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Abstract—Robust portfolio optimization theory is an es-
sential foundation for modern financial modeling, which is a
well-studied but not fully conquered territory. Conservatism
is one of the most discussed issues by numerous scholars.
To obtain a robust portfolio model with satisfactory perfor-
mance, we propose the hybrid robust mean-variance portfolio
model constrained with different ellipsoidal uncertainty sets
in this paper. Additionally, skewness is also considered in
the objective function. Preselection is designed for picking
out the high-quality risky assets, where two machine learning
algorithms, Random Forest and Support Vector Machine, are
involved. In the numerical experiments, the US 48 industry
data set from Kenneth R. French is employed to verify the
effectiveness of the proposed hybrid portfolio models. The
comparative results between the proposed hybrid models
and baseline portfolio models (equal-weighted model, mean-
variance model, mean-variance-skewness model) show that
the proposed hybrid robust mean-variance portfolios consid-
ering skewness with preselection beat the baseline strategies
by a clear margin. Also, the actual effectiveness of skewness
in the hybrid robust models is analyzed.

Index Terms—Portfolio selection, Hybrid robust, Skew-
ness, Machine learning

I. INTRODUCTION

THE seminal mean-variance (MV) portfolio selection
model proposed by Markowitz [1] laid the essential

foundation for the modern portfolio theory (MPT). How-
ever, some shortcomings of the MV portfolio selection
model have been discussed by scholars [2], [3], [4]. To
overcome the well-known parameter sensitivity of the
classical MV model, robust programming is introduced
into the portfolio formation. The pioneering research pro-
posed by Ben-Tal & Nemirovski (1998) [5] considers
building a robust convex optimization model even though
the inputted data is uncertain to some extent. Goldfarb
& Iyengar (2003) [6] constructed the robust portfolio
selection model based on [5]. In their work, Fama-French
factors [7] are used to estimate the covariance matrix, and
the second-order cone (SOCP) form of robust portfolio
model is given. Considering the worst-case scenario is
a widely-used approach for solving robust optimization
models, and the effectiveness of such method on out-of-
sample data sets has been fully discussed and verified [6],
[8], [9].
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However, conservatism is an inevitable issue in robust
optimization [10], [11], [12]. Lotfi et al (2017) [13]
proposed to consider the best-case counterpart and the
worst-case counterpart in portfolio formation. In their
work, Value-at-risk (VaR) is the risk measure focused on,
and the hybrid robust mean-VaR portfolio model is built.
Inspired by [13], [14], this paper contributes to derive
and construct the hybrid robust mean-variance portfolio
models constrained with different ellipsoidal uncertainty
sets. Skewness is also considered in investment decision-
making by some scholars and practitioners [15], [16],
[17], [18], [19], [20]. Because a portfolio with a higher
skewness would result in satisfactory performance, which
is more appealing to rational investors. Hence, following
the existing researches, skewness is encompassed in the
proposed hybrid robust mean-variance portfolio models to
improve the performance.

Numerous studies have demonstrated that high-quality
risky assets could bring about efficient and effective port-
folio models [21], [22], [23]. Preselection is the procedure
to pick out the eligible risky assets based on the cus-
tomized rules. Accordingly, accurate forecasting informa-
tion is important in preselection. Existing literature shows
that some artificial intelligence techniques are beneficial to
build the feasible preselection process. Wang et al (2019)
[22] constructed the risky assets preselection with Long
Short Term Memory (LSTM) networks. Chen et al (2021)
[21] designed eXtreme Gradient Boosting (XGBoost) with
an improved firefly algorithm to predict stock prices in
preselection. To improve the performance of the proposed
portfolio models, we develop a hybrid algorithm involving
the forecasting results provided by Random Forest and
Support Vector Machine regression.

The key innovations of this paper are as follows.
Firstly, the hybrid robust mean-variance portfolio models
constrained with different ellipsoidal uncertainty sets are
derived and constructed, where skewness is also taken into
account. Secondly, preselection combining the forecast-
ing results provided by two machine learning algorithms
are proposed, where a hybrid algorithm is developed to
select the appropriate risky assets. Finally, comparative
numerical experiments are implemented, in which detailed
indicators of portfolio performance are presented. We also
investigate the actual effectiveness of skewness in the hy-
brid robust portfolio models and provide the corresponding
analysis for individual investors.

