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Abstract—An LT-BEM is used to solve numerically a class
of variable coefficient unsteady modified Helmholtz equation.
The variable coefficients equation is transformed to a constant
coefficients equation which is then Laplace-transformed (LT)
so that the time variable vanishes. A boundary-only integral
equation involving a time-free fundamental solution can then
be derived and employed to find numerical solutions using a
boundary element method (BEM). The results obtained are
inversely transformed numerically using the Stehfest formula.
Some problems considered show that the combined LT-BEM is
easy to implement, efficient and accurate for solving numeri-
cally the problems.

Index Terms—Anisotropic functionally graded materials,
modified Helmholtz equation, Laplace transform, boundary
element method

I. INTRODUCTION

We will consider initial boundary value problems governed
by a modified Helmholtz type equation with variable coeffi-
cients of the form
∂

∂xi

[
κij (x)

∂µ (x, t)

∂xj

]
− β2 (x)µ (x, t) = α (x)

∂µ (x, t)

∂t
(1)

The coefficients [κij ] (i, j = 1, 2) is a real symmetric positive
definite matrix. Also, in (1) the summation convention for
repeated indices holds. Therefore equation (1) may be written
explicitly as

∂

∂x1

(
κ11

∂µ

∂x1

)
+

∂

∂x1

(
κ12

∂µ

∂x2

)
+

∂

∂x2

(
κ12

∂µ

∂x1

)
+

∂

∂x2

(
κ22

∂µ

∂x2

)
− β2µ = α

∂c

∂t

Equation (1) is usually used to model infiltration problems
(see for examples [1]–[3]).

During the last decade functionally graded materials
(FGMs) have become an important topic, and numerous
studies on them for a variety of applications have been re-
ported. FGMs are materials possessing characteristics which
vary (with time and position) according to a mathematical
function. Therefore equation (1) is relevant for FGMs. FGMs
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are mainly artificial materials which are produced to meet a
preset practical performance (see for example [4], [5]). This
constitutes relevancy of solving equation (1).

A number of studies on the modified Helmholtz equation
had been done for finding its numerical solutions. However
the studies mainly focus on the case of homogeneous media
isotropic equation (see for example [1]–[3]). For such kind
of materials, the boundary element method (BEM) and other
methods had been successfully used to find the numerical
solutions of problems associated to them.

But this is not the case for inhomogeneous materials, due
to the unavailability of fundamental solutions for equations
of variable coefficients which govern problems of inho-
mogeneous media. Some progress of solving problems for
inhomogeneous media using various techniques has been
done. Timpitak and Pochai [6] investigated finite difference
solutions of unsteady diffusion-convection problems for het-
erogeneous media. Noda et al. [7] studied the analytical
solutions to a transient heat conduction equation of variable
coefficients with a source term for a functionally graded
orthotropic strip (FGOS). In this study, the inhomogeneity
of the FGOS is simplified to be functionally graded in the x
variable only. In [8] Azis and Clements worked on finding
numerical solutions to nonlinear transient heat conduction
problems for anisotropic quadratically graded materials us-
ing a boundary domain element method. The quadratically
varying coefficient in the governing equation considered by
Azis and Clements [8] can certainly be represented as a
sum of constant and variable coefficients. Some later studies
on the class of constant-plus-variable coefficients equations
had been done a number of authors. Samec and Škerget
[9] considered a non-steady diffusive–convective transport
equation with variable velocity which is represented as a
sum of constant and variable terms. Ravnik and Škerget
in [10] studied steady state diffusion-convection problems
with inhomogeneous isotropic diffusivity, variable velocity
and incompressible fluid using a domain boundary integral
equation method (DBIEM). In this work both the diffu-
sivity and the velocity take a constant-plus-variable form.
Ravnik and Škerget in [11] considered an unsteady state
diffusion-convection problems with sources, inhomogeneous
isotropic conductivity, variable velocity and incompressible
fluid using a DBIEM. In this study both the diffusivity
and the velocity are again taken to be of constant-plus-
variable form. AL-Bayati and Wrobel [12], [13] focused
on convection–diffusion–reaction equation of incompressible
flow with constant diffusivity and variable velocity taking the
form of constant-plus-variable terms. Ravnik and Tibuat [14]
also considered an unsteady diffusion-convection equation
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with variable diffusivity and velocity. The diffusivity is
of the constant-plus-variable form. By taking the variable
coefficients as a sum of constant and variable coefficients,
the derived integral equation will then involve both boundary
and domain integrals. The constant coefficient term will
contribute boundary integrals as the fundamental solutions
are available, and the variable coefficient term will give
domain integrals.

