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Solving Twisty Puzzles Using Parallel Q-learning

Kavish Hukmani, Sucheta Kolekar*, Member, IAENG, Sreekumar Vobugari

Abstract—There has been a recent trend of teaching agents to
solve puzzles and play games using Deep Reinforcement Learn-
ing (DRL) which was brought by the success of AlphaGo. While
this method has given some truly groundbreaking results and
it is very computationally intensive. This paper evaluates the
feasibility of solving Combinatorial Optimization Problems such
as Twisty Puzzles using Parallel Q-Learning (PQL). We propose
a method using Constant Share-Reinforcement Learning (CS-
RL) as a more resource optimized approach and measure the
impact of sub- goals built using human knowledge. We attempt
to solve three puzzles, the 2x2x2 Pocket Rubik’s Cube, the
Skewb and the Pyraminx with and without sub-goals based on
popular solving methods used by humans and compare their
results. Our agents are able to solve these puzzles with a 100%
success rate by just a few hours of training, much better than
previous DRL based agents that require large computational
time. Further, the proposed approach is compared with Deep
Learning based solution for 2x2x2 Rubik’s Cube and observed
higher success rate.

Index Terms—Parallel Programming ; Q-learning ; Rein-
forcement Learning ; Twisty Puzzles ; Rubik’s Cube ; Agent-
based Programming

I. INTRODUCTION

A twisty puzzle is a 3D puzzle made up of a set of
pieces that can be arranged in a large number of states
using a small number of actions in the form of twists. The
Rubik’s Cube is the most popular twisty puzzle and has over
4.3x10' possible states which can be manipulated through
a combination of six fundamental actions. Performing the
same action on a particular state always gives the same result.
This property allows us to represent the puzzles as Markov
Decision Processes (MDPs), thereby making them suitable to
be solved via Reinforcement Learning (RL). Reinforcement
Learning has lot of applications domains to improve the
performance of the system [1] [2] [3]. There have been
a lot of advancements in the field of Deep Reinforcement
Learning (DRL) recently which can be seen through the
success of AlphaGo[4] and OpenAl Five[5]. These DRL
models require large amounts of computation power and time
to achieve good results. The aim of this paper is to reduce
the computation by providing the agent with some human
knowledge and using a more traditional RL approach. This
is done by using sub-goals to reward certain intermediate
states based on various methods used by humans to solve
these puzzles.
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There is an ever growing community of twisty puzzle
solvers worldwide. The World Cubing Association (WCA)
conducts hundreds of speed-cubing events all around the
world every year. This competition and inquisitiveness has
lead to the creation of various methods to solve these puzzles,
each with their own advantages and unique approaches. We
aim to use these methods to create sub-goals for the agent to
help it learn about these puzzle quicker. We compare a few
common methods for each of the puzzles used.

The results of these experiments will help in determine
the viability of using sub-goals in combination with CS-RL
to emulate human behaviour for similar highly sequential
problems which can be represented by MDPs. Some of these
highly sequential problems are Supply Chain Optimization
(SCO), DNA folding and Vehicle Routing.

The particulars of the experiment can be found in three
sections; Twisty Puzzles (Section III), Methodology (Section
IV) and Results (Section V). The twisty puzzles section
contains background information about each of the puzzles
including their structure and complexity. The methodology
section has details about the environment used. It also con-
tains information about the techniques and algorithms used to
train the agents. Lastly, it describes the testing methodology
used. The results section consists of various graphs and tables
of multiple parameters that are used to measure the success of
the agents. It also explains various trends seen and discusses
possible reasons for the same. These results are summarized
as a conclusion in Section VI along with the scope of similar
experiments in the future.

II. RELATED WORK

This section describes some of the contributions and
research which have led to the solve twisty puzzles using
Parallel Q-Learning. AlphaGo Zero [4] started a boom in
the usage of DRL as a means to solve puzzles and play
games. It used a combination of MCTS and self-play RL. It
was a major breakthrough and a variant of the same system
defeated the reigning Go World Champion Lee Sedol. It was
trained using sixty-four GPU, nineteen and four TPU workers
and servers for inference which costed approximately $25
Million[6].