The rest of this paper is organized as follows. Confi-
dence ellipsoids U1

δ and U2
δ are introduced in Section II.

Section III presents the construction of the hybrid robust
mean-variance portfolio models involving skewness. The
preselection and the hybrid algorithm for selecting risky
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assets is illustrated in Section IV. Numerical experiments
with detailed analysis are shown in Section V. Conclusions
and related analysis are revealed in Section VI.

II. CONFIDENCE ELLIPSOIDS

In this section, two confidence ellipsoids [13], [14], U1
δ

and U2
δ , are introduced for the follow-up hybrid portfolio

modeling. Assuming the risky assets returns follows a joint
normal distribution, where the estimate of mean r can be
obtained from a group of i.i.d samples of size S for the n
risky assets.

A. Confidence ellipsoid U1
δ

In U1
δ , the covariance matrix of the n risky assets is

assumed to be fixed, and we have:

S(S − n)

(S − 1)n
(r − r̄)′Σ−1(r − r̄) ∼ χ2

n (1)

The associated confidence ellipsoid around the point esti-
mator r̂ is as follows:

U1
δ = {r ∈ Rn | S(r − r̂)′Σ−1(r − r̂) ≤ δ2} (2)

where χ2
n(δ2) = θ with θ ∈ (0, 1) is the chosen confi-

dence, and P(r ∈ U1
δ ) = θ.

B. Confidence ellipsoid U2
δ

In essence, U2
δ is an extension of the ellipsoidal un-

certainty set U1
δ . In U2

δ , a joint uncertainty set for the
pair (r,Σ) is considered, and the distributions for the
independent sample estimators, r̂ and Σ̂ are as follows:

r̂ ∼ N (r,
Σ

S
)

r̂ ∼ W(
Σ

S − 1
, S − 1)

(3)

where r̂ = 1
S

∑S
i=1 ri, Σ̂ = 1

S−1

∑S
i=1(ri−r̂)(ri−r̂)′, and

N (µ, σ2) represents the Gaussian distribution, W(G, ν)
denotes the Wishart distribution with scale matrix G and
degree of freedom ν. An appropriate joint ellipsoidal
uncertainty set can be derived according to the procedure
of Schottle & Werner (2009) [24] as follows:

U2
δ ={(r,Σ) ∈ Rn × Sn | S(r − r̂)Σ̂−1(r − r̂)+

S − 1

2
‖Σ̂−1/2(Σ− Σ̂)Σ̂−1/2‖2F ≤ δ2}

(4)

where ‖A‖2F = tr(AA′).

III. HYBRID ROBUST MEAN-VARIANCE MODEL WITH
SKEWNESS

The hybrid robust portfolio selection models constrained
with the two ellipsoidal uncertainty sets introduced in
section II are proposed in this section. Existing literature
[17], [20], [16], [15], [18], [19] points out that a portfolio
with a larger skewness is more appealing to the investors.
As a result, skewness is integrated into the corresponding
portfolio objective functions to improve the overall perfor-
mance. We assume that no short-selling is allowed in our
proposed models, that is, the feasible set of the portfolio
weight is X = {x ∈ Rn | x ≥ 0, ‖x‖1 = 1}.

A. Ellipsoidal uncertainty set U1
δ

The best-case counterpart of the robust mean-variance
model constrained with U1

δ is as follows:

min
x∈X

min
r∈U1

δ

−r′x+ λ‖Σ1/2x‖ (5)

and the worst-case counterpart is as follows:

min
x∈X

max
r∈U1

δ

−r′x+ λ‖Σ1/2x‖ (6)

where λ is the trade-off parameter between return and
risk. Following the procedure of Lotfi et al. [13], [14],
the associated hybrid robust mean-variance models can
be derived by introducing a trade-off parameter β, which
describes the possible optimistic level of the potential
market conditions.

min
x∈X

[
β

(
− r̂′x− δ√

S
‖Σ̂1/2x‖+ λ‖Σ̂1/2x‖

)
+

(1− β)

