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Abstract—School bus service is divided into many kinds of
operation modes, such as single school, single load multiple
schools and mixed load multiple schools and so on. When it
comes to plan bus routes satisfying various constraints and
different objectives, there are many applications of school
bus routing problem (SBRP). It is generally recognized that
middle and large sacle SBRP applications are resolved by
heuristic algorithms, because SBRP is a NP-hard problem.
This paper proposes a local search-based metaheuristic algo-
rithm framework for SBRP on the basis of analysis of SBRP
problem models. The framework, which is implemented by
C#, is made up of basic data structures, operation functions,
neighborhood operators, initial solution construction algorithm
components and heuristic strategies, etc. The neighborhood-
centered metaheuristic algorithms, such as simulated annealing
(SA), iterated local search (ILS), variable neighborhood search
(VNS), can be designed based on the framework to solve
a certain problem type of SBRP. Using this framework, we
can solve three operation modes SBRP with homogeneous or
heterogeneous bus fleet. Moreover, the proposed metaheuristic
framework also provides the development of metaheuristic for
the capacitated vehicle routing problem(CVRP) by reducing or
modifying the constraints of SBRP. The experimental results of
a set of instances show that the metaheuristic algorithm built
based on the proposed framework, can be quickly realized and
applied to different SBRP applications. Meanwhile, the designed
metaheuristic framework is also very effective and extensible.

Index Terms—algorithm framework, school bus routing
problem, local search metaheuristic, neighborhood-centered,
general-purpose solver.

I. INTRODUCTION

W ITH the development of compulsory education in
China, providing school bus service for primary and

secondary school students is a new requirement for local
governments and schools. Thus, the Chinese government
has formulated relevant laws and regulations, and carried
out pilot work on school bus service in some counties and
districts. Planning school bus routes is the important part of
the school bus operation management and it is also a very
challenging job, which needs consider many factors in the
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actual school bus routes planning scenarios. It is not only
necessary to meet the constraints of school bus capacity, the
maximum travel time, students and school time windows, but
also to decrease the number of school buses and operating
costs as much as possible.

It is quit inappropriate to arrange the routes of the school
bus manually, on account of the complexity of bus routing
planning. School bus routing problem (SBRP) was first in-
troduced by Newton and Thomas [1] in 1969, and the school
routes were designed by the computers. Later, many scholars
have continuous research on SBRP, mainly focusing on the
mathematical model exploration and optimization algorithm
design. SBRP is made up of five sub-problems, such as data
preparation, bus stop selection, bus route generation, bus
route scheduling, and school bell time adjustment [2]. Most
SBRP literatures address one or more sub-problems, and
generation of bus routes is still the focus of SBRP research.
The recent reviews of SBRP are described in [2],[3].

As a special variant of vehicle routing problem (VRP),
SBRP is also a NP-hard combination optimization problem
[2],[3]. According to the number of schools served by school
bus, SBRP can be divided into single-school SBRP and
multi-school SBRP. The multi-school SBRP also include
single load SBRP and mixed load SBRP, and they have the
different order of school bus visiting stops. The single-school
SBRP is usually considered as the variant of capacitated
vehicle routing problem (CVRP) or vehicle routing problem
with time window (VRPTW) [2],[3],[4],[5]. While for the
multi-school SBRP, it could be modeled as a continuous
approximation model [6], or regarded as a kind of pickup
and delivery vehicle routing problem with time window
(PDPTW) [7],[8]. When considering the heterogeneous bus
fleets with different capacity and cost, it will produce more
complex variants of SBRP.

Like VRP, the algorithms solving for SBRP also include
exact algorithms, heuristic algorithms, and metaheuristic
algorithms [2],[3]. The design of SBRP algorithms usually
learn from the algorithms that are usually applied in VRP.
Although SBRP is similar to the VRP variants, the algorithms
used in classical VRP still need to be modified and extended
to solve the SBRP. A lot of metaheuristics have been put
forward for VRP in recent years, such as genetic algorithm
(GA), iterated local Search (ILS), variable neighborhood
search (VNS), tabu search(TS) and so on. They have been
successfully applied to solve VRP. Therefore, it is necessary
to take advantage of them to solve the SBRP.

