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Abstract—The color energy of a graph is defined as sum
of absolute color eigenvalues of graph, denoted by Ec(G). Let
Gc = (V,E) be a color graph and P = {V1, V2, . . . , Vk} be a
partition of V of order k ≥ 1. The k -color complement {Gc}Pk
of Gc is defined as follows: For all Vi and Vj in P , i ̸= j, remove
the edges between Vi and Vj and add the edges which are not in
Gc such that end vertices have different colors. For each set Vr

in the partition P , remove the edges of Gc inside Vr , and add
the edges of Gc (the complement of Gc ) joining the vertices of
Vr . The graph {Gc}Pk(i) thus obtained is called the k(i)− color
complement of Gc with respect to the partition P of V . In
this paper, we compute color Laplacian energy of generalised
complements of few standard graphs. Color Laplacian energy
depends on assignment of colors to the vertices and the partition
of V (G).

Index Terms—k−color complement, k(i)−color complement,
color Laplacian energy, color Laplacian spectrum.

I. INTRODUCTION

GRaphs considered in this paper are simple, undirected
and without self loops. In an attempt to generalize

the concept of complement of a graph G, Sampathkumar
et al. [7] have introduced the concept of GP

k and GP
k(i) with

respect to a partition P of V (G). Several results appeared in
literature about these complements recently. For all notations
and terminologies we refer [1], [2]. Now we give definitions
of GP

k and GP
k(i).

Definition 1. [6] Let G = (V,E) be a graph and P = {V1,
V2, . . . , Vk} be a partition of V of order k ≥ 1. The k−
complement GP

k of G is defined as follows: For all Vi and
Vj in P , i ̸= j, remove the edges between Vi and Vj and
add the edges which are not in G.

The graph G is k− self complementary (k − s.c)
with respect to P if GP

k
∼= G. Further, G is k−co−self

complementary (k − co− s.c.) if GP
k
∼= G.

Definition 2. [7] For each set Vr in the partition P , remove
the edges of G inside Vr and add the edges of G joining the
vertices of Vr. The graph GP

k(i) thus obtained is called the
k(i)−complement of G with respect to the partition P of V .

The graph G is k(i)−self complementary (k(i)−s.c)
if GP

k(i)
∼= G for some partition P of order k. Further,

Manuscript received November 30, 2020; revised July 25, 2021.
Swati Nayak is an assistant professor in the Department of Mathematics,

Manipal Institute of Technology, Manipal Academy of Higher Education,
Manipal, Karnataka, India, 576104 (e-mail: swati.nayak@manipal.edu).

∗ Corresponding author: Sabitha D’Souza is an assistant professor-
selection grade in the Department of Mathematics, Manipal Institute of
Technology, Manipal Academy of Higher Education, Manipal, Karnataka,
India, 576104. (Phone:9449727376; e-mail: sabitha.dsouza@manipal.edu).

Pradeep G. Bhat is a professor in the Department of Mathematics, Manipal
Institute of Technology, Manipal Academy of Higher Education, Manipal,
Karnataka, India, 576104 (e-mail: pg.bhat@manipal.edu).

G is k(i)−co−self complementary (k(i)−co−s.c.) if GP
k
∼=

G.
The energy of a graph is the sum of absolute eigenvalues

of the adjacency matrix of G. This concept was defined in
1978 and originated from theoretical Chemistry. It is related
to the total π-electron energy in a molecule represented by
a molecular graph. More on graph energy, one can refer [3],
[4], [5], [11], [12], [13].

A coloring of graph G is a coloring of its vertices such
that no two adjacent vertices receive the same color. The
minimum number of colors needed for coloring G is called
chromatic number, denoted by χ(G).

The color matrix Ac(G) = aij of a colored graph is
defined as follows. If c(vi) is the color of vertex vi, then

aij =

 1, if vi ∼ vj with c(vi) ̸= c(vj),
−1, if vi ≁ vj with c(vi) = c(vj),
0, otherwise.

The set of eigenvalues {λ1, λ2, . . . , λn} of Ac(G) is called
the color eigenvalues of G. Color energy of graph is the sum
of absolute colored eigenvalues.

i.e.,

Ec(G) =
n∑

i=1

λi.

The concept of color energy was introduced by Adiga et al.
[8] and the origin of the color Laplacian energy [9] and color
signless Laplacian energy [10] were established by Bhat et
al. in the succeeding years. These introductory papers deal
with the investigation of these three energies of null graph,
star graph, complete graph, complete bipartite graph, crown
graph and cocktail party graph.

The color Laplacian energy is defined as Lc(G) = D(G)−
Ac(G), where D(G) is the diagonal matrix of vertex degrees
of the graph G. The eigenvalues {µ1, µ2, . . . , µn} of Lc(G)
are called as the color Laplacian eigenvalues of the graph G.
Color Laplacian energy of G of order n and size m, denoted
by LEc(G) is defined as

LEc(G) =
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣
The article is organized as follows. In section II, we recall

the definitions of generalised color complements and some
preliminary results. In section III, we derive color Laplacian
spectrum and energy of generalized complements of some
families of graph.

II. GENERALISED k AND k(i) COLOR COMPLEMENTS OF
A GRAPH

In 2020, the authors in [14] have introduced generalised
color complements of a graph.
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Definition 3. [14] Let Gc = (V,E) be a color graph and
P = {V1, V2, . . . , Vk} be a partition of V of order k ≥ 1.
The k -color complement {Gc}Pk of Gc is defined as follows:

For all Vi and Vj in P , i ̸= j, remove the edges between
Vi and Vj and add the edges in which end vertices have
different colors in Gc .

• The graph Gc is k− self color complementary (k−s.c.c)
with respect to P if {Gc}Pk ∼= Gc.

• Further, Gc is k−co−self color complementary (k −
co− s.c.c) if {Gc}Pk ∼= Gc.

Example 4. 2−color complement of path P4 is 2−self color
complementary as (P4)c ∼= {(P4)c}P2 .