(
− r̂′x+

δ√
S
‖Σ̂1/2x‖+ λ‖Σ̂1/2x‖

)]
= min
x∈X
−r̂′x+ λ‖Σ̂x‖+

(
(1− 2β)

δ√
S

)
‖Σ̂1/2x‖

(7)

Hence, we propose the multi-objective portfolio model
constrained with the U1

δ as follows:
min
x∈X

−r̂′x+ λ‖Σ̂1/2x‖+

(
(1− 2β)

δ√
S

)
‖Σ̂x‖

max
x∈X

Skew(x) = E(x′(r − r̄)3) = x′M3(x⊗ x)

(8)
where M3 is the co-skewness matrix, ⊗ denotes the
kronecker product. To solve the problem (8), we can
transform it into the following nonlinear programming
using the linear weighted method.

min
x∈X
− r̂′x+ λ‖Σ̂1/2x‖+

(
(1− 2β)

δ√
S

)
‖Σ̂1/2x‖

− γx′M3(x⊗ x)

(9)

where γ > 0 is the risk preference parameter.

B. Ellipsoidal uncertainty set U2
δ

In the joint ellipsoidal uncertainty set U2
δ , the best-case

counterpart is as follows:

min
x∈X

min
(r,Σ)∈U2

δ

−r′x+ λ‖Σ1/2x‖ (10)

and the worst-case counterpart is as follows:

min
x∈X

max
(r,Σ)∈U2

δ

−r′x+ λ‖Σ1/2x‖ (11)

Similar to the procedure in the case of U1
δ , the hybrid

robust mean-variance model constrained with U2
δ can be

obtained as follows:

min
x∈X

[
β

(
min

(r,Σ)∈U2
δ

−r′x+ λ‖Σ1/2x‖
)

+

(1− β)

(
max

(r,Σ)∈U2
δ

−r′x+ λ‖Σ1/2x‖
)]

= min
x∈X
−r̂′x+

(
β min
k∈[max(0,1−S−1

2δ2
),1]

g2(k)+

(1− β) max
k∈[0,1]

g1(k)

)
‖Σ̂1/2x‖

(12)
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where

g1(k) = δ

√
k

S
+ λ

√(
1 + δ

√
2(1 + k)

S − 1

)

g2(k) = −δ
√
k

S
+ λ

√(
1− δ

√
2(1− k)

S − 1

)
Accordingly, the multi-objective portfolio model con-

strained with the ellipsoidal uncertainty set U2
δ is as

follows:

min
x∈X

−r̂′x+

(
β min
k∈[max(0,1−S−1

2δ2
)],1

g2(k)+

(1− β) max
k∈[0,1]

g1(k)

)
‖Σ̂1/2x‖

max
x∈X

Skew(x) = E(x′(r − r̄)3) = x′M3(x⊗ x)

(13)
Also, the corresponding nonlinear programming form is
as follows:

min
x∈X
− r̂′x+

(
β min
k∈[max(0,1−S−1

2δ2
),1]

g2(k)+

(1− β) max
k∈[0,1]

g1(k)

)
‖Σ̂1/2x‖ − γx′M3(x⊗ x)

(14)

IV. PRESELECTION BY MACHINE LEARNING
ALGORITHMS

Many scholars have demonstrated that the machine
learning-based preselection could improve the perfor-
mance of portfolio models [23], [22], [21]. Two machine
learning algorithms within the scope of this work are
introduced in this section. Firstly, the basic principle of
Random Forest and Support Vector Machine are briefly
presented and explained. Following that, we propose a
hybrid algorithm to select risky assets based on the
forecasting results provided by the two machine learning
algorithms.

A. Random Forest
Random Forest (RF) [25] is one of the ensemble learn-

ing algorithms which has been widely used to handle
classification or regression tasks. In RF, n base estimators
are constructed to generate forecasting results indepen-
dently. Bagging is used to effectively synthesize these
outputs from the base estimators. Suppose that there are
M features in the data set, then at most k =

√
M features

would be randomly selected by a base estimator to learn
the potential data pattern. Information gain is a frequently-
used criterion for the tree node splitting as follows:

Gain(D, kj) = Entropy(D)−
∑
i

|Di|
D

Entropy(Di)

where D is the parent node, Di is the children nodes after
splitting, kj is the feature to be split. Upon the leaves reach
the threshold of defined impurity, Random Forest would
obtain the final result R(x) according to the following
voting equation:

R(x) = arg max
n∑
i=1

I(ri(x) = R(x))

where ri(x) represents the output of the ith base estimator,
and I(·) is the indicator function.

