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Abstract—This paper introduces the power function log-
normal (PFL) distribution, which assumes a power function
distribution up to a specified threshold, and a lognormal
distribution beyond it. It can be positively or negatively skewed,
and/or leptokurtic/platykurtic. Maximum likelihood, moment,
nonlinear least squares, and Bayes estimators are obtained.
A simulation study is performed, numerical computations are
carried out to display the performance of the proposed method,
and insurance claims data are analyzed for illustrative purposes.

Index Terms—composite distribution, power function lognor-
mal distribution, positively skewed, negatively skewed, param-
eter estimation, claims data.

I. INTRODUCTION

INSURANCE claims and loss data are typically very
highly right-skewed, and many long-tailed, skewed prob-

ability distributions have been considered to modeling them
(see, for example, [1], [2]). [3] proposed a composite
lognormal-Pareto model to analyze Danish fire claim data,
which has been widely discussed in actuarial literature.
Their model is based on a lognormal density up to an un-
known threshold, and two-parameter Pareto density beyond
it. They imposed continuity and differentiability conditions
at the threshold to obtain a smooth density function and
reduce the number of parameters. [4] and [5] improved
the composite models by allowing flexible mixing weights,
replacing a constant weight applied by [3], resulting in a
better fit to the loss data. Various composite distributions
have been developed over the past 15 years, including the
composite lognormal-Pareto ([3], [4]), composite Weibull-
Pareto ([6], [7], [8]), composite inverse Weibull-Weibull
([9]), composite exponential-Pareto ([10], [11]), truncated
composite lognormal-Pareto model([12]), truncated compos-
ite Weibull-Pareto ([13]), composite lognormal-Pareto model
with random threshold([14]), composite Weibull-Burr ([15]),
composite Stoppa ([16]), composite Pareto- Arctan ([17]),
and composite log-Gauss-Pareto ([18]). These distributions
have shown superior performance to classical models such
as lognormal, Pareto, Inverse Gaussian, Gamma, and Weibull
when modeling insurance loss/claims data. [19] and [20]
derived robust and Bayesian estimators, respectively, of the
composite lognormal-Pareto distribution, and [21] used four
composite distributions to model claim severity in the pres-
ence of extreme values in the non-life insurance industry.

Composite distributions have also been found useful in
modeling city sizes. [22] examined the distribution of the
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sizes of all French settlements (communes) by means of
a three-parameter composite lognormal-Pareto distribution.
[23] proposed a two-Pareto tail-lognormal distribution, con-
sisting of a lower-tail Pareto, lognormal body, and upper-
tail Pareto, to estimate the size distribution of U.S. cities.
Through a literature review, we found that published papers
have not considered the shapes, including skewness and
kurtosis, of composite distributions, possibly because, as they
are used to model insurance claims/loss data, they are all
right-skewed.

Similar to [3], we propose a composite power function
lognomal (PFL) distribution that can be used on both highly
positively or negatively skewed data, and we extensively
address its shapes.

Different from the literature, we propose to fit the logs
of insurance claims, and not the original data, to a PFL
distribution, which we believe is the first such use of a
composite distribution.

The rest of this paper is organized as follows. Section 2
introduces the PFL distribution and describes its properties
and shapes. Parameter estimation methods are derived, and
simulation studies are presented in section 3. Probability plot
method is proposed in section 4, and section 5 provieds an
illustrative example. Section 6 presents some conclusions.

II. THE POWER FUNCTION LOGNORMAL DISTRIBUTION
AND ITS PROPERTIES

A. Power function lognormal distribution

Based on [3], let X be a random variable with probability
density function (pdf)

f(x) =

{
wf1(x), 0 < x ≤ θ
wf2(x), θ ≤ x <∞,

(1)

where 0 < w < 1 is the normalizing constant, and f1(x) and
f2(x) have the forms of a power function distribution and
lognormal distribution, respectively, i.e.

f1(x) =
αxα−1

θα
, 0 < x ≤ θ, (2)

f2(x) =
1√

2πxσ
exp(−1

2
(
lnx− µ

σ
)2), x > 0. (3)

