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Abstract—Chain graphs and threshold graphs are often
referred to as extremal graphs, in the context that, they have the
largest spectral radius among all the bipartite graphs (former
one) and all the connected graphs (latter one). Nesting in the
neighborhood of vertices in the above said extremal graphs
have gained the attention of various researchers. Motivated by
this structure, we generalize and define a new class of graphs
named ’partial chain graphs’ and study the properties. We
also give the expression for rank, determinant and permanent
of these graphs, from which permanent and determinants of
well-known wheel graphs, fan graphs, and friendship graphs
can be derived.

Index Terms—Rank, Determinant, Permanent, Wheel graph,
Fan graph.

I. INTRODUCTION

THROUGHOUT the article, we denote a bipartite graph
with the bipartition V (G) = V1∪V2 by G(V1∪V2, E).

A bi-star graph B(p, q) is graph obtained by making the
central (apex) vertices of two star graphs K1,p−1 and K1,q−1

adjacent. For a bipartite graph, the adjacency matrix can be

written as
[
0 B
BT 0

]
, where B is called the biadjacency

matrix. For other graph and matrix theoretic terminologies
used here, we refer [1] and [2], respectively .
Some parameters associated with graph matrices often il-
luminate the graph structure. The determinant, permanent,
rank, and Eigenvalues are a few of the powerful linear
algebraic tools, which have been used extensively to study
graphs. In specific, the parameters associated with the ad-
jacency matrices of graphs are studied more extensively.
For a graph G, we write rank(G), det(G), and per(G)
for rank, determinant and permanent of adjacency matrix of
G. The expressions for det(G), and per(G) are available in
the literature in terms of the elementary spanning subgraphs.
A subgraph H of a graph G is said to be elementary if
every component of H is a cycle or an edge. An elementary
spanning subgraph of a graph is also called Sachs subgraph
or a perfect 2-matching. The following theorem gives the
expressions for determinant and permanent of a graph( [3]).

Theorem 1.1: Let G be a graph on n vertices. Then

det(G) =
∑
H

(−1)n−k1(H)−k2(H)2k2(H)

per(G) =
∑
H

2k2(H)
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where H is an elementary spanning subgraph of G, k1(H)
and k2(H) are the number of components in H which are
edges and cycles respectively.

A chain graph is a bipartite graph with the property
that neighborhood of vertices of each partite set form a
chain with respect to set inclusion. The color classes of
a chain graph G(V1 ∪ V2, E) can be partitioned into h
non-empty cells V1,1, V1,2, . . . , V1,h and V2,1, V2,2, . . . , V2,h

such that NG(u) = V2,1 ∪ ... ∪ V2,h−i+1, for any u ∈ V1,i,
1 ≤ i ≤ h. If mi = |V1,i| and ni = |V2,i|, then we write
G = DNG(m1,m2, ...,mh;n1, n2, ..., nh). Due to this
nesting property, the chain graphs are also called Double
Nested Graphs (DNGs). The interesting facts concerned
with chain graphs are available in the literature [4], [5], [6],
[7], [8], [9] and [10].

A split graph is a graph which admits a partition of its
vertex set into two parts, say W1 and W2, so that the vertices
of W1 induce a co-clique, while the vertices of W2 induce a
clique. All other edges, the cross edges, join a vertex in W1

with a vertex in W2 ( [7]). A threshold graph is a split graph
where the subsets of vertices of W1 and W2 can be further
partitioned into h cells W1 = W1,1 ∪W1,2 ∪ · · · ∪W1,h and
W2 = W2,1∪W2,2∪· · ·∪W2,h satisfying the following nest-
ing property: For each vertex u ∈ W1,i, 1 ≤ i ≤ h, NG(u) =
W2,1 ∪ ... ∪ W2,h−i+1. If |W1,i| = mi and |W2,i| = ni,
then we write G = NSG(m1,m2, ...,mh;n1, n2, ..., nh).
The readers are referred to [11], [12], [13], [14], [15] and [16]
for more results on threshold graphs. The chain graphs and
threshold graphs are often referred to as extremal graphs due
to the fact that, they have the largest spectral radius among
all the bipartite graphs (former one) and all the connected
graphs (latter one) with prescribed order and size. Further,
any threshold graph can be obtained from a chain graph G
by replacing one color class of G by a clique, and keeping
all other edges unchanged.

II. PARTIAL CHAIN GRAPHS

Motivated by the nesting property of chain and threshold
graphs, we define a new class of graphs, whose vertex set
can be partitioned into two subsets such that at least one of
the partite sets is independent and has the nesting property.
Formally, we define the same as follows.

Definition 2.1: A graph G is said to be a partial chain
graph if its vertex set can be partitioned into two subsets V1

and V2 such that the following conditions are satisfied.
i. At least one of the partite sets is independent.

ii. If a partite set Vi (i = 1, 2) is independent, then neigh-
borhoods of vertices of Vi form a chain with respect to
the operation of set inclusion. If not, {Vj ∩ NG(v)} ̸=
ϕ (j ̸= i) for every vertex v ∈ Vi.