B. SVM
Support Vector Machine (SVM) is a supervised learning

algorithm orginating from the statistical learning theory
[26]. Considering the possibility of sample scarcity, SLT
substitutes the conventional expected risk minimization
with empirical risk minimization (ERM). Based on the
rule of ERM, however, the learning model would be
over-fitted when the complexity of the model is high
while the number of samples is limited [27]. Structure
Risk Minimization (SRM) is used in SVM to avoid such
a dilemma. SRM tries to approach to the true risk by
empirical risk as well as an associated confidence interval.
According to the rule of SRM, SVM could obtain the
learning model with appropriate complexity even when
the number of samples is limited [28], [29], [30].

Similar to random forest, SVM is also applicable to deal
with classification and regression problems. In this paper,
SVM regression (SVR) is used to give forecasting results
for the follow-up hybrid algorithm. Assuming that we have
samples xi ∈ Rm, i = 1, 2, . . . , n and labels y ∈ Rn for
training. The goal of SVR is find w ∈ Rn and b ∈ R
such that minimizing the regression error. Setting the upper
bound of deviation from the true label is ε, the ε−SVR
[31], [32] solves the following optimization problem:

min
w,b,ξ,ξ∗

1

2
w′w + C

m∑
i=1

(ξi + ξ∗i )

s.t.


yi − w′φ(xi)− b ≤ ε+ ξi

w′φ(xi) + b− yi ≤ ε+ ξ∗i

ξ, ξ∗ ≥ 0, i = 1, 2, . . . , n

(15)

where n is the number of observations, m is the dimension
of feature space, C is the penalty term, ξ and ξ∗ represents
the predictions lie above and below the ε tube, respectively,
φ is the function to map the training vectors into a high-
dimensional space. Considering the primal optimization
problem (15) is hard to solve in some cases, the dual form
of problem (15) is derived as follows:

min
α,α∗

1

2
(α− α∗)′K(α− α∗) + ε1′(α+ α∗)− y′(α− α∗)

s.t.

{
1′(α− α∗) = 0

0 ≤ αi, α∗i ≤ C, i = 1, 2, . . . , n
(16)

where α and α∗ are the corresponding dual variables, 1 is
the vector of all ones, K is an n×n positive semi-definite
matrix with Kij = φ(xi)

′φ(xj).

C. Proposed hybrid algorithm for selecting assets
Preselection is a crucial step in investment decision-

making when the individual investor has many assets
to manage. Moreover, high-quality risky assets would
be beneficial to the optimal portfolio construction. To
this end, we propose a hybrid algorithm based on the
forecasting results provided by RF and SVR in this section.

The fundamental features used in the machine learning
algorithms are Fama-French five factors, which demon-
strated to explain more than 70% of the associated market
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TABLE I
FUNDAMENTAL FACTORS IN FAMA-FRENCH MODEL.

Factor Formula Details

Mkt-Rf rM − rf the excess return rate of market, market risk.
SMB rS − rB the return spread of small minus large stocks, size

risk.
HML rH − rL the return spread of cheap minus expensive stocks,

value risk.
RMW rR − rW the return spread of the most profitable firms

minus the least profitable.
CMA rC − rA the return spread of firms that invest conservatively

minus aggressively.

return [7], [33], [34], [35]. The effectiveness of the Fama-
French factors are also illustrated in [36], [37], [38]. Table
I summarizes the fundamental five factors in Fama-French
model.

In the numerical experiments, Random Forest and SVR
would give the forecasting returns based on Fama-French
factors. In order to select high-quality risky assets accord-
ing to the predictions, we design the following hybrid
algorithm. Firstly, we build a heap Q to sort the forecasting
results and define k to represent the number of risk assets
to be selected. Secondly, we set a flexible number K > k,
and the top-K results from RF and SVR respectively are
selected by Q, the indexes of these selected risky assets are
also recorded. Finally, the intersection of the two selected
results sets are calculated, and the final risky assets set can
be obtained according to the recorded indexes. Algorithm
1 illustrates the details of the hybrid strategy.