We note that the power function is the inverse of the Pareto
random variable ([24], [25]), and is also known as the inverse
Pareto ([26]) and the inverse power distribution ([27]). For
the power function, α > 0 is a shape parameter and θ > 0
is a scale parameter; for the lognormal distribution, µ ∈ <
is a location parameter and σ > 0 is a scale parameter. To
impose continuity and differentiability conditions on θ, we
have

f1(θ) = f2(θ), f
′

1(θ) = f
′

2(θ),
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where f
′

1(θ) and f
′

2(θ) are the first derivatives of f1(x) and
f2(x), respectively, evaluated at θ. We get µ = ln(θ) +ασ2,
and ασ = (2π)−1/2exp(−0.5(ασ)2). Since

∫ +∞
0

f(x) dx =

1, we get w
∫ θ
0
f1(x) dx + w

∫ +∞
θ

f2(x) dx = 1. Thus this
composite density can be reparameterized and rewritten as

f(x) =



1

1 + Φ(k)

αxα−1

θα
, 0 < x ≤ θ,

1

1 + Φ(k)

αxα−1

θα

. exp

{
−1

2

α2

k2
ln2(

x

θ
)

}
, θ ≤ x <∞,

(4)

where Φ(.) is the cumulative distribution function(cdf) of
the standard normal distribution, and k is a known con-
stant given by the positive solution of the equation k =
(2π)−1/2exp(−0.5k2), which is k = 0.372238898. Here,
k = ασ and w = 1/[1 + Φ(k)] = 0.60785008. Therefore,
this composite probability density has only two unknown
parameters, α > 0 and θ > 0. We refer to (4) as the
power function lognormal model (PFL), PFL(α, θ), whose
cdf, F (x), and the quantile function, X(p), are respectively
given by

F (x) =


1

1 + Φ(k)

(x
θ

)α
, 0 < x ≤ θ,

1

1 + Φ(k){
Φ(k) + Φ

[α
k

ln
(x
θ

)
− k
]}

, θ ≤ x <∞
(5)

and

X(p) =



θ [(1 + Φ(k))p]
1/α

, 0 < p ≤ 1

1 + Φ(k)

θ exp

{
k

α

[
k + Φ−1 ((1 + Φ(k))p− Φ(k))

]}
,

1

1 + Φ(k)
≤ p < 1

.

(6)
It is clearly shown that the median of PFL(α, θ) is X(0.5) =
θ[(1 + Φ(k))/2)]1/α < θ. Its moments can be obtained as

E(Xr) =
θr

1 + Φ(k)
.{

α

(α+ r)
+ exp

[
r(α+ 0.5)

(
k

α

)2
]

Φ

[
k(α+ r)

α

]}
(7)

B. Properties of PFL(α, θ )

For α < 1, PFL(α, θ) has no modes. For α > 1,
PFL(α, θ) has a unique mode at x = x0 = exp(µ − σ2) =
θ exp[(α− 1)σ2], which is larger than the threshold value θ.
For α = 1, since the power function distribution is simplified
to a uniform distribution, PFL(α, θ) has many modes in the
interval (0, θ]. Fig 1 demonstrates the shape of the pdf of
the PFL distribution. It is easy to see how many behaviors it
can have, as positive or negative skewness, and leptokurtic or
platykurtic qualities change the values of the parameters. In
other words, the flexibility of PFL model can give it broader
applicability.

C. Skewness and kurtosis

It can be proved that the skewness coefficient (Sk) and
kurtosis coefficient (Ku) of PFL distributions are only related
to the parameter α. Table I gives some key values of Sk and
Ku of PFL distributions under different α. For the skewness
coefficients, it is symmetric for α = 1.722, positively skewed
for α < 1.722, and negatively skewed for α > 1.722. It
can also be proved that when α tends to zero and positive
infinity, the skewness coefficient tends to positive infinity
and -1.8006, respectively. For the kurtosis coefficients, when
α is between 1.2568 and 3.0214, the kurtosis coefficient is
less than 3, and when α is less than 1.2568 or greater than
3.0214, it is greater than 3. When α tends to zero and positive
infinity, the kurtosis coefficient tends to positive infinity and
8.2508, respectively.