Fig. 1. Colored Path P4 and its 2− complement.

Definition 5. [14] For each set Vr in the partition P , remove
the edges of Gc inside Vr, and add the edges of Gc (the
complement of Gc ) joining the vertices of Vr. The graph
{Gc}Pk(i) thus obtained is called the k(i)− color complement
of Gc with respect to the partition P of V .

• The graph Gc is k(i)− self color complementary (k(i)−
s.c.c) if {Gc}Pk(i) ∼= Gc for some partition P of order
k.

• Further, Gc is k(i)−co−self color complementary
(k(i)− co− s.c.c) if {Gc}Pk(i) ∼= Gc.

Example 6.

Fig. 2. Graph Gc and {Gc}P2(i)

Proposition 7. [3] Let A=
[
A0 A1

A1 A0

]
be a symmetric 2× 2

block matrix. Then spectrum of A is the union of spectra of
A0 +A1 and A0 −A1.

Proposition 8. [3] Let M ;N ; P ;Q be matrices and M be

invertible. Let S=
[
M N
P Q

]
.

Then det S = det M. det[Q − PM−1N ]. If M and P
commute, then det S = det [MQ− PN ].

III. COLOR LAPLACIAN SPECTRUM OF GENERALISED
COLOR COMPLEMENTS OF A GRAPH

In this section, we consider color Laplacian characteristic
polynomial, color Laplacian spectrum and color Laplacian

energy of k− color complement of graph G with respect
to minimum number of colors and we denote these by
Pχ(G,µ)Pk , Lspecχ(GP

k ) and LEχ(G
P
k ) respectively. Sim-

ilar notations are followed for k(i)− color complementary
graph. Throughout this paper 0, I, J and B represent zero
matrix, identity matrix, matrix of all 1’s and adjacency matrix
of complete subgraph respectively.

A. Star graph

Theorem 9. Let K1,n−1 be colored star graph with partition
P = {V1, V2, . . . , Vk}, where V1 = {v1, v2, . . . , vm}, v1

being central vertex. Then
(i) Pχ(K1,n−1, µ)

P
k = (µ+1)n−m−1µm−2[µ3 + (3− n−

m)µ2 + (mn− n− 4m+ 4)µ− 2m− n+mn+ 2].
(ii) Pχ(K1,n−1, µ)

P
k(i) = µn−m−1(µ + 1)m−2[µ3 + (m −

2n+2)µ2+(4m−4n−mn+n2)µ+2m−mn−2n+n2].

Proof:
(i) Since χ(K1,n−1) = 2 , color adjacency matrix of k−

color complement of star graph is Aχ(K1,n−1)
P
k

=

 01 J1×m−1 01×n−m

Jm−1×1 −Bm−1 −Jm−1×n−m

0n−m×1 −Jn−m×m−1 −Bn−m


n

Diagonal matrix of vertex degree is

D(K1,n−1)
P
k = diag(m− 1, 1, . . . , 1, 0, . . . , 0).

Color Laplacian matrix of k−color complement of
K1,n−1 is

Lχ(K1,n−1)
P
k = D(K1,n−1)

P
k −Aχ(K1,n−1)

P
k

=

 (m− 1)1 −J1×m−1 01×n−m

− Jm−1×1 (I +B)m−1 Jm−1×n−m

0n−m×1 Jn−m×m−1 Bn−m


Pχ(K1,n−1, µ)

P
k = |µI − Lχ(K1,n−1)

P
k |. (10)

Step 1: For rows i = 2, 3, 4, . . . ,m−1,m+1, . . . , n−1,
replace Ri by Ri −Ri+1 in expression (10).
Then Pχ(K1,n−1, µ)

P
k = µm−2(µ+ 1)n−m−1 det(C).

Step 2: In det(C), performing Ci → Ci+Ci−1+ . . .+
C2, i = n, n − 1, . . . ,m + 1,m − 1, . . . , 3, it reduces
to a determinant of order 3.

det(C) =

∣∣∣∣∣∣
µ−m+ 1 m− 1 0

1 µ−m+ 1 m− n
0 1−m µ− n+m+ 1

∣∣∣∣∣∣
Step 3: By simplifying, we get
Pχ(K1,n−1, µ)

P
k = µm−2(µ + 1)n−m−1[µ3 + (3 − n −

m)µ2 + (mn− n− 4m+ 4)µ− 2m− n+mn+ 2].
(ii) Color Laplacian matrix of k(i)− color complement of

K1,n−1 is Lχ(K1,n−1)
P
k(i)

=

 n−m 01×m−1 −J1×n−m

0m−1×1 Bm−1 Jm−1×n−m

− Jn−m×1 Jn−m×m−1 (I +B)n−m


n

Consider |µI − Lχ(K1,n−1)
P
k |

=

∣∣∣∣∣∣
µ− n+m 0 J

0 µI −B −J
J −J (µ− 1)I −B

∣∣∣∣∣∣
n

Then repeating the steps 1 and 2 of Theorem 9(i), the
result follows.
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Theorem 11. Let P = {V1, V2, . . . , Vk} be a partition of
colored star graph K1,n−1 such that only central vertex be
in V1. Then

(i) LEχ(K1,n−1)
P
k = 2(n− 2).

(ii) LEχ(K1,n−1)
P
k(i) =

4(n− 1)(n− 2)

n
.

Proof: Since K1,n−1 is k−co−self color complemen-
tary with respect to the given partition P , LEχ(K1,n−1)

P
k =

2(n − 2). Also GP
k(i)

∼= G if and only if GP
k

∼= G. So

LEχ(K1,n−1)
P
k(i) =

4(n− 1)(n− 2)

n
.

Proof is similar to Theorem [4.5, 4.6] of [9].

Observation 12. For complete graph Kn,
1) LE(Kn)

P
k = LEχ(Kn)

P
k .

2) LE(Kn)
P
k(i) = LEχ(Kn)

P
k(i).

