

Abstract—This paper is a proposal of a method meant to

correct the parameters of the mass-spring model by means of
using a Generative Adversarial Networks (GAN). Given that
the traditional mass-spring parameters are set randomly during
the simulation of the mass-spring model of the cloth, it becomes
easy to cause the cloth to be excessively stretched during the
simulation of the mass-spring model. Nonetheless, a significant
number of researchers have tried to use various methods to
effectively adjust the parameters of the model. However, most
of the results have not been satisfactory. Therefore in this paper,
GAN are used to automatically learn and correct the
mass-spring parameters, in order to better solve the problem of
over-stretching the cloth generated by the cloth simulation
based on the spring particle model.

Index Terms—Mass-Spring Model, Generative Adversarial
Network, Cloth Simulation, Least Squares Loss Function,
Simulation and Analysis

I. INTRODUCTION

ABRICS such as cloth and clothes are flexible
deformable bodies, that show a very rich wrinkle effect

under the action of various forces. This makes cloth
simulation a very complex technology in the virtual reality.
The cloth is a distinctive fabric. On the one hand, the textiles
field focuses much on accurate modeling using fabric-related
dynamics theory, while on the other hand the field of
computer graphics puts much of its focus on using virtual
simulation technology. This is done to generate the animation
effect of realistic fabrics in computers. The past two decades
reveal that, although researchers in the textile field are able to
use various measuring instruments and methods to obtain
various physical parameters of fabrics, they have also gone
on to develop some cloth models. However, due to the
complexities and the low performance of the computer
hardware at that time, most of these models have not been
developed and widely used in the field of virtual cloth
simulation.

Researchers in the textile field are able to accurately
reproduce the dynamic behavior of fabrics such as cloth by
establishing the corresponding relationship between the
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geometric deformation of the cloth and mechanical
parameters, such as bending stiffness and Young's model. In
1986, computer graphics began to explore cloth simulation
models, and Weil [1] pioneered the cloth simulation based on
geometric models. With the improvement of computer
hardware performance and the continuous improvement of
simulation technology, more and more researchers in the
graphics field have begun to gradually introduce research
results in the field of textiles, and continue to develop
physical cloth-based dynamic modeling methods. In
particular, some studies have introduced continuous domain
modeling. Compared with discrete domain modeling,
continuous domain modeling can better express the micro-
characteristics of deformable fabrics objects, such as
wrinkles.

Although the continuous model can obtain more realistic
cloth simulation effects, the performance of the simulation is
still not high based on the current hardware conditions, which
restraints its application and promotion in cloth animation.
Moreover, cloth is a kind of fabric that is woven from a large
number of interlaced yarns, with gaps between the yarns.
From a micro perspective, cloth is not a strict continuous
medium, and it does not meet the premise assumptions in
continuous models, which makes it difficult to accurately
express deformation details such as wrinkles of fabrics even
in the most complicated continuous models. Mass-Spring
Model (MSM) is widely used for cloth simulation and
clothing animation research. The model is simple and
intuitive, with a small amount of calculation, and can be
conveniently used to generate clothing animations [2]. It has
been widely used by many researchers [3, 4].

Classic MSM for cloth simulation was proposed by Provot
in 1995 [5]. In this model, cloth is not considered as a
continuum, but as a grid of rows and columns connected by
the spring, as shown in Fig. 1. The nodes of the spring are
mass points, and the mass of the cloth is evenly distributed on
these mass points. Each spring is assumed to meet the ideal
linear elastic relationship, has no mass, and the initial length
is not zero. According to the different deformation
characteristics of the cloth, the spring is divided into three
types: structural spring, shear spring and bending spring. The
structural spring is used to maintain the basic shape of the
fabric. When the fabric is squeezed or stretched, it will cause
the structural spring to deform, and then generate spring
stress to prevent further deformation; the shear spring is used
to prevent excessive twisting in the diagonal direction when
the fabric is subjected to shearing forces; the bending spring
is used to prevent excessive bending deformation of the
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fabric. A large number of experimental results show that in
most cases, the force of the bending spring should be much
smaller than the others. Otherwise, in the process of
animation generation, they are easy to cause the numerical
solution to be unstable, making the position of the cloth patch
untidy.