Clearly, if Vi is not independent, then the neighborhoods
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of its vertices do not form a chain. Further, when both the
partite sets are independent, we get a chain graph. When V1

is independent and ⟨V2⟩ = Kn for some n ≥ 1, we get a
threshold graph. Partial chain graphs can be regarded as a
generalized version of these extremal graphs namely, chain
and threshold graphs. We get a partial chain graph from a
bipartite chain graph by adding one or more edges joining
the vertices of any one of the partite sets.
Let G be a partial chain graph with partition of the vertex
set V (G) = V1 ∪V2 such that V1 is independent. Due to the
nesting property of neighborhoods, it is possible to further
partition each of Vi(i = 1, 2) into h cells V1 = V1,1 ∪V1,2 ∪
· · ·∪V1,h and V2 = V2,1∪V2,2∪· · ·∪V2,h such that NG(u) =
V2,1 ∪ V2,2 ∪ · · · ∪ V2,h−i+1 for all u ∈ V1,i, 1 ≤ i ≤ h.
Suppose mi = |V1,i| and ni = |V2,i|, then we write

G = PCG(m1,m2, ...,mh;n1, n2, ..., nh).

where |V1| =
∑h

i=1 mi and |V2| =
∑h

i=1 ni. The struc-
ture induced by the partite set V2 (which need not be
independent) is not taken into account in the above said
approach and the notation. Unlike the extremal graphs dis-
cussed above, G = PCG(m1,m2, ...,mh;n1, n2, ..., nh)
does not represent a single graph, but a family of graphs
Gf with nesting as said above. Thus, we write Gf =
PCG(m1,m2, ...,mh;n1, n2, ..., nh) (instead of just G).

Example 2.1: The graphs G1 and G2 (Figure 1)
are the partial chain graphs in the family Gf =
PCG(2, 1, 1; 1, 1, 3).

Fig. 1. The graph G1, G2 ∈ Gf = PCG(2, 1, 1; 1, 1, 3)

Clearly, V1 is independent. But, the structure of ⟨V2⟩ in both
the two graphs are distinct, but only the edges joining V1

and V2 are identical.
It is evident that the bipartite chain graph
DNG(m1,m2, ...,mh;n1, n2, ..., nh) ∈ Gf and the
threshold graph NSG(m1,m2, ...,mh;n1, n2, ..., nh) ∈
Gf . In particular, any graph G in Gf =
PCG(m1,m2, ...,mh;n1, n2, ..., nh) can be obtained
from the chain graph DNG(m1,m2, ...,mh;n1, n2, ..., nh)
by adding one or more edges between the vertices of V2.

Throughout the article, we use the notion that the family
Gf = PCG(m1,m2, ...,mh;n1, n2, ..., nh) of graphs have
the bipartition V (G) = V1 ∪V2 such that V1 is independent,
|V1| =

∑h
i=1 mi and |V2| =

∑h
i=1 ni. For any such graph

G in the family Gf = PCG(m1,m2, ...,mh;n1, n2, ..., nh),
we note the following:

Remark 2.1: By definition, the partite set V1 has at least
one vertex, say v, such that NG(v) = V2. These vertices are
called dominating vertises in V1.

Remark 2.2: Suppose V2 is not independent, then it is true
that the set {V1∩NG(v)|v ∈ V2} forms a chain with respect
to set inclusion. Thus V2 also has at least one dominating
vertex.

Remark 2.3: Let m be the number of edges in G. Then
h∑

j=1

mj

(
h−i+1∑
i=1

ni

)
≤ m ≤

h∑
j=1

mj

(
h−i+1∑
i=1

ni

)
+
k(k − 1)

2

where k =
∑h

i=1 ni. The lower and
upper bounds are attained by the graphs
DNG(m1,m2, . . . ,mh;n1, n2, . . . , nh) and
NSG(m1,m2, . . . ,mh;n1, n2, . . . , nh), respectively.
The 2−complement of a partial chain graph G ∈ Gf =
PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh) with respect to the
2−partition {V1, V2} contains at least one isolated vertex
since the dominating vertices of V1 turns out to be isolated.
More on the 2−complement of a partial chain graph is
explained in the following theorem.

Theorem 2.1: Let G ∈ Gf be a partial chain graph
where Gf = PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh) and
n ≥ 2. Then, the 2−complement, GP

2 of G with re-
spect to the partition P = {V1, V2} is also a par-
tial chain graph. Further, GP

2 ∈ Hf where Hf =
PCG(mh,mh−1, . . . ,m2;nh, nh−1, . . . , n2).

