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Abstract—In this paper, the problem of fixed-time stabiliza-
tion is addressed for a category of chained nonholonomic sys-
tems with asymmetric time-varying output constraints. A novel
barrier Lyapunov function (UBLF) is introduce to addressed
asymmetric time-varying output constraint requirements. Based
on this, a state feedback controller is developed by employing
switching control technique. The given controller is able to drive
the states of the closed-loop system (CLS) to zero in a fixed time
without violation of the constraints. Finally, the efficacy of the
proposed control scheme is confirmed by simulation results.

Index Terms—fixed-time stabilization, nonholonomic systems,
state feedback.

I. INTRODUCTION

THE research on control of nonholonomic systems (NSs)
has aroused wide attention in past decades due to its

significant value in practice [1]. However, the distinctive
feature that the number of control inputs less than that
of freedom, makes the control of nonholonomic systems
challenging [2]. To deal with such difficulty, several con-
structive control approaches including discontinuous time-
invariant feedback [3–5], smooth time-varying feedback [6,7]
and hybrid feedback [8] have been developed in the literature.
Thanks to these effective methods, a lot important results
have been made in the stabilization of NSs, see, for instance,
[9–15] and the references therein.

Noticed that most of the existing references mainly centre
around the asymptotic behavior of system trajectories as time
verges to infinity. Nevertheless, many practical applications
are more expectation that system trajectories converge to
the interested equilibrium in finite time. In addition, finite-
time stable systems also perform the good properties of
faster convergence and better robustness against uncertainty
[16]. Motivated by the facts, the research on finite-time
stabilization of NSs has gained increasing attention in recent
years. Specifically, a pioneering work was carried out in
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[17] by studying finite-time stabilization by state feedback
for a kind of NSs with some weak-drift uncertainties. Sub-
sequently, the problems of adaptive finite-time stabilization
with uncertainties of linear and nonlinear parameterization
were respectively addressed in [18] and [19]. By relaxing
the restriction on system growth, the finite-time stabilization
was studied in [20] for a category of NSs with more
general nonlinearities. However, a common drawback that
the convergence time seriously relies on and increases with
the initial condition of studied systems, which makes the
above-mentioned studies inapplicable to achieve the desired
performance in an exact predefined time. Worse still, when
the initial conditions are practically unknown, the proposed
control methods in [17–20] fail to work because their switch
strategies are established on the knowledge of the system
convergence time. Recently, the fixed-time stability that
requires the convergence time of a global finite-time stable
system being bounded independent of initial conditions, was
first introduced in [21] and further studied in [22, 23]. Such
stability offers a new perspective to address the finite-time
control problems and has stimulated numerous excellent
results [24–30]. However, the effect of the state/output-
constraints is not considered in the aforementioned papers.

In point of fact, almost all engineering systems are sub-
jected to state/output constraints, violation of which may
cause system damage, unpredictability danger or perfor-
mance degradation. Drew by the practical demands, the
control design of constrained systems has become a hot
research topic in recent years [31–33]. Nevertheless, few re-
sult are available in the literature for state/output-constrained
nonholonomic systems. Therefore, the interesting questions
are put forward accordingly. For a nonholonomic system
with output constraints, is it possible for us to design a
controller to fixed-time stabilization? If possible, how can
it be designed?

In this paper we give affirmative answers to above ques-
tions. Specifically, by introducing a novel universal barrier
Lyapunov function (UBLF) to cope with asymmetric time-
varying output constraints, a fixed-time control scheme is
presented for the state feedback stabilization problem of a
family of chained-form NSs. The main contributions of this
paper are highlighted as follows.

(a) Under the unified framework of the considered
system with symmetric/asymmetric constraints or
without constraint requirements, the fixed-time sta-
bilization problem of NSs is addressed.

(b) A novel tan-type UBLF fully taking advantage of
system structure feature is introduced to ensure the
requirements of the system output constraints.
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(c) By using the adding a power integrator technique
and switching strategy, a state feedback control
design procedure is presented to drive the states of
CLS to zero in a fixed time while the asymmetric
time-varying output constraints are not violated.