In cloth simulation, the spring is in a state of constant
stretching and contraction under the interaction of various
internal and external forces. The dynamic simulation of the
cloth is essentially the change of the motion state of the
particle under the force, that is, the dynamic process of the
mass-spring system. However, during the calculation
simulation of the mass-spring model, it is easy to have
simulation situations of overstretching. This is mainly
because it is difficult to accurately adjust the parameters of
the mass-spring model during the calculation. As a result, the
parameters are adjusted excessively, and the cloth is stretched
too much. Many researchers have tried to use various
methods to effectively adjust the parameters of the model.
However, most of the results are not satisfactory. With the
development of artificial intelligence neural networks, there
is a deep learning network called Generative Adversarial
Networks (GAN). It is an unsupervised learning network,
which has been proven to have a very powerful automatic
modeling capability. GAN provides a way to learn deep
representations without requiring a large amount of labeled
training data. This paper uses the powerful modeling
capabilities of the generative adversarial network to establish
a parameter model of the mass-spring model, and then uses
this model to automatically correct the parameters of the
mass-spring model.

(a) Mass-Spring

(b) structural spring

(c) shear spring

(d) bending spring
Fig. 1. Schematic diagram of Mass-Spring Model

II. PROBLEMS WITH MSM
The mass-spring model proposed by Provot [5] separates the

cloth into individual masses, and the motion of the masses
conforms to the laws of classical mechanics. It has high
calculation efficiency and good performance. In the cloth
simulation process, by adjusting the simulation parameters, a
variety of different shapes and physical properties can be
simulated. The three forces of the spring are simulated inside
the fabric. These forces play a role in fixing the fabric
structure.

The topological structure of the mass-spring model is
shown in Fig. 1. The position of the mass point represents the
three-dimensional spatial position of a point in the fabric. The
point has a certain mass, but it is negligible and uniformly
distributed. The spring connected between the mass points
follow Hooke's law. The mass-spring model has some
advantages. For example, its mathematical formula is simple
and suitable for multiple topological meshing; its structural
calculation and graphics processing can be performed
simultaneously.

MSM can use the spring connection between particles and
the external force to analyze the force relationship of each
particle. The internal force is mainly generated by the
relationship of the spring following Hooke's law. The specific
expression is as follows:
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In the formula, ijk represents the Hook's elastic coefficient

of the spring between two particles i, j, ix represents the

position of particle i, jx represents the position of particle j,

and
0
ijl represents the original length of the spring between i

and j.
The mass point is not only affected by the above internal

spring force, but also by external forces such as: tensile force,
gravity, damping force, air resistance, etc. :

resistanceair force dampinggravity FFFFF pulloutside  (2)
At the same time, the sum of the internal and external force

vectors on a particle becomes the resultant force on the
particle. According to Newton's second law, the acceleration
of the particle is calculated as follows:

maFFF inside  outsidesum (3)
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t
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Wherem is the mass of the particle and X is the coordinate
vector of the particle.

The advantage of MSM for cloth simulation is that the
model is simple, the calculation efficiency is high, the
real-time performance of cloth simulation is met, and the
nonlinear problems of large rotation and large deformation
can be handled relatively easily. However, because the
traditional MSM is difficult to correlate the constitutive
relationship of the cloth itself, the selection of its spring
parameters ijk is relatively arbitrary; therefore, the calculation
accuracy is not high, the simulation degree is not realistic
enough, and the phenomenon of super elasticity is easy to
occur, so this has also become a major limitation in the
application of MSM.
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MSM's cloth modeling method is to separate the cloth into
multiple smaller mass points, each of which is connected to
each other by a spring that conforms to Hooke's law. MSM
only needs to use the deformation of the spring between the
particles, and does not need to establish the stiffness matrix.
It uses Newton's second law to directly solve the equation of
motion of the particle. This can ingeniously avoid some of the
limitations encountered in cloth simulation. It is widely used
in deformation simulation of soft materials such as cloth.