Proof: Let H = GP
2 . By the definition of 2− comple-

ment, it is true that, for any vertex u ∈ V1, NH(u) = V2 \
NG(u). Clearly, NH(u) ⊆ NH(v) if and only if NG(v) ⊆
NG(u), for all u, v ∈ V1. Thus neighborhood of vertices of
V1 in H forms a chain with respect to set inclusion and no
changes in the structure of ⟨V2⟩. It can be easily observed that
H ∈ Hf = PCG(mh,mh−1, . . . ,m1;nh, nh−1, . . . , n1).
When h = 1 in Theorem 2.1, then G ∈ Gf = PCG(m1;n1)
and there are no edges in GP

2 joining the vertices of V1

with vertices of V2. We discuss some more properties in the
following theorems.

Theorem 2.2: Let G ∈ Gf be a partial chain graph
where Gf is the family of graphs given by Gf =
PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh). Then diam(G) ≤
3.

Proof: If G = K2, then diam(G) = 1. Let G ̸= K2.
Without loss of generality, let v ∈ V1, u ∈ V2 be the
dominating vertices in V1, V2, respectively. The distance
between any two vertices vi, vj in V1 is 2 (vi − u − vj).
Similarly, distance between any two non-adjacent vertices
uk, ul in V2 is 2 (uk−v−ul). Further, for any non dominating
vertex vi ∈ V1, all the vertices uk ∈ V2 which are not
adjacent to vi are at distance 3 (vi − u − v − uk). Thus
diam(G) = max

u,v∈V (G)
d(u, v) ≤ 3.

Corollary 2.3: Let G ∈ Gf be a partial chain graph
where Gf = PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh). Then
rad(G) = 2.

Theorem 2.4: Bi-star is the only tree which is a partial
chain graph.

Proof: Let T be a partial chain graph, which is a
tree. Without loss of generality, let v1, u1 be the dominat-
ing vertices in V1 and V2, respectively. Suppose a vertex
vi ∈ V1(i ̸= 1) is adjacent to uj ∈ V2(j ̸= 1), then T has a
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cycle vi−uj−v1−u1−vi, a contradiction. Thus, any vertex vi
in V1 is adjacent to at most one vertex of V2, and vice versa.
Further, due to nesting of neighborhoods, for any vertices
vi ∈ V1, uj ∈ V2, NT (vi) = {u1} and NT (uj) = {v1}.
Suppose any two vertices uj , uk ∈ V2 in T are adjacent,
then T has a cycle uj − v1 − uk, contradiction and no two
vertices in V2 are adjacent. Thus, G is a bi-star graph with
the central vertices u1, v1.
We also note that, whenever |V2| = 1, we get a star graph,
which can be considered as a special case of bi-star graphs.

III. RANK, DETERMINANT, AND PERMANENT

As discussed earlier, every partial chain graph can be
obtained from a chain graph by the addition of edges
between the vertices of V2. We obtain rank, determinant, and
permanent of partial chain graphs which are obtained from
special chain graphs like bi-star graphs, complete bipartite
graphs, etc.

Lemma 3.1: Let G be any partial chain graph in the family
Gf = PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh). Suppose V1

has two or more pendant vertices, then det(G) = per(G) =
0.

Proof: As the neighborhood of vertices in V1 forms a
chain, all the pendant vertices are adjacent to the same vertex.
Thus, if V1 has more than two pendant vertices, then G has
no elementary subgraph which spans all the vertices. Thus
det(G) = per(G) = 0.

Lemma 3.2: Let G be any partial chain graph in the fam-
ily Gf = PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh). Suppose
|V1| > |V2|, then det(G) = 0

Proof: If |V1| > |V2|, then at least two vertices of V1

have the same neighborhood, resulting in identical rows in
the adjacency matrix of the graph G. Thus det(G) = 0.

Theorem 3.3: Let G =
DNG(m1,m2, . . . ,mh;n1, n2, . . . , nh) be a chain graph.

If
h∑

i=1

mi =
h∑

i=1

ni, then for all the graphs H in the

family Hf = PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh),
det(H) = det(G).

Proof: We know that

det(H) = det

(
0 M

MT C

)
where C is adjacency matrix of ⟨V1⟩ and M is the biadja-
cency matrix of the chain graph G. Since C,M are square
matrices,

det(H) = det(−MMT )

= det

(
0 M

MT 0

)
= det(G)

From the above theorem, we note the following remark.
Remark 3.1: Whenever |V1| = |V2|, all graphs in the fam-

ily of graphs Gf = PCG(m1,m2, . . . ,mh;n1, n2, . . . , nh)
have same determinant irrespective of the structure of ⟨V2⟩.

Example 3.1: All the three graphs G1, G2 and G3 ∈
Gf = PCG(1, 1, 1; 1, 1, 1) as shown in Figure 2 have
determinant value equal to −1.