V. NUMERICAL EXPERIMENTS

To verify the effectiveness of the proposed hybrid robust
portfolio models, the numerical experiments are designed
and implemented in this section. The hyper-parameters
of the proposed hybrid robust portfolio models are as
follows. λ = 0.5, β = 0.3, and γ = 2. More details
of the hyper-parameters setting can be referred to [20].
Fig 1 presents the flowchart of the designed numerical
experiments. Table II summarizes the portfolio models in
the numerical experiments.

A. Data set

The US 48 industry portfolio daily data set from Ken-
neth R. French is employed in the empirical research,
among which the data from June 1, 2015, to Feb. 28, 2018,
is divided into the training set (total 693 observations),
and the data from June 1, 2018, to May 31, 2019, is
divided into the testing set (total 251 observations). In
the training set, the preselection is carried out and the
proposed hybrid robust portfolio models and baseline port-
folios are constructed, whereas both the proposed models
and benchmarks are verified in the testing set.

B. Preselection

As shown in Fig. 1, preselection is set to sort out
the potential high-quality risky assets. To investigate the
accuracy of the machine learning algorithms used in

Algorithm 1 Preselection of risky assets.
Input: Data set containing Fama-French five factors D;

Risky assets set A; Size of risky assets set N ; Flexible
number K; Size of selected risky assets k; Random
Forest; SVR;

Output: Selected risky assets Asel
1: Split D into two parts, Dt for training and Dp for

prediction;
2: Train RF and SVR based on Dt, then use the well-

trained machine learning models to predict the returns
based on Dp. The predicted results are Ps and Pr,
respectively.

3: Build a heap Q with size K, for sorting Ps and Pr.
The sorted results are Qs and Qr, respectively. Record
the indexes of the selected risky assets in a set I .

4: Calculate the intersection of Qs and Qr, and the
obtained set is Rsel with size of k′.

5: while Rsel is ∅ do
6: K = max(2 ∗K,N) and turn to the step 3.
7: end while
8: if k′ < k then
9: K = K + ε, where ε is a small number.

10: Turn to the step 3.
11: else if k′ > k then
12: Drop the last values of Rsel until k′ = k.
13: else
14: Based on the indexes set I and risky assets set A,

the selected risky assets Asel can be obtained by the
operation of mapping.

15: end if
16: return Asel;

preselection, we define the following indicators as [40],
[41], [21] for comparison:

MSE =
1

n

n∑
i=1

(yi − ŷi)2

MAE =
1

n

n∑
i=1

|yi − ŷi|
(17)

where MSE is short for mean square error, MAE is short
for mean absolute error, yi represents the true value,
ŷi represents the predicted value, n is the number of
observations.

Fig. 2 shows the MAE and MSE of Random Forest and
SVR, respectively. The X-axis represents the 48 industries
in data set, the left Y-axis indicates the MAE while the
right Y-axis is the MSE; the red bar is the MAE of RF,
the green bar is the MAE of SVR, the blue line represents
the MSE of RF, and the grey line represents the MSE
of SVR. It can be observed that the accuracy of Random
Forest is slightly higher than SVR, which again illustrates
the advantage of the ensemble learning algorithm. Also,
the rationality of the proposed hybrid method for selecting
risky assets can be demonstrated in Fig. 2 to some extent.

Table III presents the descriptive statistics of the se-
lected industries by Algorithm 1. Overall, the industry data
is rather stable, which could avoid some extreme cases
in portfolio validation. As a result, the performance on
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TABLE II
SUMMARY OF THE PORTFOLIO MODELS IN NUMERICAL EXPERIMENTS.

Model Expected return Variance Skewness Hybrid robust Uncertainty set Detail

EWM % % % % % Equal weighted portfolio model [39], baseline model
MV ! ! % % % Conventional Markowitz model, baseline model
MVS ! ! ! % % Mean-variance-skewness model [15], baseline model
HMVu1 ! ! % ! U1

δ Hybrid robust MV model constrained with U1
δ , without preselection

HMVu2 ! ! % ! U2
δ Hybrid robust MV model constrained with U2

δ , without preselection
HMVSu1U ! ! % ! U1

δ Hybrid robust MV model constrained with U1
δ , considering skewness,

without preselection.
HMVSu2U ! ! % ! U2

δ Hybrid robust MV model constrained with U2
δ , considering skewness,

without preselection.
HMVSu1 ! ! % ! U1

δ Hybrid robust MV model constrained with U1
δ , considering skewness, with

preselection.
HMVSu2 ! ! % ! U2

δ Hybrid robust MV model constrained with U2
δ , considering skewness, with

preselection.