The notations used in this work are fairly standard. Specif-
ically, for a vector z = (z1, . . . , zn)

T ∈ Rn and two positive
functions a1(t) and a2(t), denote z̄j = (z1, . . . , zj)

T ∈ Rj ,
j = 1, . . . , n, Γa(t)

j = {z̄j : z̄j ∈ R with − a1(t) < z1| <
a2(t)}. For any b > 0 and z ∈ R, the function ⌈z⌋b is defined
as ⌈z⌉b = sign(z)|z|b.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following chained-form NSs:

ṗ0 = u0,
ṗi = pi+1u0, i = 1, . . . , n− 1,
ṗn = u1,

(1)

where (p0, p)
T = (p0, p1, . . . , pn)

T ∈ Rn+1, u =
(u0, u1)

T ∈ R2, y = (p0, p1)
T ∈ R2 are the system state,

control input and system measurable output, respectively. If
the p0-subsystem is abandoned, then the system (1) degener-
ates to the extensively studied standard chain-form nonlinear
systems. This paper suppose the output y suffering from the
following time-varying constraints

Ωpi = {−ki1(t) < pi(t) < ki2(t)} , i = 0, 1, (2)

with some pre-specified functions ki(t) > 0.
The following assumption is needed in this paper.
Assumption 1. The time-varying output constraints kij(t)

(i = 0, 1,j = 1, 2) are continuous differentiable and there are
positive constants ki1, ki2, ki3 and ki4 such that ki1 ≤ ki1(t),
ki2 ≤ ki2(t),|k̇i1(t)| ≤ ki3 and |k̇i2(t)| ≤ ki4.

For the sake of completeness, we review the definition and
criterion of fixed-time stability of nonlinear systems.

Consider the nonlinear system

ẋ = f(t, x), x(0) = x0 ∈ Rn, (3)

where f : R+ × Rn → Rn is a nonlinear vector field that
can be discontinuous with respect to the state variable, and
satisfies f(t, 0) = 0. In this case, the solutions of the system
(3) are understood in the sense of Filippov [34].

Definition 1[23]. The origin of system (3) is said to be
globally finite-time stable if it is globally (asymptotically)
stable and finite-time convergent. By “finite-time conver-
gence”, it means that if, for any initial condition x0 ∈ Rn,
there is a function T : Rn \{0} → (0,∞), called the settling
time function, such that every solution x(t, x0) of (3) satisfies
x(t, x0) = 0 for any t ≥ T (x0).

Definition 2[23]. The origin of system (3) is said to be
globally fixed-time stable if it is globally finite-time stable
and the settling time function T (x0) is bounded, that is, there
exists a positive constant Tmax such that T (x0) ≤ Tmax,
∀x0 ∈ Rn.

Lemma 1[23]. Consider the nonlinear system (3). Suppose
there exist a C1, positive definite and radially unbounded
function V (x) : Rn → R and real numbers c > 0, d > 0,
0 < α < 1, γ > 1, such that V̇ (x) ≤ −cV α(x) − dV γ(x),
∀x ∈ Rn. Then, the origin of system (3) is globally fixed-
time stable and the settling time T (x0) satisfies T (x0) ≤
Tmax := 1/(c(1− α)) + 1/(d(γ − 1)), ∀x0 ∈ Rn.

III. FIXED-TIME CONTROL DESIGN

In this section, we provide a constructive procedure for
the design of fixed-time controller that stabilizes system (1)
for any given finite settling time T > 0, while preventing the
violation of the time-varying output constraints (2).

A. A novel tan-type UBLF

To avoid the state p1 violating the asymmetric time-
varying constraints, a novel tan-type UBLF Vb1 : Γ1 → R is
introduced as follows:

Vb1(p1) =
2k2−τ

b1

π(2− τ)
tan

(
π|p1|2−τ

2k2−τ
b1

)
, (4)

where τ ∈ (− 1
n , 0) and kb1 = k11, if p1 > 0, otherwise

kb1 = k12.
The properties of Vb1(p1) are characterized by the follow-

ing proposition:
Proposition 1. Vb1(p1) is C1, positive definite on Γ1 and

satisfies

∂Vb1(p1)

∂p1
= Φb1(p1)⌈p1⌉1−τ ,

∂Vb1(p1)

∂kb1
=

2k2−τ
b1

π
tan

(
π|p1|2−τ

2k2−τ
b1

)
− 1

kb1
Φb1(p1)|p1|2−τ ,

(5)

with Φb1(p1) being defined as

Φb1(p1) =


Φk12(p1) = sec2

(
π|p1|2−τ

2k2−τ
12

)
, p1 > 0,

Φk11(p1) = sec2
(
π|p1|2−τ

2k2−τ
11

)
, p1 ≤ 0.