With the continuous development of algorithm technology,
some unified algorithms [9],[10],[11] and general-purpose
algorithm framework [12],[13] for VRP have sprung up
exuberantly. The unified algorithms are different heuristics
for VRP variants, which have diverse combinations of sets of
attributes [9],[10],[11]. While for the general-purpose algo-
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rithm framework, it is usually a library or a heuristic frame-
work. Groër [14] provided a library of local search, including
some constructive heuristic algorithms and seven local search
operators. On the basis of the library, the algorithm for
VRP with capacity constraint has been implemented, and the
attribute of stops time window has been reserved to extend
the solved problem type. However, it is still difficult to realize
the PDPTW based on this library, which requires a lot of
modifications and extensions from bottom to up. Vidal [12]
addressed the multi-attribute vehicle routing problems, and
then proposed a component-based heuristic framework. The
framework have some problem-independent components and
they are can be self-adapted according to the attributes of the
problem. Vogel [13] implemented a metaheuristic framework
for VRP, and gave an algorithm for solving various variants
of VRP based on this framework. Unlike the library designed
in [14], the implementation of this framework starts from the
complex pickup and delivery vehicle routing problem, so it is
easier to support other simple VRP through transformation.

These successful experience of developing a unified algo-
rithm framework for VRPs has promoted the researchers to
design the algorithm framework for SBRP. The development
of SBRP algorithm framework not only can reuse existing
data structures and algorithm components to reduce the
difficulty of algorithm design, but also can enhance the
flexibility and extensibility of algorithm design.

This paper aims to propose a local search-based meta-
heuristic algorithm framework for SBRP. The framework
provides basic data structures, operation functions, neigh-
borhood operators, initial solution construction algorithm
components, and heuristic strategies from bottom to top. It
enables the algorithm designer to construct the algorithm
for SBRP in different application scenarios based on the
framework. The solving problems of SBRP cover three bus
service operation modes and two types of bus fleets including
homogeneous and heterogeneous fleets.

The remainder of this paper contains a problem description
and general methodology of SBRP in Section II. Section III
describes the design of neighborhood-centered metaheuris-
tic algorithm framework. Section IV give the process of
application development based on this framework and the
experiment results. Finally, the remarks of this paper are
offered in Section V.

II. PROBLEM DESCRIPTION AND GENERAL
METHODOLOGY

A. School Bus Routing Problem

SBRP tries to make an efficient schedule for school buses
to pick up students from the student stops and then delivery
them to their school, while meeting all kinds of constraints.
The common constraints of SBRP are bus capacity, maxi-
mum ridding time of students (MRT), time window of stops
or schools, and other constraints. The school buses can pass
through student stops and school stops in order, and then send
students to school or return from school. So, the solution of
SBRP is a number of school bus routes, and each route is a
sequence of stations including student bus stations and school
stations.

According to the number of serviced school and their
operation modes, there are three modes of school bus route

are shown in Fig 1. Single-school SBRP (Fig 1 (a)) only
provides school bus service for one school, there is only one
school node on the route. Multi-school SBRP is classified
into singe load SBRP and mixed load SBRP. For the former
(Fig 1 (b)), the buses serve different schools in the order
of school opening time. In mixed load SBRP (Fig 1 (c)), it
allows school buses to serve multiple schools at the same
time, that is to say, there may be exist students belonged
to different schools staying simultaneously on the same bus.
The students will be delivered to their respective schools
according to the school opening time.