Data set

Testing 
set

Training 
set

Random Forest

SVR

Hybrid 
algorithm

Select assets

Proposed 
models

Proposed 
models

Baseline 
models

Preselection

Fig. 1. Flowchart of numerical experiments.

the stable data set can demonstrate the universality of the
proposed hybrid portfolio selection models.

C. Performance of portfolio models

To comprehensively evaluate the performance of the
proposed portfolio models, some evaluation metrics are
defined as follows:
(1). Return on Investment (ROI)

ROI is used to measure the efficiency and profitability
of a portfolio model. The standard formula of ROI is as

follows:

ROI =
FinalWealth− InitialWealth

InitialWealth
× 100% (18)

where FinalWealth represents the cumulative return ob-
tained from the investment bought with InitialWealth.
(2). Annual Percentage Yield (APY)

APY is also an indicator evaluating the profitability
of an investment, and can be calculated based on the
following equation:

APY = n
√

1 + ROI− 1 (19)
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TABLE III
DESCRIPTIVE STATISTICS OF THE SELECTED RISKY ASSETS.

No. Industry Min 25% Quantile Median Mean 75% Quantile Max

1 BusSv −0.0444 −0.0036 0.0009 0.0008 0.0060 0.0463

2 Soda −0.0414 −0.0039 0.0005 0.0004 0.0053 0.0265

3 Beer −0.0428 −0.0040 0.0007 0.0004 0.0052 0.0304

4 Smoke −0.0470 −0.0044 0.0005 0.0005 0.0059 0.0422

5 Chips −0.0438 −0.0050 0.0013 0.0007 0.0065 0.0510

6 LabEq −0.0456 −0.0038 0.0010 0.0007 0.0064 0.0385

7 Paper −0.0472 −0.0037 0.0009 0.0004 0.0052 0.0326

8 Rtail −0.0390 −0.0039 0.0011 0.0006 0.0057 0.0399

9 MedEq −0.0391 −0.0042 0.0012 0.0006 0.0060 0.0277

10 Mach −0.0593 −0.0051 0.0007 0.0008 0.0072 0.0369

11 Aero −0.0536 −0.0037 0.0012 0.0009 0.0065 0.0336

12 Guns −0.0431 −0.0039 0.0009 0.0010 0.0059 0.0622

13 Gold −0.1176 −0.0132 0.0012 0.0008 0.0147 0.1042

14 Util −0.0393 −0.0045 0.0006 0.0002 0.0051 0.0289

* The acronyms of the industries can be referred to Kenneth R. French.
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Fig. 2. MAE & MSE of RF and SVR

where n is the number of investment horizontal years.
(3). Sharpe ratio (SR)

SR [42] is a well-known risk-adjusted indicator that
has been widely used in both academia and industry [43],
[44], [45]. SR measures the excess return obtained while
assuming a specific risk and can be computed as follows:

SR =
APY− rf

σp
(20)

where rf is the annual risk-free rate, which is 3% in this
work. σp is the annual standard deviation (STD) of the
excess return.
(4). Maximum drawdown (MDD)

MDD is one of risk measures, which is equal to the
upper bound decline from the peak to a through before a
new peak is attained. Customarily, MDD is computed as

a percentage of the peak value as follows:

MDD = max
t∈[0,T ]

{
maxi∈[0,t] ROIi − ROIt

maxi∈[0,t]ROIi

}
(21)

Table IV reveals the performance of the proposed hybrid
robust portfolio models and baseline strategies on the
testing data set. With regard to ROI, HMVSu2 has the
highest ROI of 0.1011, followed by HMVSu1 with 0.0969,
HMVSu2U ranks third with 0.0701. All of the hybrid
robust portfolio models have higher ROI than benchmarks
(EWM, MV, MVS). HMVSu2 also achieves the highest
APY of 0.1015, compared to 0.0973 for HMVSu1, 0.0704
for HMVSu2U, 0.0701 for HMVu2. It can be found that
portfolios with preselection show better return character-
istics, which is consistent with the rule of sifting risky
assets.