(6)

Remark 1. Note that if the constraint functions are sym-
metric and constant ones, namely, if k1 = k2 = kb = cont,
the BLF (5) becomes the one used in [31]. Compared with
the conventional log-type or tan-type BLF, the constructed
novel tan-type BLF Vb1(p1) takes full advantage of structure
feature of the system (1) and has a more attractive property
that

lim
k11→∞

Vk11(p1) = lim
k11→∞

2k2−τ
11

π(2− τ)
tan

(
π|p1|2−τ

2k2−τ
11

)
=

1

2− τ
|p1|2−τ .

(7)

lim
k12→∞

Vk12(p1) = lim
k12→∞

2k2−τ
12

π(2− τ)
tan

(
π|p1|2−τ

2k2−τ
12

)
=

1

2− τ
|p1|2−τ .

(8)

That is, when there is no constraint requirements on the
lower and/or upper bound of p1, by letting k11 → ∞
and/or k12 → ∞, Vkb1

(p1) in (4) will become the Lyapunov
function widely employed for the control problem without
constraints. As a consequence, the present tan-type UBLF
Vb1(p1) serves as a unified tool for handling the control prob-
lem simultaneously with asymmetric constraints, symmetric
constraints or without constraint requirements.

Engineering Letters, 29:4, EL_29_4_33

Volume 29, Issue 4: December 2021

 
______________________________________________________________________________________ 



B. Fixed-time stabilization of the p-subsystem

For the p0-subsystem, we take the following control law

u0 = (| sign(p0(0))| − sign(p0(0))− 1) c∗0, (9)

where c∗0 is a positive constant satisfying c∗0 < k01/(δT ) for
a constant δ ∈ (0, 1). As a result, the following lemma is
established by some simple derivations.

Proposition 2. For any initial condition p0(0) ∈ Ωp0 , the
corresponding solution p0(t) is well defined on [0, δT ) and
satisfies p0(t) ∈ Ωp0 .

Under (9), the p-subsystem is rewritten as

ṗ1 = h1p2,
ṗi = hipi+1, i = 2, . . . , n− 1,
ṗn = hnu1,

(10)

where hi = (|sign(p0(0))| − sign(p0(0))− 1) c∗0, i =
1, . . . , n− 1 and hn = 1.

In the sequel, we will stabilize the system (10) within the
settling time δT by a step-by-step manner. Before proceed-
ing, we introduce the following coordinate transformation:

ξi = ⌈pi⌉
1
ri − ⌈p∗i ⌉

1
ri , p∗i+1 = −βi(p̄i)⌈ξi⌉ri+1 ,

i = 1, . . . , n,
(11)

where ri = 1 + (i − 1)τ , p∗1 = 0 and βi : Ri → R is a C0

function to be specified later.
Step 1: Take V1(p1) = Vkb1

(p1) to be the Lyapunov
function for this step. Based on (2) and (4),Assumption 2.1,
we have

V̇1 =
∂Vkb1

∂p1
ṗ1 +

∂Vkb1

∂kb1
k̇b1

= Φb1(p1)⌈p1⌉1−τp2 −
1

kb1
Φb1(p1)|p1|2−τ k̇b1

+
2k1−τ

b1

π
tan

(
π|x1|2−τ

2k2−τ
b1

)
k̇b1

≤ Φb1(p1)⌈p1⌉1−τh1p2 +
2

kb1
Φb1(p1)|p1|2−τ |k̇b|

≤ Φb1(p1)h1⌈ξ1⌉2−τ (p2 − p∗2) + Φb1(p1)h1⌈ξ1⌉1−τp∗2
+Φb1(p1)ξ

2
1ϕ1

(12)

where ϕ1 ≥ (2K1|p1|−τ )/K1 with K1 = min{k11, k12}
and K1 = max{k13, k14} is a smooth function and p∗2 is the
virtual controller of p2 to be specified.