B. Double star

Definition 13. A double star S{l,m} is the graph consisting
of union of two stars K1,l−1 and K1,m−1 together with the
line joining their centers.

Theorem 14. Let P = {V1, V2} be a partition of colored
double star S{l,m} such that ⟨V1⟩ = K1,l−1 and ⟨V2⟩ =
K1,m−1. Then

(i) Pχ(S{l,m}, µ)P2 = (µ− l+1)m−2(µ−m+1)l−2[µ4+
(6− 3m− 3l)µ3 + (3l2 + 6lm− 14l + 3m2 − 14m+
16)µ2 + (−l3 − 4l2m + 10l2 − 4lm2 + 18lm − 23l −
m3+10m2−23m+18)µ+ l3m−2l3+ l2m2−6l2m+
8l2+lm3−6lm2+14lm−12l−2m3+8m2−12m+7].

(ii) Pχ(S{l,m}, µ)P2(i) = (µ+1)l+m−4[µ4+(2−l−m)µ3+

(lm−l−m−2)µ2+2(l+m−3)µ+2(l+m)−lm−3].

Proof:
(i) Since chromatic number of double star is 2, Laplacian

matrix of 2−color complement is
Lχ(S{l,m})P2

=


(
l − 1 0
0 m − 1

)
2

−C2×l−1 C2×m−1

−C′
l−1×2 (mI + B)l−1 −Jl−1×m−1

C′
m−1×2 −Jm−1×l−1 (lI + B)m−1


n

,

C =

(
1 1 . . . 1
−1 −1 . . . −1

)
.

Consider |µI − Lχ(S{l,m})P2 |.
Step 1: Using row operation Ri → Ri − Ri+1, i =
3, 4, . . . , l−2, l, . . . ,m−2 and by further simplification,
we obtain (µ− l + 1)m−2(µ−m+ 1)l−2 det(D).
Step 2: On applying the column operation Ci → Ci +
Ci+1 + . . . + Cn, i = 3, 4, . . . , n − 1 on det(D), the
result follows.

(ii) Color Laplacian matrix of 2(i)− color complement of
double star is Lχ(S{l,m})P2(i)

=

 (I −B)2×2 −C2×l−1 −D2×m−1

−C ′
l−1×2 Bl−1×l−1 0l−1×m−1

−D′
m−1×2 0m−1×l−1 Bm−1×m−1


n

,

C =

(
0 0 . . . 0
−1 −1 . . . −1

)
and

D =

(
−1 −1 . . . −1
0 0 . . . 0

)
.

Consider |µI − Lχ(S{l,m})P2(i)|.
Step 1: For rows i = 3, 4, . . . , l − 2, l, . . . ,m− 2,
using row operation Ri → Ri −Ri+1, we get

(µ+ 1)l+m−4 det(E).
Step 2: On applying the column operations
Ci → Ci+Ci−1+ . . .+Cl, i = m−1,m−2, . . . , l+1
and Cj → Cj +Cj−1+ . . .+C3, j = l−1, l−2, . . . , 4
on det(E), we obtain new determinant F so that
|µI − Lχ(S{l,m})P2(i)| = (µ+ 1)l+m−4 det(F ).
Step 3: On expanding det(F ) along the rows from 3rd

row to (l−2)th row and then from lth row to (m−2)th

row, we get det(F ) = (µ+ 1)l+m−2 det(G).

det(G) =

∣∣∣∣∣∣∣∣
µ− 1 1 0 1−m
1 µ− 1 1− l 0
0 −1 µ− l + 2 0
−1 0 0 µ−m+ 2

∣∣∣∣∣∣∣∣
Step 4: The characteristic polynomial is obtained by
expanding det(G) and by back substitution.

C. Complete bipartite graph

Theorem 15. Let P = {V1, V2} be a partition of colored
complete bipartite graph Kr,s such that ⟨V1 ∪ V2⟩ be union
of color complete bipartite subgraphs. Then Pχ(Kr,s, µ)

P
2 =

Pχ(Kr,s, µ)
P
2(i) = (µ−a+1)b−1(µ− b+1)a−1(µ− r+a+

1)s−b−1(µ−s+ b+1)r−a−1[µ4+(4−2s−2r)µ3+(−a2−
6ab+ar+3as−b2+3br+bs+r2+rs−6r+s2−6s+6)µ2+
(a2r−a2s− 2a2+4abr+4abs− 12ab−ar2−ars+2ar−
2as2+6as−b2r+b2s−2b2−2br2−brs+6br−bs2+2bs+
2r2+2rs−6r+2s2−6s+4)µ+a2r+a2s2−a2s−a2−2abrs+
4abr+4abs−6ab−ar2−ars+ar−2as2+3as+b2r2−b2r+
b2s−b2−2br2−brs+3br−bs2+bs+r2+rs−2r+s2−2s+1].

Proof: As 2 and 2(i) color complement of complete
bipartite graph are union of colored complete bipartite sub-
graphs i.e, Ka,b ∪Kr−a,s−b, we have

Lχ(Kr,s)
P
2 =

[bI + B]a −Ja×b Ja×r−a 0a×s−b

−Jb×a [aI + B]b 0b×r−a Jb×s−b

Jr−a×a 0r−a×b [(s − b)I + B]r−a −Jr−a×s−b

0s−b×a Js−b×b −Js−b×r−a [(r − a)I + B]s−b


n

Consider |µI − Lχ(Kr,s)
P
2 |.