Fig 2 and Fig 3 show plots of Sk(α) and Ku(α), respec-
tively, of the PFL distribution. Fig 2(a) and 2(b) show plots
of Sk(α) for 1 < α < 5 and 100 < α < 1000, respectively.
Calculations show that the first derivative of Sk(α) is less
than 0, so Sk(α) decreases on (0,+∞), and the minimum
skewness is -1.8006. Fig 3(a) and 3(b) show plots of Ku(α)
for 1 < α < 5 and 5 < α < 200, respectively. Ku(α)
decreases for α < 1.8374, and increases for α > 1.8374.
Ku(α) ranges from 2.6025 to 8.2508. Hence the skewness
and kurtosis coefficients of PFL distribution can vary greatly
in magnitude.

III. PARAMETER ESTIMATION

A. Maximum Likelihood Estimation

Let X1, X2, · · · , Xn, be a random sample from PFL(α, θ)
. Without loss of generality, we can assume that this is an
ordered sample, i.e., x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn. Suppose
the unknown parameter θ is between the mth and m + 1th

observation, i.e., xm ≤ θ ≤ xm+1. Then the likelihood
function can be written as

L(x,ω) =

m∏
i=1

1

(1 + Φ(k))

αxα−1i

θα

n∏
i=m+1

1

(1 + Φ(k))

αxα−1i

θα
exp

[
−1

2

α2

k2
ln2
(xi
θ

)].
(8)

The log-likelihood function is

lnL(x,ω) = −n ln(1 + Φ(k)) + n lnα− nα ln θ

+ (α− 1)

n∑
i=1

lnxi −
α2

2k2

n∑
i=m+1

(lnxi − ln θ)2,

(9)

where ω = (α, θ)T , since θ can only occur between x1 and
xn. Therefore, the maximum likelihood estimators (MLEs)
of ω can be obtained numerically as follows.

Step 1: Numerically find the value of α and θ
that maximizes lnL(x, ω) for a given θ in the interval
(xm, xm+1),m = 1, 2, · · · , n− 1. Thus, we obtain (α̂1, θ̂1),
(α̂2, θ̂2),· · · , (α̂n−1, θ̂n−1).

Step 2: Compute the corresponding log-likelihood function
values from n− 1 groups of MLEs.
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Fig 1. Plots of PFL distribution for selected parameter values

Table I: Skewness and Kurtosis of PFL distribution

Skewness Kurtosis

α = 1.722, Sk = 0 α ∈ (0, 1.2568) ∪ (3.0214,+∞), Ku > 3
α < 1.722, Sk > 0 α ∈ (1.2568, 3.0214), Ku < 3
α > 1.722, Sk < 0 α = 1.8347, Ku= 2.6025(minimum)
α→ 0, Sk → +∞ α→ 0, Ku → +∞

α→ +∞, Sk → −1.8006 α→ +∞, Ku → 8.2508
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Fig 2. Plots of Sk(α) of PFL distribution

Step 3: Obtain the MLEs of PFL parameters (α, θ),
denoted by (α̂mle, θ̂mle), by choosing the estimates with the
largest log-likelihood function values among all n−1 groups
of MLEs.

The asymptotic variance and covariance of the MLE’s
of the parameters are given by the inverse of the Fisher
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Fig 3. Plots of Ku(α) of PFL distribution

information matrix I(ω),

I(ω) = −E∂
2 lnL(x;ω)

∂ω∂ωT
=

[
I11 I12
I21 I22

]

= E

−∂
2 lnL(x;ω)

∂α2
−∂

2 lnL(x;ω)

∂α∂θ

−∂
2 lnL(x;ω)

∂θ∂α
−∂

2 lnL(x;ω)

∂θ2


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The elements of I(ω) are

I11 =
1

α2(1 + Φ(k)){
m+ (n−m)Φ(k) + (n−m)

[
(1 + k2)Φ(k) + k2

]}
I12 = I21 =

(n−m)

θ

I22 =
α2

k2θ2(1 + Φ(k))

[
(n−m)Φ(k)− (n− 2m)k2

]
.