The core of using MSM to solve related problems is to
determine the spring stiffness in MSM. The value of the
spring stiffness will directly affect the calculation accuracy of
MSM. In the existing applications that use MSM, the
randomness of the spring stiffness coefficient is the main
reason for the low accuracy of MSM. At present, some
scholars are studying the method of solving stiffness about
the spring of MSM. Lloyd[6] divides many of the MSM spring
stiffness selection methods into two broad categories. The
first is a data-driven method, which uses the actual
deformation of the measured object as a reference to estimate
the spring stiffness of the MSM. The second type is the
analytical derivation method, which relates the constitutive
relationship of the materials, and maps the material
relationship to the spring coefficient to derive the analytical
expression of the related spring stiffness of the MSM. This
article attempts to use GAN to establish a spring coefficient
model.

III. GENERATIVE ADVERSARIAL NETWORK

So far, deep learning models can be divided into three
types. The first is a generative model structure. This model
describes the deep relationship between the data itself and its
category attributes. It is expressed as a joint probability in
mathematics. This model is often used in unsupervised
learning. The results of the research include deep belief
networks, auto encoders, deep-level Boltzmann machines,
and recurrent neural networks. The second is a discriminative
model. This model describes the characteristics of the data
and is expressed as conditional probability in mathematics.
The most successful research result of this model is the
convolutional neural network structure. The third is a hybrid
model, which is a network model that contains both a
generative model and a discriminant model. Currently, the
most widely used hybrid model is to use the generative model
to set the initial state of the discriminant model.

The basic framework for the generating adversarial
networks (GAN) in 2014 was first proposed by Goodfellow
et al. [7], and it belongs to the hybrid model. This model has
been proven to have very powerful modeling capabilities. It
only needs a small amount of labeled training data to learn
deep representation patterns.

Fig. 2. Schematic diagram of standard generation adversarial network

The theoretical basis of the generative adversarial
networks is game theory. The GAN model creates two

networks to simulate the zero-sum game between two
persons. They are called as Generator and Discriminator
respectively, where Generator is used to generate samples
and the discriminator is used to discriminate the samples
probability. They are completely independent. As shown in
Fig. 2, the generative adversarial networks usually use the
hidden variable Z (usually set to obey normally distributed
random noise) as the network input, generate samples fakeX

through Generator (G). Discriminator (D) is used to estimate
the probability of samples from real data realX . They are
updated by the back-propagation algorithm to perform
competitive learning to achieve the purpose of training. In
continuous iterations, G can obtain the data features of the
real samples and generate samples with the same feature
distribution as the real samples.

A. General Generative Adversarial Approach
The models of Generating and discriminant are usually

composed of multi-layer networks containing convolutional
or fully connected layers. dataP is the distribution of real data x .
To learn to the distribution gP of the generating models on the
data x , to use )(zG for the prior variable )(zPz of the input
noise to represent the data space mapping, and then to output
a single scalar by the discriminant model. The training
of D andG is a game problem about the minimization of the
value function ),( DGK .

)))]((1[log())]([log(),(maxmin )(~)(~ zGDExDEGDK zPzxPxDG zdata


(5)
Equation (5) is essentially two optimization problems,

which are disassembled into the discriminant model of
equation (6) and the generation model of equation (7).

)))]((1[log())]([log(),(max )(~)(~ zGDExDEGDK zPzxPxD zdata


(6)
Through training, D assigns the correct labels to the real

data and the samples generated by G as much as possible.
After the optimization of the stochastic gradient ascent
algorithm, D(x) keeps increasing and D(G(z)) gradually
decreases.

)))]((1[log(),(min )(~ zGDEGDK zPzG z


(7)
At the same time, G minimizes log(1-D(G(z))) through the

stochastic gradient descent algorithm, so that the sample
generated by G has the highest probability of being judged as
real data.