Reduction to constant coefficients equation is another
technique that can be used to transform a variable coefficients
equation to a constant coefficients equation. Therefore the
technique will preserve the boundary-only integral equation.
Recently Azis and co-workers had been working on steady
state problems of anisotropic inhomogeneous media for sev-
eral types of governing equations, for examples [15]–[20] for
Helmholtz equation, [21]–[24] for the modified Helmholtz
equation, [25] for elasticity problems, [26]–[30] for the
diffusion convection equation, [31]–[34] for the Laplace type
equation, [35]–[41] for the diffusion convection reaction
equation. Some other classes of inhomogeneity functions for
FGMs that differ from the class of constant-plus-variable
coefficients are reported from these papers. Azis et al. also
had been working on unsteady state problems of anisotropic
inhomogeneous media for some types of governing equations
(see [42]–[46]).

This paper is intended to extend the recently published
works in [21]–[24] for steady anisotropic modified Helmholtz
type equation with spatially variable coefficients of the form

∂

∂xi

[
κij (x)

∂µ (x, t)

∂xj

]
− β2 (x)µ (x, t) = 0

to unsteady anisotropic modified Helmholtz type equation
with spatially variable coefficients of the form (1).

Equation (1) will be transformed to a constant coefficient
equation from which a boundary integral equation will de-
rived. It is necessary to place some constraint on the class
of coefficients κij and β2 for which the solution obtained is
valid. The analysis of this paper is purely formal; the main
aim being to construct effective BEM for class of equations
which falls within the type (1).

II. THE INITIAL-BOUNDARY VALUE PROBLEM

Referred to a Cartesian frame Ox1x2 solutions µ (x, t)
and its derivatives to (1) are sought which are valid for
time interval t ≥ 0 and in a region Ω in R2 with boundary
∂Ω which consists of a finite number of piecewise smooth
closed curves. On ∂Ω1 the dependent variable µ (x, t)
(x = (x1, x2)) is specified and on ∂Ω2

P (x, t) = κij (x)
∂µ (x, t)

∂xi
nj (2)

is specified where ∂Ω = ∂Ω1 ∪ ∂Ω2 and n = (n1, n2)
denotes the outward pointing normal to ∂Ω. The initial
condition is taken to be

µ (x, 0) = 0 (3)

The method of solution will be to transform the variable
coefficient equation (1) to a constant coefficient equation, and
then taking a Laplace transform of the constant coefficient
equation, and to obtain a boundary integral equation in the
Laplace transform variable s. The boundary integral equation

is then solved using a standard boundary element method
(BEM). An inverse Laplace transform is taken to get the
solution c and its derivatives for all (x, t) in the domain.
The inverse Laplace transform is implemented numerically
using the Stehfest formula.

The analysis is specially relevant to an anisotropic medium
but it equally applies to isotropic media. For isotropy, the
coefficients in (1) take the form κ11 = κ22 and κ12 = 0 and
use of these equations in the following analysis immediately
yields the corresponding results for an isotropic medium.

III. THE BOUNDARY INTEGRAL EQUATION

The coefficients κij , β2, α are required to take the form

κij (x) = κijg(x) (4)

β2 (x) = β
2
g(x) (5)

α (x) = αg(x) (6)

where the κij , β
2
, α are constants and g is a differentiable

function of x. Further we assume that the coefficients κij (x),
β2 (x) and α (x) are trigonometrically graded by taking g(x)
as an trigonometric function

g(x) = [A cos (c0 + cixi)

+B sin (c0 + cixi)]
2 (7)

where A,B, c0 and ci are constants. Therefore if

κijcicj + λ = 0 (8)

then (7) satisfies

κij
∂2g1/2

∂xi∂xj
− λg1/2 = 0 (9)