B. Method of Moments
The method of moments (MM) is a technique to construct

estimators of the parameters based on matching sample
moments with corresponding distribution moments. From
(7), one can easily obtain the first and second raw moment of
PFL. Under the method of moments, we equate E(X), E(X2)

to sample moments
1

n

n∑
i=1

xi and
1

n

n∑
i=1

x2i , respectively, and

obtain a nonlinear system of equations,

θ

1 + Φ(k)

α

(α+ 1)
+

θ

1 + Φ(k){
exp

[
(α+ 0.5)

(
k

α

)2
]

Φ

[
k(α+ 1)

α

]}
=

1

n

n∑
i=1

xi

θ2

1 + Φ(k)

α

(α+ 2)
+

θ2

1 + Φ(k){
exp

[
2(α+ 0.5)

(
k

α

)2
]

Φ

[
k(α+ 2)

α

]}
=

1

n

n∑
i=1

x2i

,

(10)
which we can iteratively solve with respect to (α, θ) to
obtain the MM estimators (MMEs) of α, θ, i.e., α̂mm, θ̂mm,
respectively.

C. Nonlinear Least Squares Estimation
Nonlinear least squares (NLS) based on the relationship

between the empirical cumulative distribution function and
order statistics is frequently used to estimate parameters of
distributions. Taking the logarithm of the cdf of PFL (5), we
have

lnF (x) =



− ln (1 + Φ(k)) + α lnx− α ln θ,

0 < x ≤ θ
− ln(1 + Φ(k))+

ln
{

Φ(k) + Φ
[α
k

ln
(x
θ

)
− k
]}

,

θ ≤ x < +∞

(11)

In this method, it is necessary to use a plotting position to
estimate the distribution function corresponding to the ith

order statistic. The most widely used expression is

pi =
i

n+ 1
, (12)

where n is the sample size, and pi is the empirical (observed)
distribution function corresponding to the ith ordered dataset.
The nonlinear least squares estimators (NLSEs) of α and θ,
say α̂nls, θ̂nls, respectively, can be obtained by minimizing

G(α, θ) =
n∑
i=1

{ln pi − lnF (x)}2 . (13)

This problem is solved similarly to maximum likelihood
estimation (9).

D. Bayes estimation

Following the Bayesian paradigm, we assume α and θ are
independent, with prior π(α, θ) ∼ c/θ, where c is a constant.
Thus, the joint density of the data, α and θ can be obtained
as

π∗(α, θ|data) ∝ αnθ−nα−1

exp

[
α

n∑
i=1

lnxi −
1

2

α2

k2

n∑
i=m+1

(lnxi − ln θ)
2

]
(14)

The posterior pdfs, of α conditional on θ and θ conditional
on α, are

π∗1(α|θ, data) ∝ αnθ−nα

exp

[
α

n∑
i=1

lnxi −
1

2

α2

k2

n∑
i=m+1

(lnxi − ln θ)
2

]
,

(15)

π∗2(θ|α, data) ∝ LN
(
B1

A1
,

1

A1

)
(16)

where A1 =
(n−m)α2

k2
, B1 =

α2
n∑

i=m+1

lnxi

k2
− nα.

It is clear that the posterior distribution of θ is lognormal,
while that of α is unknown. Here, we use Gibbs sampling to
generate random numbers from the posterior pdfs of α and
θ, as follows:

(1). Start with initial guess (α(0), θ(0)); we set α(0) =
mode(data), θ(0) = min(data)+2;

(2). Set j = 1;
(3). Generate θ(j) from conditional distribution

LN(B∗1/A
∗
1, 1/A

∗
1), described in (15), where A∗1 =

(n−m)
[
α(j−1)]2

k2
, B∗1 =

[
α(j−1)]2 n∑

i=m+1

lnxi

k2
−nα(j−1);

(4). Use the Metropolis–Hastings algorithm to generate
α(j) from π∗1(α(j−1)|θ(j−1), data), with proposed distribu-
tion N(α(j−1), Vα);