Fig. 2. The graphs G1, G2, G3 ∈ Gf = PCG(1, 1, 1; 1, 1, 1)

Corollary 3.4: Let H be a partial chain graph in the
family Hf = PCG(1, 1, . . . , 1︸ ︷︷ ︸

h times

; 1, 1, . . . , 1︸ ︷︷ ︸
h times

). Then

det(H) = (−1)h

per(H) = 1

rank(H) = 2h

Proof: From Theorem 3.3, it follows that
det(H) = det(DNG(1, 1, . . . , 1︸ ︷︷ ︸

h times

; 1, 1, . . . , 1︸ ︷︷ ︸
h times

)). Hence

the graph has full rank. Further, the graph H has
same elementary spanning subgraphs as that of
DNG(1, 1, . . . , 1︸ ︷︷ ︸

h times

; 1, 1, . . . , 1︸ ︷︷ ︸
h times

). That is, H has only one

elementary spanning subgraph, given by union of h K2s,
thus per(H) = 1.
The following theorem discusses the partial chain graphs
obtained from bi-star graph in which V2 is either a cycle
or a path.

Theorem 3.5: Let G ∈ Gf = PCG(1, p−1; 1, q−1) be a
partial chain graph such that either ⟨V2⟩ = Cq or ⟨V2⟩ = Pq

with one of the pendant vertex being the dominating vertex.

Then rank(G) =

{
(q + 1) if q ≡ 0(mod4)

(q + 2) else
.

Proof: Let ⟨V2⟩ = Cq . After relabeling the vertices of
G, the adjacency matrix A of G can be written as

A =

(
0(p×p) M(p×q)

MT
(q×p) A(Cq)(q×q)

)
where A(Cq) is the adjacency matrix of Cq , given by

0 1 0 . . . 0 1
1 0 1 . . . 0 0
0 1 0 . . . 0 0
...
0 0 0 . . . 0 1
1 0 0 . . . 1 0


and M =

(
1(1×1) 1(1×q−1)

1T(p−1×1) O(p−1×q−1)

)
(1 being the

row vector of one’s). Consider AX = 0 where XT =(
x1 x2 . . . xp xp+1 . . . xp+q

)
. This is equivalent to

q∑
j=1

xp+j = 0 (1)

xp+1 = 0 (2)
p∑

i=1

xi + xp+2 + xp+q = 0 (3)

x1 + xp+i + xp+i+2 = 0 for i = 1, 2, . . . , (q − 2) (4)
x1 + xp+q−1 + xp+1 = 0 (5)
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When q ≡ 0 (mod 4), from Equations 1, 4 and 5, we get
that for all even j such that 2 ≤ j ≤ q, xp+j = 0 and for all

odd j such that 2 ≤ j ≤ q, xp+j =

{
k j ≡ 1 (mod 4)

−k else
for some arbitrary constant k. But, when q ̸≡ 0 (mod 4),
we get xp+j = 0 for all 2 ≤ j ≤ q. Also, in both
the cases x1 = xp+1 = 0. Further, for the remaining
variables, let xi = ci (2 ≤ i ≤ p − 1) for some arbi-

trary constants cj . From 3, we get xp = −
p−1∑
i=2

ci. Thus,

XT =

(
0 c2 . . . cp−1

p−1∑
i=2

ci 0 k 0 −k . . .

)
if q ≡ 0(mod 4) and

XT =

(
0 c2 c3 . . . cp−1 −

p−1∑
i=2

ci 0 . . . 0

)
otherwise. Thus

nullity(A) =

{
(p− 1) if q ≡ 0(mod 4)

(p− 2) else
. This implies

rank(A) =

{
(q + 1) if q ≡ 0(mod 4)

(q + 2) else
.

The proof is similar when ⟨V2⟩ = Pq .
Theorem 3.6: Let G ∈ Gf = PCG(1, p−1; 1, q−1) be a

partial chain graph such that either ⟨V2⟩ = Cq or ⟨V2⟩ = Pq

with one of the pendant vertex being the dominating vertex.
Then det(G) = per(G) = 0 for all p ≥ 3. Further, when
p = 2

det(G) =


0 if q ≡ 0(mod 4)
(q−1)

2 if q ≡ 1(mod 4)

1 if q ≡ 2(mod 4)

− (q+1)
2 if q ≡ 3(mod 4)

per(G) =


q2

4 if q is even

q2−1
4 else

Proof: If p ≥ 3, then V1 has at least two pendant
vertices. Then by Lemma 3.1, det(G) = per(G) = 0. We
consider the case when p = 2 and ⟨V2⟩ = Cq . We note that
every elementary spanning subgraph of G contains at least
one K2 whose end vertices are a full degree vertex of V2 and
pendant vertex of V1. The elementary spanning subgraphs of
G are given by
Ck∪