Step 1: Applying the row operation Ri → Ri−Ri+1, where
i ̸= a, b, r − a, s− b, we see that |µI − Lχ(Kr,s)

P
2 | = (µ−

a+ 1)b−1(µ− b+ 1)a−1(µ− r + a+ 1)s−b−1(µ− s+ b+
1)r−a−1 det(C).
Step 2: On applying column operation Ci → Ci + Ci+1 +
. . .+Cn on det(C) for i = 1, 2, . . . , n− 1, we get det(D).
Hence

Pχ(Kr,s, µ)
P
2 = (µ− a+ 1)b−1(µ− b+ 1)a−1

(µ− r + a+ 1)s−b−1(µ− s+ b+ 1)r−a−1 det(D). (16)

i.e, det(D) =∣∣∣∣∣∣∣∣
µ − a − b + 1 b a − r 0

a µ − a − b + 1 0 b − s
−a 0 µ + a + b − r − s + 1 s − b
0 −b r − a µ + a + b − r − s + 1

∣∣∣∣∣∣∣∣
By expanding det(D) and substituting in equation 16, we
obtain
Pχ(Kr,s, µ)

P
2 = (µ− a+ 1)b−1(µ− b+ 1)a−1(µ− r+ a+

1)s−b−1(µ−s+ b+1)r−a−1[µ4+(4−2s−2r)µ3+(−a2−
6ab+ar+3as−b2+3br+bs+r2+rs−6r+s2−6s+6)µ2+
(a2r−a2s− 2a2+4abr+4abs− 12ab−ar2−ars+2ar−
2as2+6as−b2r+b2s−2b2−2br2−brs+6br−bs2+2bs+
2r2+2rs−6r+2s2−6s+4)µ+a2r+a2s2−a2s−a2−2abrs+
4abr+4abs−6ab−ar2−ars+ar−2as2+3as+b2r2−b2r+
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b2s−b2−2br2−brs+3br−bs2+bs+r2+rs−2r+s2−2s+1].

Theorem 17. For a colored complete bipartite graph Kr,s

with respect to partition of same color class is
(i) LEχ(Kr,s)

P
2 = 2(r + s− 2).

(ii) LEχ(Kr,s)
P
2(i)

=


2

r + s
[r2 + s2 + (r + s)

√
rs − 1], if r = s and s = r + 1

2
√
rs

r + s
[(s − r)

√
rs + (r + s)], if s > r + 1

Proof: Since Kr,s with respect to same color class
partites is 2−co−self and 2(i)−self color complementary,
proof of Theorem 17 follows from Theorem [4.7, 4.8] of
[9].

D. Crown graph

Theorem 18. Let P = {V1, V2} be a partition of crown
graph S0

n with |V1| = 1. Then
(i) Pχ(S

0
n, µ)

P
2 = [µ2+(5−2n)µ+n2−5n+5]n−2[µ4+

(6− 5n)µ3 + (7n2 − 15n+13)µ2 − (3n3 − 8n2 − n+
8)µ+ n3 − 6n2 + 11n− 6].

(ii) Pχ(S
0
n, µ)

P
2(i) = [µ2 − µ − 1]n−2[µ4 + (2 − 3n)µ3 +

(3n2 − 7n + 3)µ2 + (−n3 + 6n2 − 9n + 4)µ − n3 +
4n2 − 5n+ 2].

Proof:
(i) Color Laplacian matrix of 2−color complement of S0

n

is Lχ(S
0
n)

P
2 =

J1 J1×n−1 −J1 01×n−1

Jn−1×1 [(n − 2)I + J]n−1 −Jn−1×1 [I − J]n−1

−J1 −J1×n−1 n Jn−1×1

0n−1×1 [I − J]n−1 Jn−1×1 [(n − 3)I + J]n−1


Consider |µI − Lχ(S

0
n)

P
2 |.

Step 1: Using row operation Ri → Ri − Ri+1, i =
2, 3, . . . , n − 2, n − 1, n + 2, n + 3, . . . , 2n − 1 and
column operations Ci → Ci + Ci−1 + . . . + Cn+2,
i = 2n, 2n−1, . . . , n+3, Cj → Cj+Cj−1+ . . .+C2,
i = n, n−1, . . . , 3 on |µI−Lχ(S

0
n)

P
2 |, we get det(A).

Step 2: On applying the column operation Cn+i →
µCn+i − Ci, i = 2, 3, . . . , n− 1 on det(A), we obtain
the result.

(ii) Color Laplacian matrix of 2(i)− color complement of
S0
n is Lχ(S

0
n)

P
2(i)

=


(n− 1)J1 J1×n−1 01 −J1×n−1

Jn−1×1 Jn−1 0n−1×1 −In−1

01 01×n−1 01 Jn−1×1

−Jn−1×1 −In−1 Jn−1×1 [I + J ]n−1


2n

Consider |µI − Lχ(S
0
n)

P
2(i)|.

Step 1: First we apply row operation Ri → Ri −
Ri+1, i = 2, 3, . . . , n−2, n−1, n+2, n+3, . . . , 2n−1
and followed by column operations Ci → Ci+Ci−1+
. . . + Cn+2, i = 2n, 2n − 1, . . . , n + 3, Cj → Cj +
Cj−1+. . .+C2, i = n, n−1, . . . , 3 on |µI−Lχ(S

0
n)

P
2 |,

we get det(A).
Step 2: On applying the column operation Cn+i →
Cn+i(µ− n+ 2) + Ci, i = 2, 3, . . . , n− 1 on det(A),
we get the result.

Theorem 19. Let P = {V1, V2} be a partition of crown
graph S0

n with vertices of same color class. Then
LEχ(S

0
n)

P
2 = LEχ(S

0
n)

P
2(i) = 4(n− 1).

Proof: Since S0
n is 2−co self and 2(i)−self color

complementary with respect to the partition of same color
class, we obtain

LSpecχ(S
0
n)

P
2 =

{
−1 n− 1 1 n+ 1

n− 1 1 n− 1 1

}
and

LSpecχ(S
0
n)

P
2(i) =

{
n− 3 n− 1 3(n− 1)
n− 1 n 1

}
.

Proof follows from [Theorem 4.9, 4.10] of [9].