(5). Set j = j + 1;
(6). Repeat steps (1)-(5) a large number of times, N , to

get chains
[
α(1), α(2), · · · , α(N)

]
and

[
θ(1), θ(2), · · · , θ(N)

]
;

(7). Obtain Bayes estimators of α and θ, say α̂bayes,
θ̂bayes, respectively, as

α̂bayes =
1

N −M

N∑
i=M+1

α(j), θ̂bayes =
1

N −M

N∑
i=M+1

θ(j),

where N is the length of chains and M is the burn-in
period; we set N = 10000, M = 5000.

E. Simulation study

We conducted a Monte Carlo simulation study to compare
the performance of the MLEs, MMEs, NLSEs, and Bayes
estimators in terms of biases and mean square errors (MSEs)
using 10,000 replications, examining sample sizes ranging
from very small (n = 10) to very large (n = 500). Results
were obtained for PFL (2.5, 8) and PFL (0.8, 10). We note
that PFL (2.5, 8) is platykurtic with kurtosis coefficient
2.7704, and left-skewed with skewness coefficient -0.3843,
and PFL (0.8, 10) is leptokurtic with kurtosis coefficient
5.8302, and right-skewed with skewness coefficient 1.2667.
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To compute Bayes estimators, we assume the hyperparameter
Vα = 1. All computations were performed using MATLAB
R2015b, programs are available from the authors upon re-
quest. The simulation results of parameter estimation for the
two distributions are shown in Tables II to IX. We make the
following observations from the simulation results.

(1) As n increases, the biases for MMEs, NLSEs, and
Bayes estimators decrease in most cases. In all cases, MLEs
have larger biases and MSEs than MMEs, NLSEs, and the
Bayes estimators, i.e., MLEs perform worst among the four
parameter estimation methods;

(2) It can also be shown that MMEs perform better
than NLSEs in terms of both biases and MSEs, and Bayes
estimators perform better than NLSEs in terms of both biases
and MSEs when the sample size n is larger than 50;

(3) In most cases, MMEs perform better than Bayes
estimators in terms of biases , and Bayes estimators better
than MMEs in terms of MSEs. An interesting observation is
that the MMEs are mainly positively biased, and the Bayes
estimators mainly negatively biased;

The Bayes estimators show smaller absolute values of bi-
ases; hence, they work better than MMEs. From the presented
results, Bayes estimators are recommended for parameter
estimation of the PFL distribution in practical application.

Table II: Biases and MSEs of MLEs for
PFL(2.5,8)

n bias(α) mse(α) bias(θ) mse(θ)

10 -1.8677 0.0349 1.3086 0.0242
20 -1.5523 0.0482 1.9741 0.0874
50 -0.7974 0.0335 2.6895 0.3789

100 -0.8053 0.0708 2.8009 0.8022
200 -0.7998 0.1394 2.9093 1.7112
500 -0.8322 0.3591 2.9764 4.4502

Table III: Biases and MSEs of MLEs for
PFL(0.8,10)

n bias(α) mse(α) bias(θ) mse(θ)

10 -0.3234 0.0011 0.5274 0.2365
20 -0.1734 0.0010 3.2140 1.3982
50 -0.2035 0.0029 4.0183 4.1918

100 -0.2264 0.0060 4.4265 9.0424
200 -0.2347 0.0120 4.7939 19.4182
500 -0.2427 0.0307 5.1077 51.4917

Table IV: Biases and MSEs of MMEs for
PFL(2.5,8)

n bias(α) mse(α) bias(θ) mse(θ)

10 0.5246 0.0193 -0.0590 0.0053
20 0.2128 0.0104 -0.0266 0.0051
50 0.0804 0.0073 -0.0286 0.0051

100 0.0367 0.0069 -0.0069 0.0050
200 0.0156 0.0061 -0.0021 0.0052
500 0.0105 0.0065 -0.0041 0.0052

Table V: Biases and MSEs of MMEs for
PFL(0.8,10)

n bias(α) mse(α) bias(θ) mse(θ)