Use of (4)-(6) in (1) yields

κij
∂

∂xi

(
g
∂µ

∂xj

)
− β

2
gµ = αg

∂µ

∂t
(10)

Let
µ (x, t) = g−1/2 (x)ψ (x, t) (11)

therefore substitution of (4) and (11) into (2) gives

P (x, t) = −Pg (x)ψ (x, t) + g1/2 (x)Pψ (x, t) (12)

where

Pg (x) = κij
∂g1/2

∂xj
ni Pψ (x) = κij

∂ψ

∂xj
ni

Also, (10) may be written in the form

κij
∂

∂xi

[
g
∂
(
g−1/2ψ

)
∂xj

]
− β

2
g1/2ψ = αg

∂
(
g−1/2ψ

)
∂t

which can be simplified

κij
∂

∂xi

(
g1/2

∂ψ

∂xj
+ gψ

∂g−1/2

∂xj

)
− β

2
g1/2ψ = αg1/2

∂ψ

∂t

Use of the identity

∂g−1/2

∂xi
= −g−1 ∂g

1/2

∂xi

implies

κij
∂

∂xi

(
g1/2

∂ψ

∂xj
− ψ

∂g1/2

∂xj

)
− β

2
g1/2ψ = αg1/2

∂ψ

∂t
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Rearranging and neglecting the zero terms yield

g1/2κij
∂2ψ

∂xi∂xj
− ψκij

∂2g1/2

∂xi∂xj
− β

2
g1/2ψ = αg1/2

∂ψ

∂t

Equation (9) then implies

κij
∂2ψ

∂xi∂xj
−
(
β
2
+ λ

)
ψ = α

∂ψ

∂t
(13)

Taking the Laplace transform of (11), (12), (13) and applying
the initial condition (3) we obtain

ψ∗ (x, s) = g1/2 (x)µ∗ (x, s) (14)

Pψ∗ (x, s) = [P ∗ (x, s) + Pg (x)ψ
∗ (x, s)] g−1/2 (x) (15)

κij
∂2ψ∗

∂xi∂xj
−
(
β
2
+ λ+ sα

)
ψ∗ = 0 (16)

where s is the variable of the Laplace-transformed domain.
A boundary integral equation for the solution of (16) is

given in the form

η (x0)ψ
∗ (x0, s) =

∫
∂Ω

[Γ (x,x0)ψ
∗ (x, s)

−Φ (x,x0)Pψ∗ (x, s)] dS (x)(17)

where x0 = (a, b), η = 0 if (a, b) /∈ Ω ∪ ∂Ω, η = 1 if
(a, b) ∈ Ω, η = 1

2 if (a, b) ∈ ∂Ω and ∂Ω has a continuously
turning tangent at (a, b). The so called fundamental solution
Φ in (17) is any solution of the equation

κij
∂2Φ

∂xi∂xj
−
(
β
2
+ λ+ sα

)
Φ = δ (x− x0)

and the Γ is given by

Γ (x,x0) = κij
∂Φ (x,x0)

∂xj
ni

where δ is the Dirac delta function. For two-dimensional
problems Φ and Γ are given by

Φ (x,x0) =


K
2π lnR if β

2
+ λ+ sα = 0

ıK
4 H

(2)
0 (ωR) if β

2
+ λ+ sα < 0

−K
2π K0 (ωR) if β

2
+ λ+ sα > 0

Γ (x,x0) =


K
2π

1
Rκij

∂R
∂xj

ni
−ıKω

4 H
(2)
1 (ωR)κij

∂R
∂xj

ni
Kω
2π K1 (ωR)κij

∂R
∂xj

ni
if β

2
+ λ+ sα = 0

if β
2
+ λ+ sα < 0

if β
2
+ λ+ sα > 0

(18)

where

K = τ̈ /D

ω =

√
|β2

+ λ+ sα|/D
D =

[
κ11 + 2κ12τ̇ + κ22

(
τ̇2 + τ̈2

)]
/2

R =

√
(ẋ1 − ȧ)2 + (ẋ2 − ḃ)2

ẋ1 = x1 + τ̇x2

ȧ = a+ τ̇ b

ẋ2 = τ̈x2

ḃ = τ̈ b

where τ̇ and τ̈ are respectively the real and the positive
imaginary parts of the complex root τ of the quadratic