(
q−k+2

2

)
K2 for each odd number k such that 3 ≤ k ≤

q, if q is odd and
∪K2 and Ck ∪

(
q−k+2

2

)
K2 for each even k such that

4 ≤ k ≤ q, if q is even.
If q is odd:
There are

(
q−k+2

2

)
number of Ck ∪

(
q−k+2

2

)
K2 for each

odd integer 3 ≤ k ≤ q. Thus

per(G) =
∑

k is odd
3≤k≤q

2

(
q − k + 2

2

)
= (q − 1) + (q − 3) + · · ·+ 4 + 2

= 2

(
1 + 2 + · · ·+ (q − 1)

2

)
=

(q2 − 1)

4

On evaluation of determinant, the sign corresponding to each
of the elementary spanning subgraph is considered. Since q is
odd, for each odd number 3 ≤ k ≤ q, the sign corresponding
to Ck ∪

(
q−k+2

2

)
K2 is given by

(−1)(q+2)−1− (q−k+2)
2 = (−1)

q+k
2 . Thus

det(G) =
∑

k is odd
3≤k≤q

2(−1)
(q+k)

2

(
q − k + 2

2

)

But, we note that when q ≡ 1(mod 4),

(−1)
q+k
2 =

{
−1 if k ≡ 1(mod 4)

1 if k ̸≡ 1(mod 4)
. Thus

det(G) = (q − 1)− (q − 3) + · · ·+ 4− 2

= 2

(
−1 + 2− 3 + 4− · · ·+ (q − 1)

2

)
= 2 (1 + 1 + · · ·+ 1)︸ ︷︷ ︸

q−1
4 times

=
(q − 1)

2

Similarly, if q ̸≡ 1(mod 4), then

(−1)

q + k

2 =

{
1 if k ≡ 1(mod 4)

−1 if k ̸≡ 1(mod 4)
. Thus

det(G) = (−(q − 1) + (q − 3) + · · ·+ 4− 2)

= 2

(
−1 + 2− 3 + 4− · · · − (q − 1)

2

)

= 2

−1 + (−1− 1− · · · − 1)︸ ︷︷ ︸
q−3
4 times


= − (q + 1)

2

If q is even:
Along with

(
q−k+2

2

)
number of Ck∪

(
q−k+2

2

)
K2 for each

even integer 4 ≤ k ≤ q, G also has an elementary spanning
subgraph given by union of K2s. Thus

per(G) =
q

2
+

∑
k is even
4≤k≤q

2

(
q − k + 2

2

)

=
q

2
+ (q − 2) + (q − 4) + · · ·+ 4 + 2

=
q

2
+ 2

(
1 + 2 + · · ·+ (q − 2)

2

)
=

q2

4

Since q is even, for each even number 4 ≤ k ≤ q, the sign
corresponding to Ck∪

(
q−k+2

2

)
K2 is given by (−1)

q+k
2 and

sign corresponding to union of K2s is (−1)
(q+2)

2 . Thus

det(G) =
∑

k is even
4≤k≤q

2(−1)
(q+k)

2

(
q − k + 2

2

)
+ (−1)

(q+2)
2

q

2

If q ≡ 0(mod 4), then we note that

(−1)
q+k
2 =

{
1 if k ≡ 0(mod 4)

−1 if k ̸≡ 0(mod 4)
and the sign corre-
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sponding to the union of K2s is (−1). Thus

det(G) = ((q − 2)− (q − 4) + · · · − 4 + 2)− q

2

= 2

(
1− 2 + 3− 4 + · · ·+ (q − 2)

2

)
− q

2

= 2

1 + (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
q−4
4 times

− q

2

= 0

Similarly, if q ̸≡ 0(mod 4),

(−1)
q+k
2 =

{
−1 if k ≡ 0(mod 4)

1 if k ̸≡ 0(mod 4)
and the sign corre-

sponding to the union of K2s is (+1). Thus

det(G) = (−(q − 2) + (q − 4) + · · · − 4 + 2) +
q

2

= 2

(
1− 2 + 3− 4− · · · − (q − 2)

2

)
+

q

2

= 2

(−1− 1− · · · − 1)︸ ︷︷ ︸
q−2
4 times

+
q

2

= 1

When ⟨V2⟩ = Pq , the expressions for permanents and
determinants remains the same as that of the graph where
⟨V2⟩ = Cq . This is because both the graphs have same set
of elementary spanning subgraphs as the extra edge which
converts the path Pq to Cq do not make any difference to
the elementary spanning subgraphs.
The following corollary gives the determinant and permanent
of fan graphs.