As shown in Fig 1, these three operation modes are not
completely independent. Form the view point of multi-school
SBRP, it can be simplified to single-school SBRP when there
is only one school station on the route. We can consider
single-school SBRP as a special instance of multi-school
SBRP. In additional, mixed load SBRP can be converted
to singe load SBRP, when without allowing the students
from different schools staying simultaneously on the bus.
Therefore, it is possible to solve the application of SBRP in
other modes with the help of mixed load multiple schools
mode.

The model of mixed load SBRP has been defined as
m-1 PDPTW problem in our former study [8]. Because
students from multiple stops may go to the same school,
there are multiple m-1 point-pair relationships on a route.
Adding limitation to the model without allowing mixed load
is the model of single load multi-school SBRP. If there is
only one school station, the model of mixed load SBRP
can be simplified as single-school SBRP. When they are
extended to solve the heterogeneous SBRP, the routes of
SBRP should be added some fleet attributes, such as the
capacity of fleet, total cost and bus fleet type. The solvers
for these problems can also be transformed by modifying
attributes or constraints. The transformation and relationship
of SBRP discussed above are shown in Fig 2.

B. General Methodology of SBRP

As a NP-hard combination optimization problem, SBRP is
difficult to be solved. Among of the SBRP solving methods,
exact algorithms (eg.column generation, branch and pricing)
can solve small-scale SBRP problem to obtain the optimal
solution[15],[16]. However, exact algorithms are usually very
time-consuming.

Heuristic algorithms can usually find approximate optimal
solutions for large-scale SBRP problems [17],[18],[19],[20].
In general, the traditional heuristic algorithms consist of
constructive heuristic and improved heuristic. The construc-
tive heuristic algorithms have a simple solution construction
strategy, and they are usually implemented to generate ini-
tial solutions. The savings method, insertion method, loca-
tion based heuristic (LBH)[18] and random location based
heuristic(RLBH)[19] all belong to the kind of constructive
algorithm. Improved heuristic algorithms use inter-route or
intra-route neighborhood operators to improve the solution,
such as 2-opt and or-opt. The traditional heuristic algorithms
are easy to be implemented, but they are also easy to trap in
local optima.

To overcome the shortcoming of traditional heuristic algo-
rithms, metaheuristic algorithms with more intelligent strate-
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Fig. 1. illustration of three types of SBRP routes
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Fig. 2. Relationship between three SBRP problems and their solvers

gies are gradually developed and widely applied in solving S-
BRP [4],[5],[8],[21],[27]. Metaheuristic algorithm has a cer-
tain higher level algorithmic strategy that is capable of escap-
ing from local optima. Single-solution based metaheuristic
approaches improve a single solution by some local search-
based neighborhood operators, such as TS, ILS, VNS and so
on. The most commonly implemented of them to SBRP are
TS [21],[22] and ILS [5],[23],[24]. Population-based evolu-
tionary approaches generate a population of solutions, which
are iteratively improved to obtain a high-quality solution.
Genetic Algorithm is widely used for SBRP [25],[26],[27]. In
additional, other population-based approaches have also been
implemented to solve SBRP, such as ant colony optimization
(ACO)[4],[28] and scatter search[29]. The population-based
methods (eg.GA and ACO) and local search-based methods
(eg. TS and VNS) are successfully mixed to solve SBRP [4].

Single-Solution metaheuristics and population-based meta-
heuristics are both provide a unified view of the common
concepts for this kind of metaheuristics. Single-solution
metaheuristics iteratively apply the procedure of generation
and replacement from the current single solution. Population-
based metaheuristics share the common concepts, which can
be viewed as an iteratively improvement procedure in a
population solutions. The common characteristics of these
both kinds of metaheuristics make them possible to be
as a general-purpose approaches, and there are also some
successful applications in VRP [9],[10],[11],[12],[13].

From above all the analysis, we tend to develop a meta-
heuristic framework for SBRP. The framework is based
on single-solution metaheuristics, because it is easy to be

implemented and only one single solution is improved
by several local search operators. Moreover, this kind of
metaheuristic has fewer parameters and without requiring
complex parameter tunning.