κ11 + 2κ12τ + κ22τ
2 = 0

and H
(2)
0 , H(2)

1 denote the Hankel function of second kind
and order zero and order one respectively. K0, K1 denote
the modified Bessel function of order zero and order one
respectively, ı represents the square root of minus one. The
derivatives ∂R/∂xj needed for the calculation of the Γ in
(18) are given by

∂R

∂x1
=

1

R
(ẋ1 − ȧ)

∂R

∂x2
= τ̇

[
1

R
(ẋ1 − ȧ)

]
+ τ̈

[
1

R

(
ẋ2 − ḃ

)]
Use of (14) and (15) in (17) yields

ηg1/2µ∗ =

∫
∂Ω

[(
g1/2Γ− PgΦ

)
µ∗

−
(
g−1/2Φ

)
P ∗

]
dS (19)

This equation provides a boundary integral equation for
determining µ∗ and its derivatives at all points of Ω.

Knowing the solutions µ∗ (x, s) and its derivatives
∂µ∗/∂x1 and ∂µ∗/∂x2 which are obtained from (19), the
numerical Laplace transform inversion technique using the
Stehfest formula is then employed to find the values of
µ (x, t) and its derivatives ∂µ/∂x1 and ∂µ/∂x2. The Stehfest
formula is

µ (x, t) ≃ ln 2

t

N∑
m=1

Vmµ
∗ (x, sm)

∂µ (x, t)

∂x1
≃ ln 2

t

N∑
m=1

Vm
∂µ∗ (x, sm)

∂x1
(20)

∂µ (x, t)

∂x2
≃ ln 2

t

N∑
m=1

Vm
∂µ∗ (x, sm)

∂x2

where

sm =
ln 2

t
m

Vm = (−1)
N
2 +m ×

min(m,N2 )∑
k=[m+1

2 ]

kN/2 (2k)!(
N
2 − k

)
!k! (k − 1)! (m− k)! (2k −m)!

IV. NUMERICAL EXAMPLES

In order to verify the analysis derived in the previous
sections, we will consider several problems either as test
examples of analytical solutions or problems without simple
analytical solutions.

We assume each problem belongs to a system which
is valid in given spatial and time domains and governed
by equation (1) and satisfying the initial condition (3) and
some boundary conditions as mentioned in Section II. The
characteristics of the system which are represented by the
coefficients κij (x) , β

2 (x) , α (x) in equation (1) are as-
sumed to be of the form (4), (5) and (6) in which g(x)
is a trigonometric function of the form (7). The coefficients
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TABLE I
VALUES OF Vm OF THE STEHFEST FORMULA

Vm N = 6 N = 8 N = 10 N = 12

V1 1 −1/3 1/12 −1/60
V2 −49 145/3 −385/12 961/60
V3 366 −906 1279 −1247
V4 −858 16394/3 −46871/3 82663/3
V5 810 −43130/3 505465/6 −1579685/6
V6 −270 18730 −236957.5 1324138.7
V7 −35840/3 1127735/3 −58375583/15
V8 8960/3 −1020215/3 21159859/3
V9 164062.5 −8005336.5
V10 −32812.5 5552830.5
V11 −2155507.2
V12 359251.2

κij (x) , β
2 (x) , α (x) may represent respectively the diffu-

sivity or conductivity, the wave number and the change rate
of the unknown µ (x, t).

Standard BEM with constant elements is employed to
obtain numerical results. For a simplicity, a unit square will
be taken as the geometrical domain for all problems. A
number of 320 elements of equal length, namely 80 elements
on each side of the unit square, are used. And the time
interval is chosen to be 0 ≤ t ≤ 5. A FORTRAN script is
developed to compute the solutions and a specific FORTRAN
command is imposed to calculate the elapsed CPU time for
obtaining the results. A simple script is also embedded to
calculate the values of the coefficients Vm,m = 1, 2, . . . , N
for any even number N . Table I shows the values of Vm for
several values of N .