Corollary 3.7: Let F1,n−1 = Pn−1 +K1 be a fan graph
on n vertices. Then

det(F1,n−1) =


0 if n ≡ 0(mod4)
(1−n)

2 if n ≡ 1(mod4)

−1 if n ≡ 2(mod4)
(n+1)

2 if n ≡ 3(mod4)

per(F1,n−1) =


n2

4 if n is even

n2−1
4 else

Proof: Let G ∈ Gf = PCG(1, 1; 1, n − 1) and
⟨V2⟩ = Pn. The fan graph F1,n−1 can be obtained from
the partial chain graph G by removing the pendant vertex of
V1 and the full degree vertex of V2. Since there is one to one
correspondence between the elementary spanning subgraphs
of G and F1,n−1, the terms in the summations of per(G) and
per(F1,n−1) remain the same. Thus per(G) = per(F1,n−1).
But in the case of det(G), the signs of the corresponding
terms in the summation of det(F1,n−1) and det(G) are of
different parity. Thus det(F1,n−1) = −det(G)

Theorem 3.8: Let G ∈ Gf = PCG(1, p−1; 1, q−1) be a
partial chain graph such that ⟨V2⟩ = K1,q−1, with the central
vertex being the full degree vertex of V2. Then

rank(G) = 4

det(G) = per(G) = 0 except when p = q = 2 .

Proof: After relabeling the vertices of G, the adjacency
matrix A of G can be written as

A =

(
0(p×p) M(p×q)

MT
(q×p) A(K1,q−1)(q×q)

)

where A(K1,q−1) =

(
0(1×1) 1(1×q−1)

1T(p−1×1) O(p−1×q−1)

)
and M =(

1(1×1) 1(1×q−1)

1T(p−1×1) O(p−1×q−1)

)
(1 being the row vector of

one’s).
Consider AX = 0 where

XT =
(
x1 x2 . . . xp xp+1 . . . xp+q

)
. This is equiv-

alent to

q∑
j=1

xp+j = 0 (6)

xp+1 = 0 (7)
p∑

i=1

xi +

q∑
j=2

xp+j = 0 (8)

x1 + xp+1 = 0 (9)

From 7 and 9, x1 = xp+1 = 0. Let xp+i = ki (2 ≤ i ≤ q−1)
for some arbitrary constants ki. From Equation 6, we get

xp+q = −
q−1∑
i=2

ki. Similarly, let xi = ci(2 ≤ i ≤ (p− 1)) for

some arbitrary constants ci. Then by 8, xp = −
p−1∑
i=2

ci. Thus,

nullity(A) = (p+ q − 4). This implies rank(A) = 4.
It is noted that V1 has at east two pendant vertices except
when p = q = 2. When p = q = 2, (Figure 3) we get
det(G) = per(G) = 1.

Fig. 3. The graph G ∈ Gf = PCG(1, 1; 1, 1) where ⟨V2⟩ = K1,1

Theorem 3.9: Let G ∈ Gf = PCG(p; q) be a partial
chain graph such that ⟨V2⟩ = Pq . Then

rank(G) =

{
q if q ≡ 1 (mod 4)

q + 1 else

det(G) =

{
det(F1,q) if p = 1

0 else

Proof: After relabeling the vertices of G, the adjacency
matrix A of G can be written as

A =

(
0(p×p) J(p×q)

J(q×p) A(Pq)(q×q)

)
where A(Pq) is the adjacency matrix of the path Pq and J
is the matrix in which every entry is one.
Consider AX = 0 where
XT =

(
x1 x2 . . . xp xp+1 . . . xp+q

)
. This is equiv-
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alent to

q∑
j=1

xp+j = 0 (10)

p∑
i=1

xi + xp+2 = 0 (11)

p∑
i=1

xi + xp+j + xp+j+2 = 0 for i = 1, 2, . . . , (q − 2)

(12)
p∑

i=1

xi + xp+1 + xp+q−1 = 0 (13)

From Equation 11, we get
p∑

i=1

xi = −xp+2. When q

is even, from 12 and 13, we get xp+j = 0 for all
j(1 ≤ j ≤ q). When q is odd, Equations 12, 13 results

in xp+j =


k j ≡ 1 (mod 4)

−k j ≡ 3 (mod 4)

0 else

for some arbitrary

constant k. But, whenever q ≡ 3 (mod 4), the Equation
12 results in k = 0, which implies xp+j = 0 for all
j(1 ≤ i ≤ q). Further, for the the remaining variables, let
xi = ci (1 ≤ i ≤ p − 1) for some arbitrary constants ci.

From 10, we get xp = −
p−1∑
i=1

ci. Thus

XT =

(
c1 c2 . . . cp−1 −

p−1∑
i=1

ci k 0 −k 0 . . .

)
if q ≡ 1(mod 4) and

XT =

(
c1 c2 c3 . . . cp−1 −

p−1∑
i=1

ci 0 0 . . . 0

)
otherwise. Thus,

nullity(A) =

{
p if q ≡ 1(mod 4)

p− 1 else
and the proof

follows. Further, the graph G has non-zero determinant only
when q = 1 as A is of full rank. But, when q = 1, G is a
fan graph.