Select

p∗2 = −n− 1 + l + l|ξ1|q + ϕ1

h1
⌈ξ1⌉r1+τ

:= −β1(p1)[ξ1]
r2 ,

(13)

with design parameters l > 0 and q > −τ , which results in

V̇1 ≤ −lΦb1(p1)(|ξ1|2 + |ξ1|2+q)− (n− 1)|ξ1|2
+Φb1(p1)h1⌈ξ1⌉1−τ (p2 − p∗2).

(14)

Step 2: Choose V (p̄2) = V1(p1) +W2(p̄2) with

W2(p̄2) =

∫ p2

p∗2

⌈
⌈s⌉

1
r2 − ⌈p∗2⌉

1
r2

⌉2−τ−r2
ds. (15)

Since

∂W2

∂p2
= ⌈ξ2⌉2−τ−r2 ,

∂W2

∂p1
= − (2− τ − r2)

∂
(
⌈p∗2⌉

1
r2

)
∂p1

×
∫ p2

p∗
2

⌈
⌈s⌉

1
r2 − ⌈p∗2⌉

1
r2

⌉1−τ−r2
ds

(16)

a direct calculation yields

V̇2 ≤ −lΦb1(p1)(|ξ1|2 + |ξ1|2+q)− (n− 1)|ξ1|2
+h2⌈ξ2⌉2−τ−r2p∗3 + h2⌈ξ2⌉2−τ−r2(p3 − p∗3)

+Φb1(p1)h1⌈ξ1⌉1−τ (p2 − p∗2) +
∂W2

∂p1
h1p2

(17)

where p∗3 is the virtual controller being designed later. To
continue the design, we gives the estimates for last two terms
in the right hand of (17).

First, by the definition of ξj and p∗j , j = 1, 2, we have

|p2 − p∗2| =
∣∣∣(⌈p2⌉ 1

r2

)r2
−
(
⌈p∗2⌉

1
r2

)r2 ∣∣∣
≤ 21−r2

∣∣∣⌈p2⌉ 1
r2 − ⌈p∗2⌉

1
r2

∣∣∣r2
= 21−r2 |ξ2|r2 .

(18)

Thus, from (18), we can obtain that

Φb1(p1)h1⌈ξ1⌉1−τ (p2 − p∗2)
≤ 21−r2h1Φmax(p1)|ξ1|1−τ |ξ2|r2

≤ 1

3
|ξ1|2 + |ξ2|2χ21.

(19)

where Φmax(p1) = max{Φk11(p1),Φk12(p1)} and χ21 > 0
is a smooth function.

Secondly, note that

(2− τ − r2)

∫ p2

p∗2

∣∣∣⌈s⌉ 1
r2 − ⌈p∗2⌉

1
r2

∣∣∣1−τ−r2
ds

≤ (2− τ − r2) |ξ2|1−τ−r2 |p2 − p∗2|
≤ (2− τ − r2) 2

1−r2 |ξ2|1−τ .

(20)

Therefore, according to (2) and (20), we have

∂W2

∂p1
h2p2 ≤ (2− τ − r2)

∫ p2

p∗2

∣∣∣⌈s⌉ 1
r2 − ⌈p∗2⌉

1
r2

∣∣∣1−τ−r2
ds

×

∣∣∣∣∣∣
∂
(
⌈p∗2⌉

1
r2

)
∂p1

∣∣∣∣∣∣h2|p2|

≤ 1

3
|ξ1|2 + |ξ2|2χ22,

(21)

where χ22 ≥ 0 is a smooth function.
Substituting (19) and (21) into (18) yields

V̇2 ≤ −lΦb1(p1)(|ξ1|2 + |ξ1|2+q)− (n− 2)|ξ1|2
+⌈ξ2⌉2−τ−r2h2(p3 − p∗3) + ⌈ξ2⌉2−τ−r2h2p

∗
3

+(χ21 + χ22)|ξ2|2.
(22)

Design the virtual controller

p∗3 = − 1

h2
(n− 2 + l + l|ξ2|q + χ21 + χ22) ⌈ξ1⌉r3

:= −β2(p̄2)⌈ξ2⌉r3 .
(23)

Engineering Letters, 29:4, EL_29_4_33

Volume 29, Issue 4: December 2021

 
______________________________________________________________________________________ 



Then, the time derivative of V2 becomes

V̇2 ≤ −lΦb1(p1)(|ξ1|2 + |ξ1|2+q)− (n− 2)(|ξ1|2 + |ξ2|2)
−l(|ξ2|2 + |ξ2|2+q) + ⌈ξ2⌉2−τ−r2h2(p3 − p∗3).