In continuous adversarial training, when the equilibrium
state of Pg=Pdata shown in equation (8) is reached, G and D
achieve the optimal solution:

2/1
)()(

)()(* 



xPxP

xPxD
gdata

data
G

(8)
The GAN network achieves the best training effect.

Generator model captures the data manifold of Pdata and maps
Generator data distribution to the real data.

B. Least Squares Generative Adversarial Method
The least squares loss function [8] is used to replace the

cross entropy loss function of the original GAN. The original
GAN uses the KL contrast divergence [9] to measure the
difference between the distribution gP and the distribution dataP .
Minimizing the loss function of the original GAN is
equivalent to minimizing Jensen-Shannon contrast
divergence [10].
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The loss function can be rewritten by the least squares loss

function, as follows:
2
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(11)

There is one more term
2

)(~ ])([ cxDE xPx data
 in equation (11)

than the original loss function. Since it has nothing to do with
the G network, it is regarded as a constant. The constants a
and b represent the marks of the real image and the generated
image respectively, and c is a value determined by the
discriminant model to judge that the generated image is real
data.

After the model G is fixedly generated, the optimization
formula for the discriminating model D is:

)()(
)()(
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gdata

gdata





(12)

The Jensen-Shannon contrast divergence using the least
squares loss function is:

2*
)(~

2*
)(~ ])([])([)(2 cxDEcxDEGS xPxxPx gdata

 (13)
The above optimized loss function is equivalent to

minimizing the chi-square contrast divergence [11] between
gdata PP  and gP2 under the constraints of 1 ca and
2ba .

)2()(2 2
ggdataPeason PPPGS   (14)

According to the constraints of a, b and c, the confrontation
loss under the least squares loss function is:
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(15)
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The losses in Eq(15) and Eq(16) are used to replace the
cross-entropy loss function in the conventional GAN network,
which has a better conversion effect and a more stable
training process than the conventional GAN network.

IV. MSM PARAMETER CORRECTION

A. Cloth Simulation Algorithm
The cloth changes depending on the movement of the

particles. In the cloth simulation based on MSM, the motion
of the particle can be expressed in the form of ordinary
differential equation with an initial value of zero in the time
domain. Generally, the differential equation in MSM can be
obtained by numerical integration method to obtain the
position and velocity of each particle. In order to more
efficiently simulate the dynamic changes of cloth, this paper
uses the explicit Euler method with high computational
efficiency to solve the dynamic differential equations (as
shown in equation (17)). Equations (2) and (3) have analyzed
the gravitational, damping, and elastic forces on the cloth
particles, and finally the resulting force on the cloth particles
is sumF . The dynamic simulation of cloth based on MSM
conforms to the law of dynamics, and can calculate the
physical quantities such as acceleration, velocity and
displacement in discrete time according to the resultant force

of the particle:
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Where discrete simulation time, ttt ii  1 , t are time
steps. At time t, the acceleration of the particle in the i-th row
and the j-th column in the cloth patch is represented by )(taij ,
and the speed and displacement are )(tvij and )(tsij respectively.
The corresponding particle velocity at the next time step (at

time tt  ) is )( ttvij  and the displacement is )( ttsij  . In
the cloth dynamic simulation, the time interval tT  is used
for time integration, and the mass points are iteratively
updated to simulate the continuous dynamic effect of the
cloth in real time.

Because the spring parameters ijk of formula (1) are chosen
randomly in the traditional method, it is easy to cause
unpredictable sudden changes in the spring parameters ijk ,
which will cause the cloth simulation to overstretch and
seriously affect the simulation results. In this paper, the GAN
method is used to learn the real cloth movement to establish a
spring parameters model, and then the spring parameters
generated by the model are used to numerically solve and
simulate the cloth.

B. Parameter K Correction Based on GAN
It can be known from equations (1) and (17) that

parameter ijk is a key parameter for cloth simulation. Referring
to Fig. 2, the overall design diagram of the parameter K
correction of Fig. 3 is designed. Assume that the simulated
cloth is represented by a m×n node matrix, the use of the
word embedding model (Word2VEC[12]) to generate the cloth
description vector textv and the random number generator to

generate a Gaussian-Distributed random vector Gauv is
described in Fig. 3 , then they are combined into Vector v .