III. METAHEURISTIC ALGORITHM FRAMEWORK

A. General Description of Framework
Framework is a kind of micro architecture, which provides

incomplete template for software system in specific domain.
It can be a subsystem that will be extended or (and) reused.
According to the standards of software engineering, frame-
work design should follow the principles such as availability,
reusability, flexibility and extensibility [13].

In this paper, an open and extensible algorithm design
framework (as shown in Fig 3) is designed for SBRP, which
mainly supports the metaheuristic algorithm of trajectory
based local search methods. The framework is programmed
in C#, which is known as an orient-object programming
language. On the basis of the basic data structure, it pro-
vides basic functions and related operations, some initial
solution construction algorithm components, neighborhood
operators and heuristic strategies. At the top level, some local
search block components are provided with a combination of
multiple neighborhood operators. Based on the framework,
a neighborhood-centered metaheuristic can be designed or
combined to solve a certain SBRP problem as required.

B. Basic Data Structure
The main data structures defined in the framework include

solution, route, stops, school node and fleet type, etc. For a
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Fig. 3. Metaheuristic framework for SBRP

solution of SBRP, it includes many routes and it also has
some attributes, such as total cost, total number of routes,
total travel length, list of routes and other related parameters.
While for each route of a solution, there are depot, student
stops and school nodes on it, and the route also has a list of
stops and some attributes, including total student load, the
length of route, the travel time of route, and the information
about fleet type. Moreover, each route has a detection list,
which is made up of school stops on the route, to realize
constraints detection of the route. From the point of view,
we can find that the relationship between solution and route
is many-to-one as well as route and stops. So, we use object-
oriented technology to design several classes to represent the
basic data structure and the relationship between them.

In addition to the data structures mentioned above, there
are O-D matrix, time matrix, neighborhood search space and
other data structures used to store data or assist neighborhood
search. We also define data structures about the problem
types of SBRP and VRP solved by the framework to keep
its expansibility.

C. Basic Functions
In the framework, there are some basic functions directly

based on the data structure, such as files reading and writing
functions, import and export of solutions, stops operation,
constraint detection, sorting methods, comparison methods
and so on. Every basic functions are defined in the different
class files in accordance to the function of them.

File reading and writing class is mainly responsible for
importing the data of benchmark instances, and outputting
the information about solution in the process of problem
solving. The data, which needs to read before solving prob-
lem, includes road network data, stops (such as student stops,
school stops and depot) data, vehicle data, and other basic
data. Some functions are also provided to import the solution

meeting the file format requirements. Furthermore, the output
of auxiliary information in the running process, such as in-
termediate process, final results, and some statistical results,
are also be recorded by the operating functions into the files.

The stops operation functions are mainly the creation,
insertion, deletion and movement of the stops. The creation
of stops is to create an instance and assign the values to its
properties, including unique identification, coordinate values,
stops demand, time window, designated school and other
property of the station. In the process of route construction
and optimization, the stops on the route will be inserted
or deleted. These manipulating functions of stops must be
executed in the circumstances.

Constraint detection is one of the most frequently used
operations in the process of solving SBRP. Once a stop on
the route has been moved, inserted, or removed, we must
verify whether the route is valid and does not violate any con-
straints. Because the framework supports multiple problem
types of SBRP, multiple constraint detection functions should
be provided with different execution plans due to different
constraints. The constraint detection mechanism based on
route segments is designed for three operation modes of
SBRP. In additional, there are also some detection functions
about importing solutions.

Sorting and comparison functions classes are inherited
from the standard generic classes in C#, which are applied
to compare and sort the instances in a certain order. For
example, when the routes need to be sorted by the number
of student stops in ascending order, these functions will be
called.