Theorem 3.10: Let G ∈ Gf = PCG(p; q) be a partial
chain graph such that ⟨V2⟩ = Cq . Then

rank(G) =

{
(q − 1) if q ≡ 0 (mod 4)

(q + 1) else

det(G) =


2q if p = 1 and q ≡ 2 (mod 4)

−q if p = 1 and q ≡ 1 (mod 4)

or p = 1 and q ≡ 3 (mod 4)

0 if p = 1 and q ≡ 0 (mod 4)

Proof: After relabeling the vertices of G, the adjacency
matrix A of G can be written as

A =

(
0(p×p) J(p×q)

J(q×p) A(Cq)(q×q)

)

where A(Cq) is the adjacency matrix of the cycle Cq (as
given in Theorem 3.5). Consider AX = 0 where XT =

(
x1 x2 . . . xp xp+1 . . . xp+q

)
. This is equivalent to

q∑
j=1

xp+j = 0 (14)

p∑
i=1

xi + xp+2 + xp+q = 0 (15)

p∑
i=1

xi + xp+j + xp+j+2+ = 0 for j = 1, 2, . . . , q − 2

(16)
p∑

i=1

xi + xp+q−1 + xp+1 = 0 (17)

From Equations 15, 16 and 17 we get

xp+j =


k1 j ≡ 0 (mod 4)

−k1 j ≡ 1 (mod 4)

k2 j ≡ 2 (mod 4)

−k2 j ≡ 3 (mod 4)

for some constants

k1, k2. But, from Equation 14, we get the constants
k1 = k2 = 0 except when q ≡ 0(mod 4). Also, let
xi = ci (1 ≤ i ≤ p − 1) for some arbitrary constants ci.

From 15, we get xp = −
p−1∑
i=1

ci. Thus

XT =

(
c1 . . . cp−1 −

p−1∑
i=1

ci k1 k2 −k1 −k2 . . .

)
if q ≡ 0(mod 4) and

XT =

(
c1 c2 c3 . . . cp−1 −

p−1∑
i=1

ci 0 0 . . .

)
otherwise. Thus nullity(A) =

{
(p+ 1) if q ≡ 0(mod 4)

(p− 1) else
and hence the rank.
We note that the graph G has full rank only when p = 1.
Further, the graph has no elementary spanning subgraph
whenever q ≡ 0(mod 4). Thus, the graph has non-zero
determinant only when p = 1 and q ̸≡ 0(mod 4). Let
q ̸≡ 0(mod 4) and p = 1. We note that, elementary spanning
subgraphs of G contains elementary spanning subgraphs of
F1,q and F1,q−2∪K2 and (k−2) copies of Ck∪

(
q−k+1

2

)
K2

for each odd number k such that 3 ≤ i ≤ (q + 1) if q is
even and for each even number k such that 4 ≤ i ≤ (q + 1)

if q is odd. The sign corresponding to Ck ∪
(

q−k+1
2

)
K2

is given by (−1)(p+1)−1− (p−k+1)
2 = (−1)

(p+k−1)
2 . When

q ≡ 3 (mod 4) , for each even number 4 ≤ k ≤ (p + 1),
the sign corresponding to Ck ∪

(
q−k+1

2

)
K2 is −(−1)

k
2 .

Thus, the determinant is given by

det(G) = det(F1,q)− det(F1,q−2) +
∑

k is even
4≤k≤q+1

−2(−1)
k
2 (k − 2)

= 0 + 1 + 2 (−2 + 4− 6 + · · · − (q − 1))

= 0 + 1 + 4

(
−1 + 2− 3 + · · · − (q − 1)

2

)

= 0 + 1 + 4

−1 + (−1− 1− · · · − 1)︸ ︷︷ ︸
q−3
4 times


det(G) = −q.

When q ≡ 1(mod 4), for each even number 4 ≤ k ≤ (q+1),
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the sign corresponding to Ck∪
(

q−k+1
2

)
K2 is (−1)

k
2 . Thus

det(G) = det(F1,q)− det(F1,q−2) +
∑

k is even
4≤k≤q+1

2(−1)
k
2 (k − 2)

= −1 + 0 + 2 (2− 4 + · · · − (q − 1))

= −1 + 0 + 4

(
1− 2 + 3− · · · − (q − 1)

2

)

= −1 + 0 + 4

−1− 1− · · · − 1︸ ︷︷ ︸
q−1
4 times


det(G) = −q.

When q ≡ 2(mod 4), for each even number 3 ≤ k ≤
(q + 1), the sign corresponding to Ck ∪

(
q−k+1

2

)
K2 is

−(−1)
(k−1)

2 . Thus

det(G) = det(F1,q)− det(F1,q−2) +
∑

k is odd
3≤k≤q+1

−2(−1)
(k−1)

2 (k − 2)

=
q + 2

2
− 2− q

2
+ 2 (1− 3 + 5− 7 + · · ·+ (q − 1))

=
q + 2

2
− 2− q

2
+ 2

1 + (2 + 2 + · · ·+ 2)︸ ︷︷ ︸
q−2
4 times


=

q + 2

2
− 2− q

2
+ q

det(G) = 2q.