Input this vector into Generator to generate fake ijk matrix Km .
Then, through the Cloth Simulator to generate fake
simulation pictures, these fake simulation pictures and real
pictures are sent to Discriminator at the same time, and
finally Discriminator gives the judgment of Real or Fake.
Through continuous learning of the GAN, when
Discriminator gives real judgment, the generated m×n

order ijk matrix Km can be used to simulate real cloth
simulation.

Fig. 3. Overall design of parameter correction
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V. GAN NETWORK DESIGN

A. Generative Model
1) Network Design
In 2015, Radford et al. [13] proposed that Deep

Convolutional GAN (DCGAN) is a better improvement after
the GAN. The improvement is mainly on the network
structure, and DCGAN successfully applied the
convolutional neural network to the GAN, and greatly
improved the stability of the GAN training and the quality of
the generated results, so far, the network structure of
DCGAN has been widely used.

Fig. 4. Generator model structure diagram

This paper improves the original DCGAN network
structure in Fig. 4 . The input of the first deconvolutional
layer is text description embedding vector 1024 dimensions
and random anti-disturbance vector 128 dimensions, a total
of 1024 + 128 = 1152 dimensions, and the volume of the first
deconvolution layer is modified. The convolution kernel is
5×5, and the convolution kernels of other deconvolution
layers are 3×3; at the same time, two layers of deconvolution
layers are added, and a residual structure is used to avoid the
gradient disappearing; add a batch normalization layer[14]

before the deconvolution layer to solve the gradient
explosion problem[15]. A batch normalization module is
included before the input data of each deconvolution layer,
which ensures that the same data distribution is obtained as
much as possible to reduce the difference between the input
data, and also solves the problem caused by the deepening of
the neural network layers. A Relu activation function is
added between each deconvolution layer, finally, a Tanh
function is used as the output of the matrix.

2) Choice of Loss Function
In order to obtain better image conversion quality, L2 loss

is added to the loss function of the generated model on the
basis of the least squares loss function equation (16). L2
regularization is to prevent overfitting during training. It is
based on the L2 norm, adding an L2 norm term with
parameters as a penalty term to the overall generation loss
function.


wG
w

n
GL 2

2 2
)(min 

(18)
In Equation (18), w is the weight in the neural network, n is

the number of samples, and φ is the regular term coefficient.
The L2 regularization uses Equation (19) to update the

model parameters:

w
n

ww 
(19)

Where η is the update speed of L2 regularization. When
using the gradient descent algorithm, η <0, but the opposite is
true in the gradient ascent algorithm.

Modifying equation (16), the loss function of the
generative model in the basic confrontation loss can be
expressed as:

2

2
1))((

2
1)(min  zGDGLsG (20)

So the total loss function can be expressed as:
2LLL stotal   (21)

Where α and β are used as hyper parameters for each part
of the generation loss.

B. Discriminant Model
1) Network Design
The adversarial training of the discriminative model and

the generative model constitute the generative adversarial
neural network. The output of the generated model and the
collected real images is trained as the training set of the
discriminant model, and the probability of judging the input
of the real image and generating a simulated image is used as
the output of the discriminant model.

The discriminant model contains 7 convolutional modules
in Fig. 5. The output of the convolution module is used as the
input of the next convolution module after the batch
normalization module. LeakyReLU is added as an activation
function between each convolution module to ease the
difficulty of network training. Fig. 5 also shows the change in
the number of convolution kernels, and a residual module is
introduced between three consecutive convolutional layers.
Finally, the output is obtained through the fully connected
layer and the sigmoid activation function.