For all problems the inhomogeneity function is taken to
be

g1/2(x) = cos (0.7− 0.4x1 − 0.3x2)

+ sin (0.7− 0.4x1 − 0.3x2)

and the constant anisotropy coefficient κij

κij =

[
1 0.2
0.2 0.8

]
so that 8 implies

λ = −0.28

We set the constant coefficient β
2

β
2
= 1

A. Examples with analytical solutions

1) Problem 1:: Other aspects that will be justified are
the convergence (as N increases) and time efficiency for
obtaining the numerical solutions. The analytical solutions
are assumed to take a separable variables form

µ (x, t) = g−1/2 (x)h (x) f (t)

where h (x) , f (t) are continuous functions. The boundary
conditions are assumed to be (see Figure 1)

P is given on side AB
P is given on side BC
µ is given on side CD
P is given on side AD

-

6

x1

x2

A(0, 0) B(1, 0)

C(1, 1)D(0, 1)

µ (x, 0) = 0

P given

P given

µ given

P given

Fig. 1. The boundary conditions for the problems in Section IV-A

For each N , numerical solutions for µ and the derivatives
∂µ/∂x1 and ∂µ/∂x2 at 19 × 19 points inside the space
domain which are

(x1, x2) = {0.05, 0.1, 0.15, . . . , 0.9, 0.95}
×{0.05, 0.1, 0.15, . . . , 0.9, 0.95}

and 11 time-steps which are

t = 0.0005, 0.5, 1, 1.5, . . . , 4, 4.5, 5

are computed. The aggregate relative error E is calculated
using the norm

E =

[∑
t

∑19×19
i=1 (ςn,i − ςa,i)

2∑
t

∑19×19
i=1 µ2

a,i

] 1
2

where ςn and ςa represent respectively the numerical and
analytical solutions µ or the derivatives ∂µ/∂x1 and ∂µ/∂x2.
The elapsed CPU time τ (in seconds) is also computed and
the time efficiency number ε for obtaining the numerical
solutions of error E is defined as

ε = Eτ

This formula explains that the smaller time τ with smaller
error E, the more efficient the procedure (smaller ε).

Case 1:: We take

h(x) = 0.4− 0.3x1 − 0.1x2

f(t) = 1− exp (−1.75t)

Thus for h(x) to satisfy (16)

α = −0.72/s

Table II shows the error E and efficiency number ε for
solutions µ, ∂µ/∂x1, ∂µ/∂x2 as N increases from N = 6
to N = 12. For the solutions µ, ∂µ/∂x2 the error E and
efficiency number ε gets smaller as N moves up to N = 10
and for the solution ∂µ/∂x1 the error E and efficiency
number ε decrease as N moves up to N = 12 and N = 10
respectively. As shown in Table III, the optimized value of
N for solutions µ, ∂µ/∂x2 to achieve their smallest error
E and efficiency number ε is N = 10, but for the solution
∂µ/∂x1 to reach its smallest error E and efficiency number
ε the optimized value of N is N = 12 and N = 10
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TABLE II
THE TOTAL ELAPSED CPU TIME τ , THE GLOBAL AVERAGE ERROR E ,

THE EFFICIENCY NUMBER ε = τE FOR CASE 1

N 6 8 10 12
τ 249.859 332.906 418.594 498.781

µ
E 0.00456413 0.00158719 0.00095128 0.00097223
ε 1.140390 0.528384 0.398200 0.484928

∂µ
∂x1

E 0.00413618 0.00138737 0.00076626 0.00066876
ε 1.033463 0.461865 0.320751 0.333567

∂µ
∂x2

E 0.00446496 0.00149382 0.00081896 0.00082135
ε 1.115611 0.497304 0.342810 0.409674

TABLE III
THE OPTIMIZED VALUE OF N FOR OBTAINING THE NUMERICAL

SOLUTIONS µ, ∂µ/∂x1, ∂µ/∂x2 OF BEST ERROR E AND EFFICIENCY
NUMBER ε FOR CASE 1

µ ∂µ
∂x1

∂µ
∂x2

E N = 10 N = 12 N = 10
ε N = 10 N = 10 N = 10

respectively. According to Hassanzadeh and Pooladi-Darvish
[47] increasing N will increase the accuracy up to a point,
and then the accuracy will decline due to round-off errors.