10 0.1753 0.0013 0.1653 0.0848
20 0.0882 0.0010 0.0208 0.0792
50 0.0290 0.0007 -0.0449 0.0775

100 0.0190 0.0007 0.0176 0.0764
200 0.0080 0.0007 -0.0035 0.0780
500 0.0040 0.0007 0.0167 0.0785

Table VI: Biases and MSEs of NLSEs for
PFL(2.5,8)

n bias(α) mse(α) bias(θ) mse(θ)

10 -0.1294 0.0204 0.0738 0.0076
20 -0.2544 0.0132 0.1066 0.0082
50 -0.1810 0.0139 0.0994 0.0092

100 -0.1381 0.0149 0.0881 0.0097
200 -0.0948 0.0148 0.0582 0.0099
500 -0.0519 0.0152 0.0405 0.0108

Table VII: Biases and MSEs of NLSEs for
PFL(0.8,10)

n bias(α) mse(α) bias(θ) mse(θ)

10 -0.0196 0.0021 0.6497 0.1194
20 -0.0646 0.0014 0.5887 0.1329
50 -0.0587 0.0014 0.5133 0.1649

100 -0.0507 0.0016 0.3890 0.1706
200 -0.0360 0.0017 0.3027 0.1589
500 -0.0191 0.0016 0.1630 0.1591

Table VIII: Biases and MSEs of Bayes
estimators for PFL(2.5,8)

n bias(α) mse(α) bias(θ) mse(θ)

10 -0.5189 0.0044 -0.1235 0.0065
20 -0.2869 0.0049 -0.1048 0.0030
50 -0.1100 0.0050 -0.0983 0.0049

100 -0.0498 0.0053 -0.0557 0.0048
200 -0.0252 0.0051 -0.0218 0.0048
500 -0.0127 0.0053 -0.0158 0.0050

Table IX: Biases and MSEs of Bayes
estimators for PFL(0.8,10)

n bias(α) mse(α) bias(θ) mse(θ)

10 0.0210 0.0006 -0.1366 0.0202
20 0.0098 0.0005 -0.1187 0.0315
50 0.0067 0.0006 -0.1084 0.0753

100 0.0051 0.0006 -0.0851 0.0739
200 -0.0015 0.0005 -0.0676 0.0699
500 0.0009 0.0006 0.0548 0.0720

IV. PROBABILITY PLOT

The use of probability plots to evaluate distributional
assumptions for a given sample has been discussed by a
number of studies (e.g., [28], [29]). The basic idea is that
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Fig 4. Probability plot for 100 sets of simulated PFL(2.5,20) data

the quantiles of the theoretical distribution when ploted
against the sample order statistics will tend to yield a set
of approximately linear points.

The Quantile function of the PFL is given by (6). Taking
its logarithm of (6), we have

lnx(p) =



ln θ + 1/α [ln(1 + Φ(k)) + ln p]

, 0 < p ≤ 1

1 + Φ(k)

ln θ + 1/α
{
k2 + kΦ−1 [(1 + Φ(k))p− Φ(k)]

}
,

1

1 + Φ(k)
≤ p < 1

(17)
Equation (17) can be written as

ln(1 + Φ(k)) + ln p = −α ln θ + α lnx

, 0 < x ≤ θ
k2 + kΦ−1 [(1 + Φ(k))p− Φ(k)] = −α ln θ + α lnx

, x ≥ θ
(18)

where k = 0.372239. By letting p1 the following formula

p1 =


ln(1 + Φ(k)) + ln p,

0 < x ≤ θ
k2 + kΦ−1 [(1 + Φ(k))p− Φ(k)]

, x ≥ θ

(19)

Thus, (18) represents a linear relationship between p1 and
lnx, with intercept −α ln θ, and slope α. It can also be
seen that when p = 1/(1 + Φ(k)) = 0.6079, p1 = 0 and
x = ln θ. The probability plot of 100 sets of simulated data
from PFL(2.5, 20) with the random seed 1234 is shown
in Fig 4. The solid line AB in Fig 4 is a probability plot
drawn according to (17). The starting point A is the natural
logarithm of the minimum value of the simulated data,
denoted by ln(xmin), and the ending point B is the natural
logarithm ln(xmax) of the maximum value of the simulated
data. In this example, ln(xmin) = 1.9306, ln(xmax) =
3.2651. Point C(0,−α ln θ) is the intersection of AB and
the vertical axis, and point E(ln θ, 0) is the intersection
of lnx = ln θ and p1 = 0, which exactly corresponds to
p = 1/(1 + Φ(k)) = 0.6079.