Fig. 5 shows the changes in the number of network layers
and the size of each layer. Two different sizes of convolution
kernels are used in the discriminant model, which are 5×5
and 3×3, respectively. Among them, the step size of the first 6
convolution kernels is 2, and the step size of the last
convolution kernel is 1. After continuous feature extraction
and dimensionality reduction, the output of the discriminant
model is finally obtained.
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Fig. 5. Discriminator model structure diagram

2) Choice of Loss Function
Compared with the generative model, the task of

discriminant model processing is relatively simple, so the
complexity of the loss function of discriminant model is
relatively small. The discriminant model is an important
auxiliary training part of the generative model, and the output
of the discriminant model is an important condition for
generating network update weights. In this paper, the least
squares loss of formula (15) is used as the basic loss function
of the discriminant model.

VI. SIMULATION AND ANALYSIS

A. Data Preparation and Training Parameter Settings
ArcSim[16, 17] is an open source engine for simulating thin

sheets made of deformable materials (such as paper, cloth,
plastic, etc.). The engine fully implements the cloth
simulation process in this article, including modules such as
physical solution, strain limitation, dynamic mesh
reconstruction, and collision detection, and supports
deformation and simulation of plastic materials, which can
achieve effects such as paper wrinkles and metal dents.

The training data and evaluation data come from the
images generated by the simulation. By changing the
simulation data, 4615 two-dimensional training images and
1680 two-dimensional evaluation images were generated. At
the same time, 1023 two-dimensional image test data are
generated, and 20 two-dimensional images are selected for
comparison. The size of these two-dimensional images is
64×64.

Deep-level CNNs have a large number of learning
parameters and can easily implement various applications,
but the extensive expression ability always relies on massive
and multiple types of data for iterative training, otherwise
overfitting will easily occur. Therefore, in practical scenario
applications, data augmentation effectively helps neural
networks reduce overfitting and improve model accuracy. In
this paper, six methods of flipping left and right, local
distortion, rotation, displacement, scaling, and brightness

adjustment are used to increase the diversity of images,
which can effectively reduce the problem of GAN overfitting
and improve model performance.

In order to reduce the difference in data distribution and
improve the training speed of the model, the original data
pixel value range was moved from [0, 255] to [-1, 1], and the
binary file was saved as the pickle format as training data. In
addition to increasing the number of samples in the process of
expanding the data, the categories of the samples should also
be expanded. Therefore, 1% to 6% white Gaussian noise was
added to the training data to increase the diversity of the data
and improve the anti-interference ability of the model.

Various training parameters in the experiment have an
impact on the training of the model, and have a direct impact
on the training speed and model quality. Different types of
data have different biases on the setting of training
parameters. The generated model loss function uses the hyper
parameter settings of α＝1.5 and β＝0.1. The initial learning
rate of the model is 0.0001, the initial learning rate decay rate
is 0.5, and the learning rate is updated after every 3 training
rounds. Batch size is 32. In the model optimization, the
standard Adam optimization algorithm is used, and the value
of the momentum beta1 is set to 0.9.

B. Adversarial Training of GAN
The great advantage of generative adversarial network in

image generation is due to its adversarial training. The
generative model and discriminant model affect and restrict
each other. In the end, when the discriminant model cannot
distinguish between real data and generated data, the
generated model has achieved the best training effect.

Fig. 6. Model Training Flowchart

The overall model training process is shown in Fig. 6. The
implementation of the algorithm is further described below.

1) Construct a generative network. As shown in Fig. 4, the
outputs of the activation layer of the first deconvolution layer
and the second to the fourth deconvolution layers are stitched
together as the inputs of the batch processing layer.

2) Construct a discriminant network. As shown in Fig. 5,
the discrimination network is used to output the probability
that the image is judged as a real simulation image.

3) Determine the loss function of the generated network.
The loss function of the generated network uses formula (21).

4) Determine the loss function of the discriminative
network, and use the formula (15).

5) Construct training and evaluation datasets, and limit the
pixel values of each image to between -1 and 1.
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6) The word embedding model is used to generate the cloth
description vector and the random number generator is used
to generate a Gaussian-distributed random vector. The two
are combined into an input vector.

7) Train the deep generation adversarial neural network,
and optimize the loss of the discriminant network and update
the network weights through the back-propagation algorithm
and adaptive moment estimation algorithm.