In terms of risk, HMVSu2U and HMVu2 have the
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Fig. 3. Cumulative returns of portfolio models.

TABLE IV
PERFORMANCE OF THE PORTFOLIO MODELS.

EWM HMVSu1 HMVSu1U HMVSu2 HMVSu2U HMVu1 HMVu2 MV MVS

ROI −0.0303 0.0969 0.0685 0.1011 0.0701 0.0690 0.0698 0.0666 0.0665

APY −0.0304 0.0973 0.0688 0.1015 0.0704 0.0693 0.0701 0.0669 0.0668

STD 0.1493 0.1289 0.1214 0.1272 0.1208 0.1219 0.1208 0.1238 0.1238

MDD 0.2124 0.1806 0.1767 0.1761 0.1752 0.1771 0.1750 0.1812 0.1812

SR −0.4043 0.5223 0.3193 0.5620 0.3345 0.3220 0.3315 0.2978 0.2974

Skewness -0.0556 −0.2645 −0.2142 −0.2675 −0.2165 −0.2154 −0.2138 −0.2205 −0.2203

VaR(%5) 0.0174 0.0148 0.0126 0.0143 0.0125 0.0128 0.0124 0.0132 0.0132

p−Value∗ — 0.0608 0.0967 0.0574 0.0944 0.0956 0.0963 0.0962 0.0963

* One-sided t-tests are implemented and the benchmark model is EWM.

lowest STD, 0.1208, HMVSu1U follows, 0.1214. The
MDD HMVu2 also reaches the best level of 0.1750,
HMVSu2U achieves the second best MDD of 0.1752,
HMVSu2 follows with 0.1761. Due to the number of
available risky assets being narrowed by the preselection
process, portfolios with our designed preselection do not
show as satisfying risk characteristics as the original
hybrid portfolio models.

SR is an important indicator to evaluate portfolio mod-
els. In this regard, HMVSu2 has the highest SR of 0.5620,
HMVSu1 ranks second with 0.5223. The two portfolio
models’ SR are significantly higher than others. Specif-
ically, HMVSu2U has the third highest SR of 0.3345,
HMVu2 follows, with 0.3315. The performance of SR
demonstrates the effectiveness of the developed preselec-

tion process, by which risky assets with higher Sharpe
ratios are pooled to form portfolio.

It can be observed from skewness that, HMVSu1U has
higher skewness than HMVu1 (−0.2142 vs −0.2154),
whereas HMVSu2U has lower skewness than HMVu2
(−0.2165 vs −0.2138), which means the actual effective-
ness of skewness is related to the risk preference parameter
for skewness, and this part is discussed in the next section.

VaR(%5) is presented to reflect the tail risk of different
portfolio models. HMVu2 has the lowest VaR(%5) of
0.0124, HMVSu2U shows similar performance of 0.0125.
HMVSu1U follows, with 0.0126. However, HMVSu2 and
HMVSu1 shows higher VaR(%5), which are 0.0143 and
0.0148, respectively. It seems that the preselection process
has positive influences on the portfolio VaR, but more
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Fig. 4. Effect of the skewness in HMVSu1 and HMVSu2.

numerical experiments should be conducted to verify this
conclusion.

One-sided t-tests are implemented to further show the
superiority of the proposed hybrid portfolio models. The
null hypothesis is the difference between the tested model
and the benchmark is equal to zero, against the alternative
that the difference is greater than zero. It can be found
that HMVSu2 is the most significant portfolio model at
the level 10%.

Fig. 3 visualizes the results in Table IV, which fur-
ther presents the superiority of the proposed preselec-
tion process. Comparing the performance of HMVSu1
and HMVSu1U, as well as HMVSu2 and HMVSu2U,
portfolio models with the customized preselection have
better performance than those without this process, es-
pecially in terms of return. Models consider ellipsoidal
uncertainty sets outperform the benchmarks regarding both
return and risk. Specifically, portfolio models constrained
with the ellipsoidal uncertainty U2

δ reveal more appealing
performance than those in U1

δ , which also illustrates the
importance of an appropriate uncertainty set in robust
modeling. However, the actual effect of skewness in the
proposed hybrid robust portfolio models is not clear,
detailed numerical experiments would be done in the next
section for further analysis.