E. Friendship graph

Theorem 20. For a colored friendship graph Fn with
partition P = {V1, V2, . . . , Vn+1} such that central vertex
is in V1 and ⟨Vi⟩ = K2 for i = 2, 3, . . . , n+ 1,

(i) LEχ(Fn)
P
n+1 =

2(4n2 + n− 1)

2n+ 1
.

(ii) Pχ(Fn, µ)
P
n+1(i) = µ2n−2[µ3 − 4nµ2 + (5n2 − 2n)µ−

2n3 + 2n2].

Proof:
(i) Since χ(Fn) = 3, Lχ(Fn)

P
n+1

=


(nI − B)2 −C2 . . . −C2 02×1

−C2 (nI − B)2 . . . −C2 02×1

...
...

. . .
...

...
−C2 −C2 . . . (nI − B)2 02×1

01×2 01×2 . . . 01×2 01


2n+1

,

where C = J − 2I .
Now Pχ(Fn, µ)

P
n+1 = |µI − Lχ(Fn)

P
n+1|.

Step 1: On applying row operation Ri → Ri +Ri+1,
i = 1, 3, ..., 2n − 1 and then using column operation
Ci → Ci − Ci−1, i = 2, 4, . . . , 2n, we get

Pχ(Fn, µ)
P
n+1 =µ(µ− n+ 1)n |(µ− n− 1)I − 2B|n .

Step 2: Again using row operation Ri → Ri−Ri+1, i =
1, 2, . . . , n−1 and followed by column operation Ci →
Ci + Ci−1 + . . .+ 1, i = n, n− 1, . . . , 2, we obtain
|µI − Lχ(Fn)

P
n+1| = µ(µ− n+ 1)2n−1(µ− 3n+ 1).

Hence, color Laplacian spectrum of (Fn)
P
n+1 is

Lspecχ(Fn)
P
n+1 =

(
0 n− 1 3n− 1
1 2n− 1 1

)
and average vertex degree of (Fn)

P
n+1 is

2n2

2n+ 1
.

Thus

Lχ(Fn)
P
n+1 =

∣∣∣∣ 2n2

2n+ 1
− 0

∣∣∣∣+ (2n− 1)∣∣∣∣ 2n2

2n+ 1
− (n− 1)

∣∣∣∣
+

∣∣∣∣3n− 1− 2n2

2n+ 1

∣∣∣∣
=
2(4n2 + n− 1)

2n+ 1
.

(ii) Further Lχ(Fn)
P
n+1(i)

=


I2 I2 . . . I2 −J2×1

I2 I2 . . . I2 −J2×1

...
...

. . .
...

...
I2 I2 . . . I2 −J2×1

−J1×2 −J1×2 . . . −J1×2 2nI1


(2n+1)

By following the step 1 and step 2 of Theorem 20(i) ,
we get Pχ(Fn, µ)

P
n+1(i) = µ2n−2[µ3 − 4nµ2 + (5n2 −

2n)µ− 2n3 + 2n2].
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Theorem 21. For a colored friendship graph Fn of same
color class partition P = {V1, V2, V3},

(i) LEχ(Fn)
P
3 =

10n2 − 4n− 6

2n+ 1
.

(ii) Pχ(Fn, µ)
P
3(i) = µn−1(µ− 2)n−1[µ3 − 2(2n+ 1)µ2 +

(5n2 + 4n)µ− (2n3 + 2n2 − 4n)].

Proof:
(i) Color Laplacian matrix of 3− color complement of Fn

is Lχ(Fn)
P
3

=


(n − 1)I2 −C2 . . . −C2 02×1

−C2 (n − 1)I2 . . . −C2 02×1

...
...

. . .
...

...
−C2 −C2 . . . (n − 1)I2 02×1

01×2 01×2 . . . 01×2 01


2n+1

,

where C = J − 2I .
Consider Pχ(Fn, µ)

P
3 = |µI − Lχ(Fn)

P
3 |.

On applying block row operation Ri → Ri−Ri+1, i =
1, 2, . . . , n−1 and block column operation Ci → Ci+
Ci−1+. . .+C1, i = n, n−1, . . . , 2 on |µI−Lχ(Fn)

P
3 |,

we obtain

Pχ(Fn, µ)
P
3 =µ[(µ− n+ 2)2 − 1]n−1∣∣∣∣µ− 2n+ 2 n− 1

n− 1 µ− 2n+ 2

∣∣∣∣
=µ[(µ− n+ 2)2 − 1]n−1

[(µ− 2n+ 2)2 − (n− 1)2].

Therefore, color Laplacian spectrum of (Fn)
P
3 is

Lspecχ(Fn)
P
3 =

(
0 n− 1 n− 3 3(n− 1)
1 n n− 1 1

)
.

Average vertex degree of (Fn)
P
3 is

2n(n− 1)

2n+ 1
.

Hence

LEχ(Fn)
P
3 =

2n(n− 1)

2n+ 1
+ n

∣∣∣∣n− 1− 2n(n− 1)

2n+ 1

∣∣∣∣
+ (n− 1)

∣∣∣∣2n(n− 1)

2n+ 1
− (n− 3)

∣∣∣∣
+

∣∣∣∣3(n− 1)− 2n(n− 1)

2n+ 1

∣∣∣∣
=
10n2 − 4n− 6

2n+ 1
.

(ii) Further, Lχ(Fn)
P
3(i)

=


(2I − B)2 I2 . . . I2 −J2×1

I2 (2I − B)2 . . . I2 −J2×1

...
...

. . .
...

...
I2 I2 . . . (2I − B)2 −J2×1

−J1×2 −J1×2 . . . −J1×2 2nI1


2n+1

Repeating row and column operations of Theorem
21(i), we get the required result.

Theorem 22. Let {V1, V2} be a partition of colored friend-
ship graph such that all peripheral vertices be in V2. Then

(i) LEχ(Fn)
P
2 =

8n2 − 2n− 2

2n+ 1
.

(ii) Pχ(Fn, µ)
P
2(i) = [(µ− n+ 1)2 − 1][µ3 + (3− 6n)µ2 +

(11n2 − 12n+ 2)µ− (6n3 − 13n2 + 6n)].