Case 2:: For the analytical solution we take

h(x) = sin (0.4− 0.3x1 − 0.1x2)

f(t) = t/5

So that in order for h(x) to satisfy (16)

α = −0.83/s

Tables IV and V show that for solution µ the smallest error E
and efficiency number ε are achieved when N = 12 and N =
8 respectively, whereas for the solutions ∂µ/∂x1, ∂µ/∂x2
they are reached when N = 8.

Case 3:: We take

h(x) = exp (−0.4 + 0.3x1 + 0.1x2)

f(t) = 0.16t (5− t)

Therefore (16) gives

α = −0.61/s

Tables VI and VII show that for solutions µ the smallest
error E and efficiency number ε are achieved when N = 12,
for solutions ∂µ/∂x1 and ∂µ/∂x2 the smallest error E and
efficiency number ε are achieved when N = 10.

TABLE IV
THE TOTAL ELAPSED CPU TIME τ , THE GLOBAL AVERAGE ERROR E ,

THE EFFICIENCY NUMBER ε = τE FOR CASE 2

N 6 8 10 12
τ 399.906 530.906 653.391 765.234

µ
E 0.00168221 0.00071267 0.00060798 0.00057896
ε 0.672728 0.378362 0.397250 0.443040

∂µ
∂x1

E 0.00228414 0.00040042 0.00040509 0.00041696
ε 0.913440 0.212583 0.264681 0.319074

∂µ
∂x2

E 0.00335038 0.00114237 0.00125029 0.00128123
ε 1.339838 0.606494 0.816928 0.980439

TABLE V
THE OPTIMIZED VALUE OF N FOR OBTAINING THE NUMERICAL

SOLUTIONS µ, ∂µ/∂x1, ∂µ/∂x2 OF BEST ERROR E AND EFFICIENCY
NUMBER ε FOR CASE 2

µ ∂µ
∂x1

∂µ
∂x2

E N = 12 N = 8 N = 8
ε N = 8 N = 8 N = 8

TABLE VI
THE TOTAL ELAPSED CPU TIME τ , THE GLOBAL AVERAGE ERROR E ,

THE EFFICIENCY NUMBER ε = τE FOR CASE 3

N 6 8 10 12
τ 333.359 384.359 555.516 661.828

µ
E 0.16858197 0.01090963 0.00033883 0.00021239
ε 56.198382 4.193218 0.188226 0.140563

∂µ
∂x1

E 0.16865011 0.01100402 0.00026815 0.00028978
ε 56.221095 4.229498 0.148964 0.191786

∂µ
∂x2

E 0.16870872 0.01108307 0.00033121 0.00064502
ε 56.240633 4.259882 0.183991 0.426895

TABLE VII
THE OPTIMIZED VALUE OF N FOR OBTAINING THE NUMERICAL

SOLUTIONS µ, ∂µ/∂x1, ∂µ/∂x2 OF BEST ERROR E AND EFFICIENCY
NUMBER ε FOR CASE 3

µ ∂µ
∂x1

∂µ
∂x2

E N = 12 N = 10 N = 10
ε N = 12 N = 10 N = 10

B. Examples without analytical solutions

The aim is to show the effect of inhomogeneity and
anisotropy of the considered material on the solution µ.

1) Problem 2:: The material is supposed to be either
inhomogeneous or homogeneous and either anisotropic or
isotropic. If the material is homogeneous then

g(x) = 1

and if it is isotropic then

κij =

[
1 0
0 1

]
So that there are four cases regarding the material,
namely anisotropic inhomogeneous, anisotropic homoge-
neous, isotropic inhomogeneous and isotropic homogeneous
material. We set α = 1 and the boundary conditions are (see
Figure 2)

P = P (t) on side AB
P = 0 on side BC
µ = 0 on side CD
P = 0 on side AD

where P (t) takes four forms

P (t) = P1 (t) = 1

P (t) = P2 (t) = 1− exp (−1.75t)

P (t) = P3 (t) = t/5

P (t) = P4 (t) = 0.16t (5− t)

Therefore the system is geometrically symmetric about x1 =
0.5. We use N = 12 for all cases of this problem.

