.07E+04 5.13E+03 -6.96E+03 

jDE MinMean -1.50E+01 -8.02E-01 -3.07E+04 5.15E+03 -6.96E+03 

 MinStd 0.00E+00 3.74E-03 1.09E-11 4.02E+01 1.82E-12 

 

TABLE I (CONT.) 

EXPERIMENTAL RESULTS OF STANDARD COPS 

Algorithm Statistics g08 g09 g11 g12 g13 

 MinBest -9.58E-02 6.81E+02 7.50E-01 -1.00E+00 5.39E-02 

PIMDE MinMean -9.58E-02 6.81E+02 7.50E-01 -1.00E+00 5.39E-02 

 MinStd 2.78E-17 5.26E-13 1.11E-16 0.00E+00 2.48E-17 

CCoDE 

MinBest -9.58E-02 6.81E+02 7.50E-01 -1.00E+00 5.39E-02 

MinMean -9.58E-02 6.81E+02 7.50E-01 -1.00E+00 5.39E-02 

MinStd 2.78E-17 3.98E-13 1.11E-16 0.00E+00 3.42E-17 

ECHTEP 

MinBest -9.58E-02 6.81E+02 7.50E-01 -1.00E+00 5.39E-02 

MinMean -9.58E-02 6.81E+02 7.50E-01 -1.00E+00 5.39E-02 

MinStd 1.70E-17 1.05E-05 2.57E-05 0.00E+00 2.19E-07 

NDE 

MinBest -9.58E-02 6.81E+02 7.50E-01 -1.00E+00 5.39E-02 

MinMean -9.58E-02 6.81E+02 7.50E-01 -1.00E+00 5.39E-02 

MinStd 2.78E-17 3.91E-13 1.11E-16 0.00E+00 3.42E-17 

SPDE 

MinBest -9.58E-02 6.81E+02 1.00E+00 -1.00E+00 6.55E+04 

MinMean -9.58E-02 6.81E+02 6.55E+04 -1.00E+00 6.55E+04 

MinStd 2.83E-17 4.31E-13 NAN 0.00E+00 NAN 

SRDE 

MinBest -9.58E-02 6.81E+02 7.50E-01 -1.00E+00 6.55E+04 

MinMean -9.58E-02 6.81E+02 8.86E-01 -1.00E+00 6.55E+04 

MinStd 2.94E-17 3.53E-10 1.14E-01 0.00E+00 NAN 

jDE 

MinBest -9.58E-02 6.81E+02 7.50E-01 -1.00E+00 4.55E-01 

MinMean -9.58E-02 6.81E+02 7.50E-01 -1.00E+00 8.86E-01 

MinStd 2.83E-17 4.27E-13 1.11E-16 0.00E+00 9.15E-02 

 

 

CCoDE are similar and rank second. For the analysis of the 

best value, the performance of the PIMDE algorithm is 

relatively flat with CCoDE and jDE and outperforms the 

other four algorithms. 

B. Comparisons of Engineering COPs 

To more specifically verify the effectiveness of the 

PIMDE algorithm in practical problems, this study 

compares the PIMDE with six algorithms (i.e., CCoDE, 

ECHTEP, NDE, SPDE, SRDE and jDE) in five engineering 

COPs. For  
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TABLE II 

STATISTICAL TEST RESULTS OF STANDARD COPS 

Statistic Test Symbol PIMDE vs CCoDE ECHTEP NDE SPDE SRDE jDE 

Mann- 

Whitney 

Win + 1 6 3 8 9 3 

Tied ≈ 7 3 5 1 1 5 

Lose − 2 1 2 1 0 2 

Iman- 

Davenport 

MinMean’s Rank 3.25 2.7 4.6 3.5 4.9 5.5 3.55 

        
MinBest’s Rank 3.65 3.1 4.65 4.05 4.1 5.2 3.25 

 

TABLE III 

EXPERIMENTAL RESULTS OF ENGINEERING COPS 

Algorithm Statistics 
Tension-pressure 

spring design 

Welded beam 

design 

Pressure vessel 

design 

Hydrodynamic 

thrust bearing 

design 

Butterfly spring 

design 

 MinBest 1.27E-02 1.72E+00 5.89E+03 1.63E+03 1.98E+00 

PIMDE MinMean 1.27E-02 1.72E+00 5.89E+03 1.63E+03 1.98E+00 

 MinStd 5.98E-18 1.11E-15 9.09E-13 4.55E-13 1.41E-15 

 MinBest 1.27E-02 1.72E+00 5.89E+03 1.63E+03 1.98E+00 

CCoDE MinMean 1.27E-02 1.72E+00 5.89E+03 1.63E+03 1.98E+00 

 MinStd 6.50E-18 1.11E-15 9.09E-13 7.26E-13 1.33E-15 

 MinBest 1.27E-02 1.72E+00 5.89E+03 1.63E+03 1.98E+00 

ECHTEP MinMean 1.27E-02 1.72E+00 5.89E+03 1.63E+03 2.04E+00 

 MinStd 2.20E-08 2.71E-11 9.09E-13 4.95E-07 6.22E-02 

 MinBest 1.27E-02 1.72E+00 5.89E+03 1.63E+03 1.98E+00 

NDE MinMean 1.27E-02 1.72E+00 5.89E+03 1.63E+03 2.00E+00 

 MinStd 6.17E-18 1.11E-15 9.09E-13 4.55E-13 4.64E-02 

 MinBest 1.27E-02 1.72E+00 5.89E+03 1.65E+03 2.12E+00 

SPDE MinMean 1.60E-02 3.31E+00 5.91E+03 1.68E+03 2.13E+00 

 MinStd 4.75E-03 1.23E+00 7.97E+00 1.61E+01 9.30E-03 

SRDE 

MinBest 1.33E-02 2.42E+00 5.89E+03 3.58E+03 6.55E+04 

MinMean 6.55E+04 6.55E+04 5.89E+03 6.55E+04 6.55E+04 

MinStd NAN NAN 9.09E-13 NAN NAN 

 MinBest 1.27E-02 1.72E+00 5.89E+03 1.63E+03 1.98E+00 

jDE MinMean 1.27E-02 1.72E+00 5.89E+03 1.63E+03 1.98E+00 

 MinStd 6.04E-13 1.11E-15 9.09E-13 4.55E-13 1.13E-15 

 