Proof:

(i) Color Laplacian matrix of 2−color complement of Fn

is Lχ(Fn)
P
2

=


(I − B)2 I2 . . . I2 02×1

I2 (I − B)2 . . . I2 02×2

...
...

. . .
...

...
I2 I2 . . . (I − B)2 02×1

01×2 01×2 . . . 01×2 01


2n+1

Applying row and column operations on
|µI − Lχ(Fn)

P
2 | as in Theorem 21(i), we obtain

Pχ(Fn, µ)
P
2 = µ(µ2 − 1)n−1[(µ− n)2 − 1].

So Lspecχ(Fn)
P
2 =

(
0 1 −1 n + 1 n − 1
1 n − 1 n − 1 1 1

)
.

Since average vertex degree of (Fn)
P
2 is

2n

2n+ 1
,

LEχ(Fn)
P
2 =

2n

2n + 1
+

∣∣∣∣1 −
2n

2n + 1

∣∣∣∣ (n − 1)

+

∣∣∣∣ 2n

2n + 1
+ 1

∣∣∣∣ (n − 1) +

∣∣∣∣n + 1 −
2n

2n + 1

∣∣∣∣
+

∣∣∣∣n − 1 −
2n

2n + 1

∣∣∣∣
=

8n2 − 2n − 2

2n + 1
.

(ii) Color Laplacian matrix of 2(i)− color complement of
Fn is Lχ(Fn)

P
2(i)

=


nI2 −B2 . . . −B2 −J2

−B2 nI2 . . . −B2 −J2×1

...
...

. . .
...

...
−B2 −B2 . . . nI2 −J2×1

−J1×2 −J1×2 . . . −J1×2 (2n − 1)I1


2n+1

On repeating row and column operations of theorem
21(i), we get the required result.

F. Cocktail party graph

Theorem 23. Let Kn×2 be a colored cocktail party graph
with partition P = {V1, V2, . . . , Vk} of same color class,
then

• LEχ(Kn×2)
P
k = 2n.

• LEχ(Kn×2)
P
k(i) = 6(n− 1).

Proof: Colored Cocktail party graph is k−co−self and
k(i)−self color complementary with respect to same color
class partition. Hence the result follows. For proof refer
Theorem [4.11, 4.12] of [9].

G. Triangular book graph

Definition 24. Triangular book graph B(3, n) is a planar
undirected graph with n + 2 vertices and 2n + 1 edges
constructed by n triangles sharing a common edge.

Example 25.

Fig. 3. Color triangular book graph with color class C1 = {v1}, C2 =
{v2}, C3 = {v3, v4, v5, v6}.
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Theorem 26. Let {V1, V2} be a partition of colored triangu-
lar book graph such that V1 = {v1, v2} and V2 = {v3, v4,
. . . , vn}. Then

(i) LEχ(B(3, n))P2 =
2(n2 + 3n− 2)

n+ 2
.

(ii) LEχ(B(3, n))P2(i) =
(4n2 − 7n+ 2)

n+ 2
+
√
8n+ 1.

Proof:

(i) Lχ(B(3, n))P2 =

[
(2I − J)2 02×n

0n×2 (J − I)n

]
n+2

is color Laplacian matrix of 2−color complement of
B(3, n). The result is proved by showing LZ = µZ
for certain vector Z and by making use of fact that
the geometric multiplicity and algebraic multiplicity of
each eigenvalue µ is same, as Lχ(B(3, n))P2 is real and
symmetric.

Let Z =

[
X2

Yn

]
be an eigenvector of order n + 2

partitioned conformally with Lχ(B(3, n))P2 .
Consider

[Lχ(B(3, n))P2 −µI]

[
X2

Yn

]
=

[
[(2− µ)I − J ]X + 0Y
0X + [J − (1 + µ)I]Y

]
.

(27)
Case 1: Let X = 02 and Y = 1n.
From equation (27),

[J − (1 + µ)I]1n =(−µ+ n− 1)1n.

Therefore, µ = n−1 is color Laplacian eigenvalue with
multiplicity of at least one.
Case 2: Let X = 02 and Y = Yj . From equation (27),

[J − (1 + µ)I]Yj =− (µ+ 1)Yj .

Hence µ = −1 is color Laplacian eigenvalue with
multiplicity of at least n − 1 since there are n − 1
independent vectors of the form Yj .
Case 3: Let X = 12 and Y = 0n.
From equation (27),

[(2− µ)I − J ]12 = −µ12.

So µ = 0 is color Laplacian eigenvalue with multiplic-
ity of at least one.

Case 4: Let X =

(
−1
1

)
and Y = 0n.

From equation (27),

[(2− µ)I − J ]

(
−1
1

)
= (2− µ)

(
−1
1

)
.

Thus µ = 2 is color Laplacian eigenvalue with multi-
plicity of at least one.

So Lspecχ(B(3, n))P2 =

(
−1 n− 1 0 2

n− 1 1 1 1

)
.

Since average vertex degree of (B(3, n))P2 is
2

n+ 2
,

LEχ(B(3, n))P2 =

∣∣∣∣−1− 2

n+ 2

∣∣∣∣ (n− 1)

+

∣∣∣∣n− 1− 2

n+ 2

∣∣∣∣
+

∣∣∣∣0− 2

n+ 2

∣∣∣∣+ ∣∣∣∣2− 2

n+ 2

∣∣∣∣
=
2(n2 + 3n− 2)

n+ 2
.

(ii) Lχ(B(3, n))P2(i) =

[
nI2 −J2×n

−Jn×2 (I + J)n

]
n+2

is a color Laplacian matrix of 2(i)−color complement
of B(3, n). The result is proved by showing LZ = µZ
for certain vector Z and by making use of fact that
the geometric multiplicity and algebraic multiplicity of
each eigenvalue µ is same, as Lχ(B(3, n))P2(i) is real
and symmetric.