The line p1 = 0 divides AB into two parts, for the
upper part AE, p1 adopts the formula ln(1 + Φ(k)) +
ln p, for the lower part BE, p1 adopts the formula k2 +
kΦ−1 [(1 + Φ(k))p− Φ(k)]. The straight line p = 0.6079
also divides AB into two parts, p < 0.6079 and p > 0.6079.

We determin whether the PFL distribution can be used to
fit one dataset by probability plot as follows.

(1). Sort the data in ascending order, x =
(x1, x2, · · · , xn);

(2). Compute pi =
i

n+ 1
, i = 1, 2, · · · , n;

(3). Compute p1 from (19): p1i = ln(1+Φ(k))+ln pi when
pi < 0.6079, and p1i = k2 + kΦ−1 [(1 + Φ(k))pi − Φ(k)]
when pi > 0.6079;

(4). Plot p1 verse lnx; one can use PFL to model the
dataset if the plot is approximately a straight line.

V. AN ILLUSTRATIVE EXAMPLE

We use a real insurance dataset to demonstrate the above
methods. The data present basic dental claims on a policy
with a deductible of 50 USD. This dataset may be found
in the “actuar” add-on package for R (https://CRAN.R-
project.org/package=actuar). There are 10 observations listed
below

141 16 46 40 351 259 317 1511 107 567

Table X shows the basic descriptive statistics of the data.
CLAIM clearly shows positive skewness, and is leptokurtic,
which is typical of insurance claims data, while the logged
CLAIM appears to be negative-skewed and leptokurtic.
Hence, a negatively skewed distribution will be needed to
model model the logged CLAIM, which is not common in
insurance claims data. The same feature can be found in
Fig 5, which shows the histogram of the CLAIM data that
is heavily right-skewed, while the logs are obviously left-
skewed.
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Table X: Descriptive statistics of CLAIM
data

CLAIM Log(CLAIM)

mean 335.5 2.204
standard error 447.8443 0.5953

minimum 16 1.2041
median 200 2.2813

maximum 1511 3.1793
skewness 2.3724 -0.1402
kurtosis 6.1947 -0.4541

Fig 6 shows the probability plot of the CLAIM data, which
suggests that a PFL distribution will provide an adequate
approximation.

For the CLAIM data, the Bayes estimates of α, θ, are
2.0428, 5.1947 respectively. Table XI reports test statistics
and P-values (in brackets) for the three GoF tests com-
monly used in statistical literature. We consider Kolmogorov-
Smirnov (K-S), Cramer-von-Mises (C-vM), and Anderson-
Darling (A-D). P-values are all larger than 0.05, meaning
that (at a 5% significance level) the logs of CLAIM data can
be statistically described by a PFL distribution.

Table XI: EDF goodness-of-fit measures for fitted
PFL to CLAIM data

K-S C-vM A-D

0.2021(0.8089) 0.1110(0.4181) 0.6205(0.5571)

VI. CONCLUSION

In this study, we proposed the power function lognormal
distribution composite model, using the idea of [3] to model
insurance claims data. In theory, the PFL distribution consists
of a power function distribution before a specified threshold,
and a lognormal distribution beyond it. This distribution can
be used with highly positively or negatively skewed data.
Parameter estimation methods were investigated, and Monte
Carlo simulations carried out to display their performance.
Probability plot method was also considered. Different from
most literature, we find that the logged claims data, not the
original claims data, can be properly described by a PFL
distribution on the basis of probability plot and goodness-
of-fit (GoF) tests. This provides a new idea for modeling
insurance claims data.
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