Another popular breakthrough was the OpenAl Five [5],
a collection of five individual agents that defeated reigning
champions in a 5v5 game of Dota 2. It is one of the
most popular games on Steam, a popular PC game store[7].
The Five used a scaled up version of Proximal Policy
Optimization(PPO) in combination with a separate LSTM for
each hero in the game[8]. It was trained on 256 GPUs and
128,000 CPU cores for a total of 180 years of gameplay[8].

DeepMind’s AlphaStar [9] achieved a similar feat by
becoming better at StarCraft II than 99.8% of players. The
Al also beat various pro players in the 1vl game mode. It
was trained using a combination of supervised learning on
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human player data and multi-agent RL. It was trained on 16
v3 TPUs for 14 days, giving each agent around 200 years of
gameplay. DeepMind also created Agent57[10], a DRL agent
that can play 57 Atari 2600 games and performs better than
humans in all of them.

DeepCube [11] was an agent with a similar architecture to
AlphaGo Zero. It used Autodidactic Iteration (ADI) to solve
a 3x3x3 Rubik’s Cube. It was trained using three Nvidia
TitanXP GPUs paired with a 32-core Intel Xeon E5-2620
and required 44 hours to be trained.

A similar study, Karmakar 2020[12] adapted DeepCube
for a 2x2x2 Pocket Rubik’s Cube. It used a 2 core Intel Xeon
@ 2.20GHz with 1 Nvidia Tesla K80 GPU for training. It
was only able to achieve a 75% success rate when it required
four or more moves to solve the puzzle.

As it can be seen, all these agents require large amounts of
compute power and time to train. They each have different
architectures and some like Agent57 are given rewards for
meeting various sub-goals. The aim of the paper is to solve
twisty puzzles such as the 3x3x3 Rubik’s Cube but due to
a lack of accessibility of similar high end hardware, we
use some simpler puzzles instead such as the 2x2x2 Pocket
Rubik’s Cube. Another workaround is to use to implement
the agents using PQL[13] instead of a NN based approach.

There are various algorithms that are classified as PQL,
most of them either divide the states into groups for
each agent[14] or are decentralized and have limited
communication[15]. CS-RL, which is used in this experi-
ment, has been mentioned theoretically[16], but no public us-
age or implementations of it exist. Takamatsu 2007[17] uses
a similar approach but distinguishes between exploration and
exploitation agents and combines the Q-tables periodically.

As there are no guidelines on the usage of sub-goals in
solving puzzles using RL, we train our agent both with and
without sub-goals and compare the results.

IITI. TwisTY PUZZLES

This section provides information on the workings of
the twisty puzzles used in this experiment and how they
are solved. This is used to create reward methods for the
environment. It also outlines some basics of Q-learning and
the OpenAl Gym. The following puzzles were chosen to be
solved by the agents using various methods.

A. Pocket Rubik’s Cube

The Pocket Rubik’s Cube is a 2x2x2 variant of the Rubik’s
Cube. As seen in Figure 1, the puzzle is built from eight
smaller corner pieces with three different colors. These make
up six faces along the three axes with four tiles each. Each
face can rotate 90 degrees in either direction, which rolls the
tiles along the side of that face along with rotating the face,
similar to the Rubik’s Cube. It has 3,674,160 [18] possible
combinations and requires a maximum of 11 moves to solve
(also known as God’s Number[19]).

1) Layer By Layer Method: The Layer By Layer (LBL)
Method, also known as the Beginners Method, is the most
popular method for solving a 2x2x2 Rubik’s Cube. It is
a scaled down version of the LBL method for the 3x3x3
Rubik’s Cube. It consists of the following steps:

1) Solve the first layer

Fig. 1. Visualization of a Pocket Rubik’s Cube (Source: grubiks.com)

2) Orienting the Last Layer (OLL)

3) Permuting the Last Layer (PLL)

The reason for choosing this method is its popularity and
simplicity of steps. It requires only four algorithms to be
solved, two for OLL and two for PLL. The first layer is
solved intuitively.

2) Varasano/Ortega Method: The Varasano method, more
commonly known as the Ortega Method, is a more advanced
method for solving a 2x2x2 Rubik’s Cube. It results in much
quicker solves and is popular among speed cubers. It consists
of the following steps:

1) Solve the face pieces of the first layer

2) Orienting the Last Layer (OLL)

3) Permuting Both Layers (PBL)

While the second step is the same in both the methods, in
the Varasano/Ortega Method we only orient the first layer.
The final step is permuting the two layers simultaneously via
PBL. This consists of six possible cases, making the number
of algorithms required eight.