Let Z =

[
X2

Yn

]
be an eigenvector of order n + 2

partitioned conformally with Lχ(B(3, n))P2(i).
Consider

[Lχ(B(3, n))
P
2(i) − µI]

[
X2

Yn

]
=

[
[(n − µ)I]X − JY

−JX + [(1 − µ)I + J]Y

]
. (28)

Case 1: Let X =
n

n− µ
12 and Y = 1n.

From equation (28),

−J
n

n − µ
12 + [(1 − µ)I + J]1n =

( −2n

n − µ
+ 1 − µ + n

)
1n

=
µ2 − (2n + 1)µ + n2 − n

n − µ
1n.

Therefore, µ =
2n+ 1 +

√
8n+ 1

2
and

µ =
2n+ 1−

√
8n+ 1

2
are the color Laplacian eigen-

values with multiplicity of at least one.
Case 2: Let X = 02 and Y = Yj .
From equation (28),

[(1− µ)I + J ]Yj =(1− µ)Yj .

Hence µ = 1 is color Laplacian eigenvalue with multi-
plicity of at least n−1 since there are n−1 independent
vectors of the form Yj .

Case 3: Let X =

(
1
−1

)
and Y = 0n.

From equation (28),

[(n− µ)I]

(
1
−1

)
= (n− µ)

(
1
−1

)
.

Thus µ = n is color Laplacian eigenvalue with multi-
plicity of at least one.
So Lspecχ(B(3, n))P2(i)

=

 1 n
2n + 1 +

√
8n + 1

2

2n + 1 −
√
8n + 1

2
n − 1 1 1 1

 .

Since average vertex degree of (B(3, n))P2(i) is
4n

n+ 2
,

LEχ(B(3, n))P2(i)

=

∣∣∣∣1− 4n

n+ 2

∣∣∣∣ (n− 1) +

∣∣∣∣n− 4n

n+ 2

∣∣∣∣
+

∣∣∣∣2n+ 1 +
√
8n+ 1

2
− 4n

n+ 2

∣∣∣∣
+

∣∣∣∣2n+ 1−
√
8n+ 1

2
− 4n

n+ 2

∣∣∣∣
=
(4n2 − 7n+ 2)

n+ 2
+
√
8n+ 1.
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H. Book graph

Definition 29. The n−book graph (Bn) is defined as the
graph Cartesian product Bn = K1,n × P2, where K1,n is a
star graph and P2 is the path graph on two vertices. Order
of Book graph is 2n+ 2.

Fig. 4. Color book graph with color class C1 = {u0, v1, v2, v3, v4} and
C2 = {v0, u1, u2, u3, u4}.

Theorem 30. Let {V1, V2} be a partition of colored book
graph such that V1 = {u0, u1, u2, . . . , un} and V2 = {v0,
v1, v2, . . . , vn}. Then

(i) LEχ(Bn)
P
2 = 4n.

(ii) LEχ(Bn)
P
2(i) = 4n.

Proof:
(i) Color Laplacian matrix of 2− color complement of Bn

is Lχ(Bn)
P
2 =

nJ1 −J1×n 01 J1×n

−Jn×1 (nI +B)n Jn×1 −Bn

01 J1×n nJ1 −J1×n

Jn×1 −Bn −Jn×1 (nI +B)n


2n+2

Consider Pχ(Bn, µ)
P
2 = |µI − Lχ(Bn)

P
2 |, where

|µI − Lχ(Bn)
P
2 | is of the form

∣∣∣∣X Y
Y X

∣∣∣∣ .
Hence Pχ(Bn, µ)

P
2 = |X + Y ||X − Y |.

Where,

|X + Y | =
∣∣∣∣µ− n 01×n

0n×1 (µ− n)In

∣∣∣∣
n+1

=(µ− n)n+1.

and

|X − Y | =
∣∣∣∣µ− n 2J1×n

2Jn×1 [(µ− n)I − 2B]n

∣∣∣∣
n+1

=(µ− n+ 2)n−1

{µ2 + (2− 4n)µ+ 3n2 − 6n}.

Hence Lspecχ(Bn)
P
2 =

(
n n− 2 3n

n+ 1 n 1

)
.

Since average vertex degree of (Bn)
P
2 is n,

LEχ(Bn)
P
2 =|n− n|(n+ 1) + |n− 2− n| (n− 1)

+ |3n− n|+ |n− 2− n|
=4n.

(ii) Color Laplacian matrix of 2(i)−color complement of
Bn is

Lχ(Bn)
P
2(i) =


J1 01×n −J1 J1×n

0n×1 Jn Jn×1 −In
−J1 J1×n J1 01×n

Jn×1 −In 0n×1 Jn


2n+2

Consider Pχ(Bn, µ)
P
2(i) = |µI − Lχ(Bn)

P
2(i)|, where

|µI − Lχ(Bn)
P
2(i)| is of the form

∣∣∣∣X Y
Y X

∣∣∣∣ .
Hence Pχ(Bn, µ)

P
2(i) = |X + Y ||X − Y |.

Where,

|X + Y | =
∣∣∣∣ µ −J1×n

−Jn×1 (µI −B)n

∣∣∣∣
n+1

=(µ+ 1)n−1{µ2 − (n− 1)µ− n}.

and

|X − Y | =
∣∣∣∣µ− 2 J1×n

Jn×1 [(µ− 2)I −B]n

∣∣∣∣
n+1

=(µ− 1)n−1{µ2 − (n+ 3)µ+ n+ 2}.

Hence Lspecχ(Bn)
P
2(i) =

(
1 −1 n n+ 2
n n 1 1

)
.

Since average vertex degree of (Bn)
P
2(i) is 1,

LEχ(Bn)
P
2(i) =|1− 1|n+ |−1− 1|n

+ |n− 1|+ |n+ 2− 1|
=4n.