simplified comparison, the population size is 100, and the 

maximum number of fitness function evaluations, i.e., 

MaxFEs, is 500,000. The other parameter settings comply 

with those of the original papers. The test results are listed in 

Table III, where the data are labeled likewise as in Section 3.1. 

The setting of the Mann-Whitney test and Iman-Davenport 

test used in the present section is identical to with that in 

Section 3.1. Besides test the degree between PIMDE and the 

other algorithms, the Wilcoxon symbol rank test is performed 

in the present section. Table III lists the experimental results 

of the engineering COPs. The test results of three statistical 

analysis methods are compared, as listed in Table IV. Fig. 2 

present the convergence curves of the test results and the box 

plots for the tension-pressure spring design (F01), the welded 

beam design (F02), as well as the pressure vessel design 

(F03). 

Table III suggests that PIMDE, CCoDE, ECHTEP, NDE, 

SPDE, and jDE, except for the SRDE algorithm, can achieve 

a feasible solution for all the engineering problems. The 

numerical results of PIMDE for the design of tension spring, 

welded beam design, pressure vessel design, and 

hydrodynamic thrust bearing design are close to or superior 

to those of the CCoDE, ECHTEP, NDE, SPDE, SRDE, and 

jDE algorithms. The numerical results of the PIMDE solution 

for the butterfly spring design are slightly inferior to those of 

CCoDE and jDE, but better than the other 4 algorithms. 

As revealed from the comparison of Mann-Whitney 

rank-sum test results, the results of PIMDE algorithm 

outperformed than those of CCoDE, ECHTEP, NDE, SPDE, 

SRDE, and jDE on 2, 4, 2, 5, 4, and 1 of 5 engineering COPs. 

The results of PIMDE algorithm are similar to those of the 

others on 2, 1, 3, 0, 1 and 3, lost with the others on 1, 0, 0, 0, 0 

and 1, respectively. The results of 's test indicate that for 

MinMean, the rank Iman-Davenport value of the PIMDE 

algorithm is 2.6, which ranks second in 7 algorithms. For 

MinBest, the rank values of the PIMDE and NDE are 2.9, 

better than the others. From these two comparisons, it is 

concluded that the performance of the PIMDE algorithm is 

similar with that of CCoDE; both algorithms can successfully 

solve engineering constrained optimization problems, and  
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(a) the tension-pressure spring design                                                      (b) the tension-pressure spring design 

 

 
 

(c) the welded beam design                                                                             (d) the welded beam design 

 

 
 

(e) the pressure vessel design                                                                         (f) the pressure vessel design   

 

Fig. 2.  Convergence curves (a, c, e) and the box plots (b, d, f) for engineering COPs 
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TABLE IV 

STATISTICAL TEST RESULTS OF ENGINEERING COPS

Statistic Test Symbol PIMDE vs CCoDE ECHTEP NDE SPDE SRDE jDE 

Mann-Whitney 

Win + 2 4 2 5 4 1 

Tied ≈ 2 1 3 0 1 3 

Lose − 1 0 0 0 0 1 

Iman-Davenport 
MinMean’s Rank 2.6 2.3 4.7 2.9 6.2 6.3 3 

MinBest’s Rank 2.9 3.3 3.8 2.9 5.5 6.3 3.3 

Wilcoxon 
Signed 

Rank 

R−
 7.5 2.5 7 0 2.5 7 

R+
 7.5 12.5 8 15 12.5 8 

 

both algorithms outperform the other comparison 

algorithms. In a comparison of the results of the Wilcoxon 

symbol rank test, the symbol rank test -R  are overall 

smaller than +R , demonstrating that PIMDE algorithm 

performs the best. 

            IV. CONCLUSION 

 

In this study, an adaptive constrained differential 

evolution algorithm largely based on interval probability 

update mechanism is proposed. In the proposed algorithm, a 

hybrid mutation strategy is presented by designing the 

interval probability update mechanism to adaptively 

generate the mutation probability value, which can be 

effectively employed to select the complementary mutation 

strategy. Such mutation strategy is capable of achieving a 

good balance the exploration ability and exploitation ability, 

while enhancing the optimization accuracy and convergence 

speed of the algorithm. Furthermore, the parameter adaptive 

mechanism is employed to adjust the F and CR values 

according to different test problems to avoid manual 

parameter adjustment. Moreover, the restart plan is 

introduced into PIMDE to enable the population to jump out 

of the stranded area during the evolution. As revealed from 

the simulation results of 10 test functions and 5 engineering 

constrained optimization problems, the PIMDE algorithm 

exerts better solution effect than the ECHTEP, NDE, SPDE, 

SRDE and jDE algorithms, and it exhibits similar 

performance to the CCoDE algorithm.  

In the subsequent study, the robustness of the algorithm 

will be enhanced continuously, so the algorithm is capable 

of solving more constrained optimization problems. 
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