The results are shown in Table VIII, Figures 3 and 4. Table
VIII shows the solution µ at points (0.2, 0.5) , (0.8, 0.5) when
the material under consideration is an isotropic homogeneous
material. It can be seen that the values of µ at point (0.2, 0.5)
coincide with those at point (0.8, 0.5). This is to be expected
as the system is symmetrical about x1 = 0.5 when the
material is isotropic homogeneous. However, if the material
is anisotropic homogeneous the values of µ at point (0.2, 0.5)
do not coincide with those at point (0.8, 0.5). See Figure
3. This means anisotropy gives effect on the values of µ.
Similarly, if the material is isotropic inhomogeneous (see
Figure 4) the values of µ at point (0.2, 0.5) also differ from
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x1

x2

A(0, 0) B(1, 0)

C(1, 1)D(0, 1)

µ (x, 0) = 0

P = P (t)

P = 0

µ = 0

P = 0

Fig. 2. The boundary conditions for Problem 2.

TABLE VIII
SOLUTION µ AT POINTS (0.2, 0.5) , (0.8, 0.5) FOR PROBLEM 2 OF

ISOTROPIC HOMOGENEOUS MATERIAL.

t
µ

(0.2, 0.5) (0.8, 0.5)
0.0005 -0.000000 -0.000000
0.5 0.066071 0.066071
1.0 0.198064 0.198064
1.5 0.321578 0.321578
2.0 0.414356 0.414356
2.5 0.469854 0.469854
3.0 0.486198 0.486198
3.5 0.462821 0.462821
4.0 0.399551 0.399551
4.5 0.296340 0.296340
5.0 0.153175 0.153175

those at point (0.8, 0.5). This indicates that inhomogeneity
also gives effect on the values of µ.

In addition, Figures 3 and 4 show that the trends of µ
values (as the time t changes) follow the time variation of
P (t) except for the form of P (t) = 1. This is to be expected
as P (t), acting as the boundary condition on side AB, is
the only time-dependent quantity for the system, and the
coefficients κij (x) , α (x) are time independent. Moreover,
as shown in Figure 4, it is also expected that the values of
µ for the cases of P1 (t) = 1 and P2 (t) = 1− exp (−1.75t)
tend to approach same steady state solution as t increases.
Both functions P1 (t) = 1 and P2 (t) = 1 − exp (−1.75t)
will converge to 1 as t gets bigger.

Fig. 3. Solution µ at points (0.2, 0.5) , (0.8, 0.5) for Problem 2 of
anisotropic homogeneous material.

Fig. 4. Solution µ at points (0.2, 0.5) , (0.8, 0.5) for Problem 2 of isotropic
inhomogeneous material.

V. CONCLUSION

A combined Laplace transform and standard BEM has
been used to find numerical solutions to initial boundary
value problems for anisotropic functionally graded materials
which are governed by the parabolic equation (1). It is easy
to implement and accurate. It involves a time variable free
fundamental solution and therefore that is why it would
be more accurate. Unlikely, the methods with time variable
fundamental solution may produce less accurate solutions as
the fundamental solution usually has singular time points.

It has been applied to a class of functionally graded
materials, namely trigonometrically graded materials. As the
coefficients κij (x) , β (x) , α (x) do depend on the spatial
variable x only and on the same inhomogeneity or gradation
function g(x), it is interesting to extend the study in the
future to the case when the coefficients depend on different
gradation functions varying also with the time variable t.

In order to use the boundary integral equation (19), the
values µ (x, t) or P (x, t) of the boundary conditions as
stated in Section (II) of the original system in time variable
t have to be Laplace transformed first. This means that
from the beginning when we set up a problem, we actually
put a set of approached boundary conditions. Therefore it
is really important to find a very accurate technique of
numerical Laplace transform inversion. Based on the results
of problems in Section IV-A, the Stehfest formula is quite
accurate.
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