B. Skewb

The Skewb is a corner turning puzzle with six faces as
seen in Figure 2. It consists of eight corner pieces with three
different colors each and six center pieces with a single color.
It has four axes along the main diagonals which allow each
corner to turn 120 degrees in either direction. Each move
causes the respective center pieces and neighbouring corner
pieces to also roll around the corner. It has 3,149,280 [18]
possible combinations and a God’s Number of 11.

1) : Sarah’s Method Sarah’s Method is the most popular
method for solving a Skewb. It has three variants— Be-
ginners, Intermediate and Advanced. We use the advanced
variant which consists of the following steps:

1) Solve the first layer

2) Solve the Corners of the Last Layer (CLL) + remaining

centers
This variant has a total of 134 cases for the second step.
These cases can be broken down into sub cases resulting in
the Beginner’s and Intermediate variants. The first layer is
solved intuitively.

C. Pyraminx

As seen in Figure 3, the Pyraminx is a tetrahedral puzzle
with four equilateral triangles as faces. It is made up of four
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Fig. 2. Visualization of a Skewb (Source: grubiks.com)

Fig. 3. Visualization of a Pyraminx (Source: grubiks.com)

tips with three colors on each, six edge pieces with two
colors and four central pieces with three colors each for a
total of fourteen pieces. It consists of four axes which each
have a fixed central piece and a tip. There are two kinds of
moves— rotating the tip and rotating the central piece. Both
these moves are 120 degree turns around the axis and are
independent of each other. Rotating the central piece also
rolls the three edges around it.

As these tips are independent and require a maximum of
one move to solve, we shall not consider them in order
to reduce the number of combinations. The Pyraminx has
933,120 [18] possible combinations (excluding the tips) and
a God’s Number of 11.

1) Layer By Layer Method: The LBL Method for the
Pyraminx is an Intermediate method for solving the puzzle.
It’s steps are similar to LBL Methods for other puzzles. They
are:

1) Permuting the tips (This step can also be carried out

last as the tips are independent pieces)

2) Solve the first layer

3) Solve the last layer

There are five cases for the last layer. This can be further
broken down into two cases and a parity case. The first layer
is solved intuitively.

D. Notation

The notation used to denote the moves is defined
by the World Cubing Association(WCA) Regulations and
Guidelines[20].

IV. METHODOLOGY

The following steps are followed in the Methodology and
Experimentation:

o Creating an environment
o Creating a program to train agents using PQL
o Testing the results

A. Environment

For the environment, and OpenAl Gym[21] package
named RubiksCubeGym was built. It contains seven different
environments, one for each of the puzzles and solution
method combinations mentioned earlier. Each environment
supports three rendering methods— ANSI(text), RGB Ar-
ray and human. The human rendering method displays the
puzzles in a 2D projection which is commonly used among
cubers to show scrambles. It can be seen in Figure 4.

The environment package made use of Gym, NumPy and
OpenCV as dependencies. Gym was used to integrate the
environments with the OpenAl Gym API. NumPy was used
to emulate the puzzles and their moves. It was also used to
check the state of the puzzle and whether it met any goal
or sub-goal. OpenCV was used for rendering images and
RGB arrays. The scrambles for the puzzles were generated
by an algorithm based on the WCA’s open source scrambling
software TNoodle [20]. Each puzzle is represented as Numpy
ndarray and each state is given a unique number. This
number and a text based representation of the puzzle are
exposed through the observation and info parameters in the
package’s APIL. This API also exposes whether the attempt
is complete (by either solving the puzzle or reaching the
maximum number of steps(250) allowed) through the done
parameter. The reward is decided based on the current state
of the puzzle and exposed via the reward. As the different
methods for solving the different puzzles have different steps,
the reward for the sub-goals vary. However, the total positive
reward for solving any puzzle is always 100. There is also a
penalty of 1 per move that does not result in any goal or sub-
goal being met. This forces the agent to search for efficient
solutions. If any move results in a sub-goal being nullified, it
is penalized for the same amount as the previously received
reward to avoid the agent getting stuck in a loop of meeting
the same sub-goal repeatedly[22].