Hence the proof.
Corollary 3.11: Let W1,n be a wheel graph on (n + 1)

vertices. Then

det(W1,n) =


0 if n ≡ 0 (mod 4)

2n if n ≡ 2 (mod 4)

−n else

per(W1,n) = n2

Proof: The proof follows from that fact that the wheel
graph W1,n ∈ Gf = PCG(1;n).

Theorem 3.12: Let G ∈ Gf = PCG(1, p−1; 1, q−1) be
a partial chain graph. Let ⟨V2⟩ = ∪K ′

2s. Then,

rank(G) = q + 2

det(G) =

{
(−1)

q
2 + 1 if p = 2

0 else

per(G) =

{
1 if p = 2

0 else

Proof: Since ⟨V2⟩ = ∪K ′
2s, q is even and ⟨V2⟩ has

( q2 ) K ′
2s. After relabeling the vertices of G, the adjacency

matrix of G can be rewritten as

A =

(
0(p×p) M(p×q)

MT
(q×p) N(q×q)

)

where N =



0 1 0 0 0 0 . . . 0
1 0 0 0 0 0 . . . 0
0 0 0 1 0 0 . . . 0
0 0 1 0 0 0 . . . 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 . . . 0 1
0 0 0 0 0 . . . 1 0


q×q

and M =

(
1(1×1) 1(1×q−1)

1T(p−1×1) O(p−1×q−1)

)
(1 being the row

vector of one’s).
Consider AX = 0 where

XT =
(
x1 x2 . . . xp xp+1 . . . xp+q

)
. This is equiv-

alent to
q∑

j=1

xp+j = 0 (18)

xp+1 = 0 (19)
x1 + xp+j = 0 for j = 1, 3, 4, 5, 6, . . . , q (20)

p∑
i=1

xi + xp+2 = 0 (21)

From 19 and 21 with j = 1, we get x1 = xp+1 = 0.
Further, from Equation 21 with all possible values of j, we
get xp+j = 0 for all 2 ≤ j ≤ q. For the remaining variables,

let xj = cj−1 for 2 ≤ j ≤ p − 1. Then, xp = −
p−2∑
j=1

cj .

Thus, XT =

0 c1 c2 . . . cp−2 −
p−2∑
j=1

cj 0 0 . . . 0︸ ︷︷ ︸
q times

 and

nullity(A) = p−2. Hence it follows that, rank(A) = q+2.
From the rank, it follows that det(G) > 0 if and only

if p = 2, i.e., when G ∈ Gf = PCG(1, 1; 1, q − 1). But
for all the graphs G ∈ Gf = PCG(1, 1; 1, q − 1), there is
only one elementary spanning subgraph given by union of(
q + 2

2

)
K ′

2s. Hence, det(G) = (−1)
q
2+1.

Similarly, per(G) = 1 as G has only one elementary
spanning subgraph given by union of K ′

2s if and only if
p = 2.
As a result of Theorem 3.12, one can easily get the rank,
determinant and permanent of friendship graph. That is,
when G ∈ Gf = PCG(1; 2n), and ⟨V2⟩ = ∪K ′

2s we
get the friendship graph Fn ∈ Gf = PCG(1; 2n). The
friendship graph Fn is a graph with 2n + 1 vertices and
3n edges, which can be constructed by joining n copies of
the cycle graph C3 with a common vertex. The friendship
graph F3 ∈ Gf = PCG(1; 2n) is shown in Figure 4.

Fig. 4. The friendship graph F3 ∈ Gf = PCG(1; 6)
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Corollary 3.13: Let Fn be a friendship graph on 2n + 1
vertices. Then

rank(Fn) = 2n+ 1

det(Fn) = per(Fn) = 0

IV. CONCLUSION AND SCOPE FOR FUTURE WORK

With the influence of nesting of neighborhoods in chain
and threshold graph, the generalized version, partial chain
graphs are defined. The current article provides results on
linear algebraic tools like rank, permanent, and determinant
of partial chain graphs. Essentially like chain/threshold
graphs, we further intend to study the significance of this
class of graphs in the field of spectral graph theory.

In contrast to the chain formed by the neighbourhood of
vertices, a new class of bipartite graphs named antichain
graphs is defined by the authors of the article [17]. In
particular, in antichain graphs the neighborhood of vertices in
each partite sets form antichain with respect to set inclusion.
A similar approach can be extended for partial chain graphs.
In other words, when the neighbourhood of vertices of the
independent set V1 forms an antichain, a question regarding
the structure and relevance of graphs is raised. This could be
a goal for future work on partial chain graphs.
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