I. Amalgamation of m copies of Kn

In graph theory, graph amalgamation is a relationship
between two graphs (one graph is an amalgamation of
another). Amalgamations can provide a way to reduce a
graph to a simpler graph while keeping certain structure
intact.

Definition 31. Let {G1, G2, G3, . . . , Gm} be a finite collec-
tion of graphs and each Gi has a fixed vertex v0i called a
terminal. The amalgamation Amal(v0i, Gi) is formed by tak-
ing all the G′

is and identifying their terminals. In particular,
if we take Gi = Kn for i = 1, 2, . . . ,m we get amalgamation
of m copies of Kn denoted by Amal(m,Kn),m ≥ 2. For
convenience we denote v0 as the vertex of amalgamation and
vj2, vj3, . . . , vjn are the remaining vertices of the jth copy
of Kn, where 1 ≤ j ≤ m.

Example 32. The amalgamation of 3 copies of K4 is shown
in Figure 5.

Fig. 5. Amal(3,K4)

Theorem 33. Let v0, v12, v13, . . . , v1n, v22, v23, . . . , v2n,
. . . , vm1, vm2, . . . , vmn be the vertices of Amal(m,Kn) with
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P = {V1, V2, . . . , Vm} such that ⟨V1⟩ = K1 and ⟨Vi⟩ =
Kn−1, i = 2, 3, . . . ,m+ 1. Then

(i) Lspecχ(Amal(m,Kn))
P
m+1

=

(
0 mn− 1 m− 1 m(n− 2)− 1
1 n− 2 1 (n− 1)(m− 1)

)
.

(ii) Lspecχ(Amal(m,Kn))
P
(m+1)(i) =(

0 m
P +Q

2

P −Q

2
(n− 1)(m− 1) n− 2 1 1

)
, where

P = mn and Q =
√
(m2n2 − 4m(m− 1)(n− 1).

Proof:
(i) The adjacency matrix of (m + 1)−color complement

of (Amal(m,Kn)) is Aχ(Amal(m,Kn))
P
m+1 =

01 01×n−1 01×n−1 . . . 01×n−1

0n−1×1 Bn−1 B − In−1 . . . B − In−1

0n−1×1 B − In−1 Bn−1 . . . B − In−1

...
...

...
. . .

...
0n−1×1 B − In−1 B − In−1 . . . Bn−1


m(n−1)+1

The degree matrix of the graph is

D =

[
01 01×m(n−1)

0m(n−1)×1 m(n− 2)Im(n−1)

]
m(n−1)+1

Color Laplacian matrix of (m+1)− color complement
of (Amal(m,Kn))

P
m+1 is Lχ(Amal(m,Kn))

P
m+1 =

D −Aχ(Amal(m,Kn))
P
m+1.

Step 1: Consider |µI − Lχ(Amal(m,Kn))
P
m+1|.

By applying block row operation Ri → Ri−Ri+1, i =
2, 3, . . . ,m + 1 and block column operation Ci →
Ci + Ci−1 + . . . + C2, i = m + 1,m, . . . , 3 on
|µI − Lχ(Amal(m,Kn))

P
m+1|, we get µ(µ − m(n −

2)+1)(n−1)(m−1) det(C), where det(C) is of the order
n− 1.
Step 2: On performing row operation Ri → Ri −
Ri+1, i = 1, 2, . . . , n − 2 and column operation Ci →
Ci + Ci−1 + Ci−2 + . . .+ C1, i = n− 1, n− 2, . . . , 2
on det(C), we obtain (µ−mn+ 1)n−2(µ−m+ 1).
Hence Lspecχ(Amal(m,Kn))

P
m+1

=

(
0 mn− 1 m− 1 m(n− 2)− 1
1 n− 2 1 (n− 1)(m− 1)

)
.

(ii) The adjacency matrix of (m+1)(i)−color complement
of (Amal(m,Kn)) is Aχ(Amal(m,Kn))

P
(m+1)(i) =

01 J1×n−1 J1×n−1 . . . J1×n−1

Jn−1×1 0n−1 −In−1 . . . −In−1

Jn−1×1 −In−1 0n−1 . . . −In−1

...
...

...
. . .

...
Jn−1×1 −In−1 −In−1 . . . 0n−1


m(n−1)+1

The degree matrix of the graph is

D =

[
m(n− 1)I1 01×m(n−1)

0m(n−1)×1 Im(n−1)

]
m(n−1)+1

Color Laplacian matrix of (m + 1)(i)−color comple-
ment of (Amal(m,Kn))

P
(m+1)(i) is

Lχ(Amal(m,Kn))
P
(m+1)(i) = D−

Aχ(Amal(m,Kn))
P
(m+1)(i).

Consider Pχ((Amal(m,Kn)), µ)
P
(m+1)(i) = |µI −

Lχ(Amal(m,Kn))
P
(m+1)(i)|.

On applying block row operation Ri → Ri−Ri+1, i =
2, 3, . . . ,m + 1 and block column operation Ci →
Ci + Ci−1 + . . . + C2, i = m + 1,m, . . . , 3 on
|µI − Lχ(Amal(m,Kn))

P
(m+1)(i)|,

we obtain µ(n−1)(m−1)

∣∣∣∣(µ−m(n− 1))I mJ
J (µ−m)I

∣∣∣∣
n

On simplifying further, we get
µ(n−1)(m−1)(µ−m)n−2[µ2 −mnµ+ n(m− 1)2].
Hence Lspecχ(Amal(m,Kn))

P
m+1(i) =(

0 m
P +Q

2

P −Q

2
(n− 1)(m− 1) n− 2 1 1

)
, where

P = mn and Q =
√
(m2n2 − 4m(m− 1)(n− 1).

Conclusion: Generalised color complement of a graph not
only depends on the partition of vertex set but also depends
on the assigned colors to the vertices. In this paper, we
have defined color Laplacian energy of generalised color
complement of graph. The color Laplacian spectrum and
color Laplacian energy of generalised color complements of
families of graphs are derived.
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