(24)

Following the same arguments of Step 2, for Step i ( i=2
, . . . , n), we can find a C1 and positive definite Lyapunov
function Vi(p̄i) = Vb1(p1) +

∑i
j=2 Wj(p̄j) with

Wj(p̄j) =

∫ pi

p∗i

⌈
⌈s⌉

1
ri − ⌈p∗i ⌉

1
ri

⌉2−τ−ri
ds, (25)

and a set of continuous virtual controllers p∗j+1 =
−βj(p̄j)⌈ξj⌉rj , j = 1, . . . , n, such that

V̇i≤ −lΦb1(p1)(|ξ1|2 + |ξ1|2+q)− (n− i)
i∑

j=1

|ξj |2

−l
i∑

j=2

(|ξj |2 + |ξj |2+q) + ⌈ξi⌉2−τ−rihi(pi+1 − p∗i+1).

(26)

Consequently, the following result is obtained.
.
Proposition 3. For system (10), if the controller u1 =

p∗n+1(p) is specified by (11) with design parameters l > 0
and −τ < q < 2− 2τ satisfying

2(τ − 2)

δlτ
+

(2− τ)2
2+q
2−τ n

q+τ
2−τ

δl(q + τ)
< T, (27)

then, for all p(0) ∈ Θp1
n = {p(t) ∈ Rn| − k11(t) < p1(t) <

k12(t)}, the following properties establish.
(i) The state p1 stays in the set Ωp1 = {−k11(t) < p1(t) <

k12(t)}, ∀t ≥ 0.
(ii) All the CLS states are regulated to zero in a fixed

settling time δT .

C. Fixed-time stabilization of the p0-subsystem

From Proposition 3, we know that p(t) = 0 when t ≥ δT .
Therefore, we here just need to stabilize the p0-subsystem
in a prescribed time (1 − δ)T . To guard against the state
p0 violating the constraint, similar to subsection III-A, we
introduce a tan-type UBLF V0 : Ωp0

0 = {−k1(t) < p0(t) <
k2(t)} → R for the p0-subsystem as

V0(p0) =
2k2b0
π

tan

(
π|p0|2

2k2b0

)
, (28)

where kb0 = k01, if p0 > 0, otherwise kb0 = k02. Then, the
derivative of V0 satisfies

V̇0(p0) = sec2

(
π|p0|2

2k2b0

)
p0u0

+
4kb0
π

tan

(
π|p0|2

2k2b0

)
k̇b0 −

2

k0
Φb0(p0)|p0|2k̇b0

≤ Φb0(p0)p0u0 +
4

kb0
Φb0(p0)|p0|2|k̇b0 |

(29)

with

Φb0(p0) =


Φk02(p0) = sec2

(
π|p0|2

2k202

)
, p0 > 0,

Φk01(p0) = sec2
(
π|p0|2

2k201

)
, p0 ≤ 0.

(30)

Therefore, for the p0-subsystem, the control u0 can be
adopted as

u0 = −l2
(
1 + |p0|d + ϕ0

)
⌈p0⌉σ, (31)

where ϕ0 ≥ (4K0|p0|1−σ)/K0 with K0 = min{k01, k02}
and K0 = max{k03, k04} is a smooth function and σ, l2, d
are design parameters to be determined later. Following the
same line as in subsection B, the following result is gained.

Proposition 4. If design parameters 0 < σ < 1, l2 > 0
and 1− σ < d < 3− σ in (31) satisfy

2

l2(1− σ)(1− δ)
+

2

l2(σ + d− 1)(1− δ)
< T, (32)

then, for any initial condition p0(0) ∈ Ωp0 , the following
properties hold.