B. Training

To speedup the operation of training the agent CS-RL
was used. The algorithm split the total episodes equally per
process and ran them parallely with a common Q-table. This
can be seen in algorithm 1. The structure of the parallel
section can be seen in Figure 5. The agent can create a
new Q-table or use a previously saved table to train it
further. It displays the 10,000 moving average for cumulative
reward received per run and 10,000 moving success rate for
reference. It also saves these along with the output Q-table
for future use.

The training was carried out on a 4 core multi-threaded
Haswell based i7, with eight processes running parallely
but the algorithm will scale automatically according the
improvements in the hardware given. To implement PQL,
the memory sharing functions introduced in Python 3.8 were
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Fig. 4. Mapping of the various puzzles to their 2D projections
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Fig. 5. Parallel Q-learning using Constant Share-Reinforcement Learning

used. This technique sped up the training significantly and
given a processor with a higher core count, would allow even
more complex puzzles to be solved.

C. Testing

To test the results, a validation set of known good scram-
bles was needed. This was created by downloading and
extracting the WCA Competitive Results database[23]. A
random subset of 10,000 samples was chosen for each puzzle
and the resultant success rate, average reward and average
number of moves were added to a tracker. The program could
also render and solve scrambles using the generated Q-table
as a means to visualize the agents work.

V. RESULTS

The success rate, average reward and average move count
for all the puzzles and methods can be seen in the following
graphs and tables.

Algorithm 1 PQL using CS-RL
Require: n episodes, n > 0 and ¢ agents, 1 per process
Initialize Q(s,a) arbitrarily
for each process do
for n/i episodes do
Initialize s
while s is not terminal do
Choose a from s using policy derived from @ (e.g.,
e-greedy)
Take action a, observe 7, s’
Q(s,a) + Q(s,a) + afr + ymaz, Q(s',a") —
Q(s.a)
s+ 8
end while
end for
end for
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TABLE I
RESULTS OF THE VARIOUS 2X2X2 POCKET RUBIK’S CUBE AGENTS

Training Size | Method | Success rate | Average reward | Average move count

1bl 49.89 -86.1917 136.5806

2000000 none 66.9 -31.9635 99.5325
ortega 18.48 -188.8264 207.4912

1bl 85.26 32.4786 53.6339

3000000 none 99.8 79.5309 21.2671
ortega 53.18 -54.1187 127.4008

1bl 98.12 77.5661 21.5351

5000000 none 100.0 83.681 17.3190
ortega 84.53 31.9869 53.3884

1bl 99.77 84.2557 16.512

7500000 none 100.0 85.1919 15.8081
ortega 99.09 81.5391 18.5418

1bl 100.0 85.5475 15.4525

10000000 none 100.0 85.5908 15.4092
ortega 99.95 85.2556 15.6939

TABLE II

RESULTS OF THE VARIOUS PYRAMINX AGENTS

Training Size | Method | Success rate | Average reward | Average number of moves
500000 1bl 8.54 -221.2995 229.9249
none 32.68 -142.075 175.0818
00000 e 50T i
el 6T
00000 | 996 Ra0a1y 19599
Y0000 | 9997 | 402 Toso7t
1000000 |5 To0 | 85615 T
1500000 | Ton0 | &7e3TS T3S
2500000 | Ton0 | B3 Towt

TABLE III
RESULTS OF THE VARIOUS SKEWB AGENTS

Training Size | Method | Success rate | Average reward | Average number of moves
2000000 sarah 5;29'51 -_2722é.3z§37362 éﬁé;?égz
3000000 GR35 163297
s —— 167253
S00000 | gk g7 721 £ 674
T T

As we can see in Figure 6 and corresponding Table. I, the
agent with no sub-goals learns the fastest. It is able to reach a
success rate of 99.8% in just 3 million episodes. The training
time needed was less than 6 hours for this result. It needed
an average of 21 moves to solve the cube from any state. The
agents with sub-goals based on the LBL and Ortega methods
take much longer. They reach a similar success rate after 5
and 7.5 million episodes respectively. The agent based on
the Ortega method requires only 18.5 moves on average to
solve the puzzle compared to the 21 of the remainder when
compared at a similar success rate.