8) The network training batch processing set Ψ is used as
the training set for generating the network, and the loss of the
generated network is optimized and the network weight is
updated through backpropagation algorithm, adaptive
moment estimation algorithm and L2 regularization.

9) The evaluation data set is used to evaluate the generated
network, and the normalized mean square error of the
generated image and the evaluation set image is calculated,
and the optimal weight is obtained. So far, the training of the
deep generation adversarial neural network is finished.

10) The cloth description vector and the vector generated
by the random number generator are used as inputs, and the
trained neural network model is used to output the MSM
model parameters, and the fabric simulation program is used
to generate the simulation image.

C. Evaluation
The quality of the generated image needs to be measured

by evaluation indicators, and commonly used evaluation
indicators include Normalized Mean Square Error (NMSE),
Structural Similarity Index (SSIM), and Peak Signal-to-
Noise Ratio (PSNR), etc. In addition, the comparison of some
models will also reflect the pros and cons of the models.

Fig. 7. Evaluation of Conversion Quality under Different Noises

Fig. 7 is the average of the evaluation results of 32
randomly selected images under different Gaussian noise. It
can be found that the average PSNR of the converted image is
greater than 33.5dB when the Gaussian noise is less than 4%;
and when the Gaussian noise ratio is higher than 4%, the
PSNR of the converted image is less than 31.4dB. As noise
continues to increase, the quality of the conversion decreases.
Although the 6% Gaussian noise ratio is not included in the
training data, the average SSIM of the converted image is
0.922, and a good conversion effect is still obtained.

Because the sigmoid function in the cross entropy loss can
easily reach saturation, GAN training is unstable. The
experiment trains the cross entropy loss and the least squares
loss under the same conditions, and compares them under the
same evaluation criteria. In addition, each loss function
affects the characteristics of the transformed image, and will
have a significant impact on the resolution and details of the

transformed image during the training process. The
experiment uses progressive addition under the same
conditions and evaluation criteria. The loss function is trained
and tested separately, reflecting the effect of the loss function
on image conversion more intuitively.

Fig. 8. Evaluation of Conversion Quality under Different Losses

The abscissa of Fig. 8 from left to right indicates that the
number of loss functions used is gradually increased. It can
be seen that with the increase of the loss function, the NMSE
continues to decrease and the conversion quality is improved
to varying degrees. At the same time, as the standard
deviation of the NMSE continues to decrease, the range of
data fluctuations also decreases. As the loss function
increases, the GAN also tends to stabilize. When only one
loss is used, the average SSIM of the transformed image
reaches an observable level of 0.952. As the number of loss
functions increases, the conversion accuracy of the
adversarial network also improves, the PSNR of the
converted image increases by 2.66dB, and the NMSE
decreases by 0.032.

Fig. 9 is a cloth simulation image generated by a
simulation program. Fig. 9 (a) is the use of data-driven
method, Fig. 9 (b) is the use of analytical derivation method,
they are cloth simulation images generated using the
traditional mass-spring model parameter generation method.
It can be seen that the stretching phenomenon of different
programs has been generated in both figures. Fig. 9 (c) is a
cloth image generated by using the GAN method to generate
the mass-spring model parameters. It can be seen that the
image eliminates the cloth stretching phenomenon.

VII. CONCLUSION

Since the traditional spring particle parameters are set
randomly during the simulation of the mass-spring model of
the cloth, it is easy to cause the cloth to be excessively
stretched during the simulation of the mass-spring model.
Numerous, research work has attempted to use various
methods to effectively adjust the parameters of the model.
However, most of the results are not satisfactory. In this
paper, the GAN is used to automatically learn and correct the
mass-spring parameters, so as to better solve the problem of
over-stretching the cloth generated by the cloth simulation
based on the mass-spring model, which provides a solution
for such problems [18]. In the future, a hybrid methodology
can be combined to modify the GAN in order to obtain better
results [19].
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(a) Data-driven method

(b) Analytical derivation method

(c) GAN method
Fig. 9. Simulation Comparison Chart
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