(i) The state p0 keeps in the set Ωp0
= {−k01(t) <

p0(t) < k02(t)}, ∀t ≥ 0 without violating the constraint.
(ii) The state p0 is regulated to zero within a fixed settling

time (1− δ)T .
Consequently, the following theorem is given to summa-

rize the main result of the paper.
Theorem 1. If the following switching control strategy

with an appropriate choice of the design parameters is
applied to system (1) subject to constraints (2),

u0 =

{
c∗0, t < δT,

−l2
(
1 + |p0|d + ϕ0

)
⌈p0⌉σ, t ≥ δT,

(33)

u1 = p∗n+1(p), (34)

then the states of the CLS are regulated to zero in any pre-
scribed finite time T while, at the same time the constraints
(2) are satisfied.

IV. AN APPLICATION EXAMPLE

Consider a unicycle-type mobile robot working in a limited
area. The kinematic equations of this robot are represented
by

ẋc = v cos θ, ẏc = v sin θ, θ̇ = w, (35)

where (xc, yc) denotes the position of the center of mass of
the robot, θ is the heading angle of the robot, v is the forward
velocity, w is the angular velocity of the robot and the origin
is the parking position of the robot. Due to environmental
limitation, we design the control laws under the constraints
−k01(t) < xc < k02(t) and −k11(t) < yc < k12(t).

Introducing the following input and state transformations:

p0 = xc, p1 = yc, p2 = tan θ,
u0 = v cos θ, u1 = w sec2 θ,

(36)

system (35) is transformed into

ṗ0 = u0, ṗ1 = u0p2, ṗ2 = u1. (37)

Clearly, system (37) is in the form of system (1) with n = 2,
and how to park this robot within a given time becomes
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Fig. 1. The responses of the CLS. The top graph shows trajectories of xc, yc and θ under time-varying constraints, and the bottom graphs demonstrate
trajectories of inputs v, w.

the problem of fixed-time stabilization of system (37) with
output constraints (2).

To verify our proposed controller, we take k01 = k11 =
1+0.12 sin 2t and k02 = k12 = 1+0.1 sin 2t. which satisfy
the assumption made in this paper with k01 = k11 = 0.88,
k02 = k12 = 0.9, k03 = k13 = 0.12, k04 = k14 = 0.1, For
simplicity, we suppose x0(0) < 0. In this case, for the p0-
subsystem, we can choose the control law u0 = u∗

0, where
u∗
0 is a positive constant satisfying u∗

0 < k01/(δT ) with δ ∈
(0, 1).

By choosing the prescribed time T = 10 and the gains
for the control laws as c∗0 = 0.1, δ = 0.8, l = 4, l2 = 3,
d = q = 2, τ = 1/3 and σ = 0.5, Fig.1 is obtained to
exhibit the responses of the CLS with (xc(0), yc(0), θ(0))=
(−0.5, 0.8, 0). We can see that the mobile robot moves to
the desired location in a given prescribed time and the output
constraints are never violated.

V. CONCLUSIONS

This paper has studied the problem of fixed-time sta-
bilization for a class of asymmetric time-varying output-
constrained NSs. Based on the novel barrier Lyapunov func-
tion (UBLF) to deal with the constraints, and by using adding
a power integrator technique, a constructive design procedure
for state feedback control is established. Together with a

novel switching control strategy, the designed controller
ensures that the states of the CLS are regulated to zero in
any given prescribed time, while the output constraints are
not violated.

APPENDIX

Proof of Proposition 3. The proof is divided into two
parts.

Part I: Verification of the constraints −k11 < p1 < k12.
From the definitions of Vb1 and Wj’s, we can easily verify

that Vn = Vb1 +
∑n

j=2 Wj is positive definite on Γn. This
together with (26) renders that the CLS is asymptotically
stable for all p(0) ∈ Θp1

n = {p(t) ∈ Rn| − k11(t) < p1(t) <
k12(t)}. Therefore, one has for all t ≥ 0,

Vb1(p1) =
2k2−τ

b1

π(2− τ)
tan

(
π|p1|2−τ

2k2−τ
b1

)
≤ Vn(p) ≤ Vn(p(0)).