For the Pyraminx, the agent with no sub-goals reaches a
success rate of 97.5% in just 700k episodes as seen in Figure
7 and corresponding Table. II. It requires an average of 25
moves to solve the puzzle. For the LBL method, the agent
reaches a success rate of 88.77% in 2.5 million episodes.

Volume 29, Issue

This is due to the fact that the agent would get stuck after
solving the first layer and needed a lot more exploration time
to reach the final solved state. The penalty for leaving the
sub-goal was higher than the reward for solving the puzzle at
certain stages after applying the discount factor ~y. This can
be seen in the dip in the success rate in the middle. This issue
was overcome when the number of episodes n was large as
the exploration time was also large.

The results for the Skewb were similar to the 2x2x2 Pocket
Rubik’s Cube. As seen in Figure 8 and corresponding Table.
IIl, the agent without any sub-goals was the quickest to
learn. It took only 3 million episodes to reach a success rate
of 99.88% and needed an average of 19 moves. The agent
with sub-goals based on Sarah’s method (advanced) needed
5 million episodes to reach a similar success rate. However,
it took an average of 16 moves to do so. To summarize the
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Fig. 6. Results of the various 2x2x2 Pocket Rubik’s Cube Agents

results, we were able to solve all the puzzles using PQL
in a reasonable training time, given the hardware used. We

also outperformed the NN based approach used in Karmakar
2020[12]. There is also a clear trend where the agents with
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Fig. 7. Results of the various Pyraminx Agents

sub-goals performed worse than without agents. This can be each move they made and as meeting the sub-goals required
attributed to the fact where the agents were penalized for a few extra moves, this slowed down their learning. While
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Fig. 8. Results of the various Skewb Agents

sub-goals help humans to keep track of the state of the puzzle PQL agents. These agents were only given a limited action
and learn how to solve it quicker, this was not the case for the set for the 2x2x2 and Skewb to remove redundancy in the
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observation set. While this reduced complexity of actions,
it resulted in more steps being required. In the case of the
Skewb, the reduction was needed in order to follow the WCA
notation which only has four actions instead of the eight
action. However, in the case of the 2x2x2, it was done purely
to reduce the complexity of Q-table for performance gains
in training time.

The validation of PQL based solutions is compared with
DeepCube [11] for 2x2x2 Pocket Rubik’s Cube puzzle.
Authors have implemented DeepCube approach using Au-
todidactic Iteration which is supervised learning procedure
to train a deep neural network. In our experiment, randomly
scrambled 50 puzzles with increasing depths have provided
for both the approaches. The result shows higher success
ratio of solving puzzles in PQL than DeepCube. The com-
parison graph is shown in Figure 9.

09 n
08 [\
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o
N
—

01 |
g 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Scrambled Depth

e DeepCube =——PQL

Fig. 9. Success Rate of Solved 2x2x2 Pocket Rubik’s Cube

VI. CONCLUSIONS AND FUTURE WORK

The aim of this paper was to emulate and solve Twisty
Puzzles, with and without sub-goals, using PQL and to
measure its impact. Using CS-RL, the agents learned to
solve three puzzles— the 2x2x2 Pocket Rubik’s Cube, the
Skewb and the Pyraminx with a 100% success rate in a few
hours on mediocre hardware. This is much better than the
previous DRL approach [12] that was only able to achieve a
75% success rate when the scramble consisted of more than
four moves. We also found that the use of sub-goals was
detrimental to the agent, possibly due to factors specific to
Twisty Puzzles and our technique of penalizing unnecessary
moves as mentioned in Section V which might not apply
to other MDPs. The PQL approach is compared with Deep
Learning based network and obtained higher success rate.

There is a large scope in the exploration of CS-RL to
solve more complex problems as it outperformed its DRL
counterpart significantly. A study to measure its scalability
for much larger problems such as the 3x3x3 Rubik’s Cube
could be performed. Different approaches to train the agents
could also be studied such as to incentivise the use of
commutators and conjugates to allow the agent to be more
general and transferable across puzzles. There is also scope
for future work to explore the impact of sub-goals for other
kinds of combinatorial optimization problems. Our approach

can also be used to solve 4x4x4 cube and other puzzles. The
approach can be improved by finding suitable optimizations
in modifying the sub-goals.
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