D. Analysis of the effect of skewness

Based on the numerical experiments above, the effect of
skewness in the proposed hybrid robust portfolio models
would be explored in this section. Specifically, the pro-
posed portfolio models with better performance, HMVSu1
and HMVSu2, are chosen for the sensitive analysis.

Table V and Fig. 4 shows the effect of skewness on
ROI, SR, MDD in HRMVSu1 and HMVSu2, respectively.
The X-axis represents the coefficient of skewness (γ) in
HMVSu1 and HMVSu2, where the logarithmic values
based 2 are indicated, that is, the value of γ ranges
from 20 to 210. The left Y-axis indicates the ROI of
HMVSu1 and HMVS2, and the right Y-axis indicates
the SR of HMVSu1 and HMVSu2. It can found that,
SR is more sensitive to γ than ROI and MDD. When
γ is less than 29, SR shows a general upward trend in
both HMVSu1 and HMVSu2. However, ROI and MDD in
the proposed hybrid robust portfolio models are not very
sensitive to γ. The main reason for this result is that the
hybrid robust portfolio models have taken the potential
uncertainty of distribution of the returns into account,
where the skewness of returns is also partly involved in
the designed ellipsoidal uncertainty sets. In a nutshell,
skewness is a useful objective when the portfolio model
pursuing a better SR.
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TABLE V
SENSITIVE ANALYSIS OF HMVSU1 & HMVSU2.

γ ROI: HMVSu1 MDD: HMVSu1 SR: HMVSu1 ROI: HMVSu2 MDD: HMVSu2 SR: HMVSu2

20 0.0967 0.1806 0.5204 0.1008 0.1761 0.5600

21 0.0969 0.1806 0.5223 0.1011 0.1761 0.5620

22 0.0967 0.1806 0.5207 0.1008 0.1761 0.5602

23 0.0967 0.1806 0.5206 0.1008 0.1761 0.5600

24 0.0968 0.1806 0.5214 0.1009 0.1761 0.5605

25 0.0970 0.1806 0.5232 0.1011 0.1761 0.5624

26 0.0969 0.1805 0.5229 0.1010 0.1760 0.5619

27 0.0972 0.1806 0.5259 0.1013 0.1761 0.5648

28 0.0975 0.1807 0.5292 0.1014 0.1762 0.5666

29 0.0978 0.1810 0.5331 0.1016 0.1764 0.5696

210 0.0973 0.1823 0.5295 0.1014 0.1772 0.5693

VI. CONCLUSIONS & DISCUSSIONS

In this paper, we propose and construct the hybrid robust
mean-variance portfolio models with skewness considered.
Both the worst-case counterpart and the best-case coun-
terpart are integrated into our models with a trade-off
parameter β. From the comparative results provided by
the designed numerical experiments, the proposed hybrid
robust mean-variance portfolio models (HMVu1, HMVu2)
outperform the conventional mean-variance and mean-
variance-skewness portfolio models. Meanwhile, when the
skewness is taken into account, the performance of hybrid
robust portfolio models is further improved. Preselection
plays a key role in improving model performance. Hy-
brid robust mean-variance portfolio models considering
skewness outperform those without preselection by a clear
margin. However, the only objective in the designed pre-
selection is return, more objectives such volatility, tail
risk, and risk-adjusted indicators can also be considered
in the preselection, which would be implemented in our
subsequential work.

In terms of the ellipsoidal uncertainty sets, the hybrid
robust portfolio models constrained with U2

δ have better
performance than those constrained with U1

δ in the exper-
iments. As precedent scholars pointed out, an appropriate
and feasible uncertainty set is vital for robust modeling.
Some sophisticated algorithms should be developed for
describing the uncertainty set.

Overall, the effectiveness of the hybrid robust portfolios
with preselection has been demonstrated in this work,
which also shows the feasibility of applying the artificial
intelligence techniques to financial modeling.
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