(38)

That is,

π|p1|2−τ

2k2−τ
b1

≤ tan−1

(
π(2− τ)

2k2−τ
b1

Vn(p(0))

)
<

π

2
, (39)

for all t ≥ 0. As a result, the state p1 will remains in the set
|p1| < kb1 (i.e., −k11 < p1 < k12) and never violates the
constraints.
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Part II: Fixed-time stable analysis
Since the CLS is asymptotically stable at the origin is

showed in Part I. From Definitions 1 and 2, to achieve the
fixed-time stability, we just need to prove that the settling-
time function exists and is bounded by δT here. First of all,
it is easily see that

Wj =

∫ pj

p∗
j

⌈
⌈s⌉

1
rj − ⌈p∗j⌉

1
rj

⌉2−τ−rj
ds

≤ |ξj |2−τ−rj |pj − p∗j |
≤ 2|ξj |2−τ .

(40)

So one has

Vn = Vb1 +
n∑

j=2

Wj

≤
2k2−τ

b1

π(2− τ)
tan

(
π|p1|2−τ

2k2−τ
b1

)
+ 2

n∑
j=2

|ξj |2−τ .

(41)

Since 2− τ > 1 and thus for all p1 ∈ Γ1, 0 ≤ π|p1|2−τ

2k2−τ
b1

≤
π
2 , according to the characteristics of tangent functions, it is
obtained that

tan

(
π|p1|2−τ

2k2−τ
b1

)
≤ π

2k2−τ
b1

Φ
1
2

b1
(p1)|p1|2−τ

≤ π(2− τ)

2k2−τ
b1

Φ
1
2

b1
(p1)|ξ1|2−τ .

(42)

tan

(
π|p1|2−τ

2k2−τ
b1

)
≤ π

2k2−τ
b1

Φb1(p1)|p1|2−τ

≤ π(2− τ)

2k2−τ
b1

Φb1(p1)|ξ1|2−τ .

(43)

Noting the fact that Φb1(p1) ≥ 1 for all p1 ∈ Γ1 and
0 < 2/(2− τ) < 1, by (41), (43), one deduces that

V
2

2−τ
n

≤

 2k2−τ
b1

π(2− τ)
tan

(
π|p1|2−τ

2k2−τ
b1

)
+ 2

n∑
j=2

|ξj |2−τ

 2
2−τ

≤

Φb1(p1)|ξ1|2−τ + 2
n∑

j=2

|ξj |2−τ

 2
2−τ

≤ Φ
2

2−τ

b1
(p1)|ξ1|2 + 2

2
2−τ

n∑
j=2

|ξj |2

≤ 2

Φb1(p1)|ξ1|2 +
n∑

j=2

|ξj |2
 .

(44)

On the other side, observing 1 < (2 + q)/(2− τ) < 2, by

taking (41) and (42) into account, one arrives

V
2+q
2−τ
n

≤

 2k2−τ
b1

π(2− τ)
tan

(
π|p1|2−τ

2k2−τ
b1

)
+ 2

n∑
j=2

|ξj |2−τ


2+q
2−τ

≤

Φ
1
2

b1
(p1)|ξ1|2−τ + 2

n∑
j=2

|ξj |2−τ


2+q
2−τ

≤ n
q+τ
2−τ

Φ
2+q
4−2τ

b1
(p1)|ξ1|2+q + 2

2+q
2−τ

n∑
j=2

|ξj |2+q


≤ n

2+q
2−τ −12

2+q
2−τ

Φb1(p1)|ξ1|2+q +
n∑

j=2

|ξj |2+q

 .

(45)

Therefore, by considering (26), (44) and (45), it follows that

V̇n ≤ −l2V α
n − l2−γn1−γV γ

n , (46)

where α = 2/(2− τ) and γ = (2 + q)/(2− τ).
Thus, according to Lemma 1, we conclude that the equi-

librium p = 0 of the closed-loop system is fixed-time stable
and the settling time function T1 satisfies

T1 ≤ 2

l(1− α)
+

2γnγ−1

l(γ − 1)

=
2(τ − 2)

lτ
+

(2− τ)2
2+q
2−τ n

q+τ
2−τ

l(q + τ)
< δT.

(47)

Thus, the proof is completed.
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