D. Neighborhood Operators
For single-solution metaheuristic algorithms, several

neighborhood structures are used to find the better neigh-
borhood solution in the stage of local search. These neigh-

Engineering Letters, 30:1, EL_30_1_03

Volume 30, Issue 1: March 2022

 
______________________________________________________________________________________ 



borhood operators are applied to explore solution space to
find the local optima solution in the local search phase.
Therefore, in our framework, some neighborhood operators
for SBRP are redesigned and modified from the neigh-
borhood operators that are originally designed for VRP.
These neighborhood operators are divided into two classes
of neighborhood structures, one is based on point or edge,
the other is based on the pair of points. They are used for
single-school SBPR and multi-school SBRP respectively.

The neighborhood operators based on point or edge in-
clude inter-route operators and intra-route operators, which
usually consist of shift, swapping and cross. In every neigh-
borhood structure, the moved nodes or edges do not include
the depot and school node, and the operation of shift or swap-
ping can not violate problem constraints. In the next moment,
we will describe the operations of them respectively.

The inter-route neighborhood structures are described
briefly as following and their operation diagrams are shown
in Fig 4.

(1)Shift(1,0). A student station is moved from a route to
another different route in the solution.

(2)Shift(2,0). Two adjacent student stops, which are re-
garded as an edge with two student stops, are moved to
another route.

(3)Swap(1,1). A pair of student stops are swapped between
two routes. The procedure will choose a random student stops
and then try to swap it with another student node in different
route.

(4)Swap(1,2). A student node is exchanged with two
continuous student stops on another route.

(5)Swap(2,2). Two continuous student stops on the two
different routes are exchanged to obtain two new routes.

(6)Cross. This operator deletes one edge from each of the
two routes, and then adds two edges to realize the cross of
route segments.

(7)Cross Exchange. The operator is the extension of Cross
operator defined in above. Different from Cross operator, it
deletes two non-adjacent edges from each of the two different
routes and then add two edges for each route to obtain the
two new routes.

The intra-route neighborhood operators move student stops
or edges on the same route. It includes the several neighbor-
hood operators common used in VRP, and the illustration
operation of them is shown in Fig 5.

(1)Relocate. Relocate changes the position of one student
station in the same route. Relocate operator can be considered
as a special case of Shift(1,0), when the move occurs in the
same route.

(2)Exchange. Two different student stops on the same
route are exchanged.

(3)Three point move. It likes Swap(1,2) operator, but it
occurs on the same route.

(4)2-opt. 2-opt is a simple and effective improvement
procedure. 2-opt deletes two non-adjacent edges and then
the student stops between these edges are all reversed.

(5)Or-opt. This move aims at shifting a sequence of
consecutive student stops into another position on the same
route. The number of student stops is randomly generated
between two and four. After determining the length of con-
secutive student stops, the neighborhood operator attempts
to shift these student stops to another position.

For multi-school SBRP, especially for mixed load SBRP,
the fore-mentioned neighborhood operators are not used
directly. Thus, three point pair neighborhood operators are
provided in the framework, which are single paired insertion
(SPI), swapping pairs between routes (SBR), and within
route insertion (WRI), which were designed and applied
successfully to solve PDPTW [7]. The basic description of
them are in the following and operation illustrations are
shown in Fig 6.

(1)SPI. SPI is an inter-route neighborhood operator, which
moves a pair of student stops and its designated school stops
to another route. When the student node is removed from
original route and inserted to target route, it is necessary to
determine whether delete its school node from the original
route or insert its school node into the target route. It makes
sure to keep the original route and target route are both valid.
SPI is mainly used for reducing the number of routes.

(2)SBR. SBR is a kind of swap neighborhood operator,
which exchanges two pair of students stops and its destined
school nodes between two routes. Like SPI, SBR also needs
to check and determine the school nodes to remove from
original route or insert into the target route. SBR cannot re-
duce the number of routes, but it can change the permutation
of nodes on the route.

(3)WRI. WRI occurs on the same route. It changes the
position of student stop and its school node on the route.
WRI can decrease the length of the route by moving the
stops.

These neighborhood operators mentioned above can be
adapted to solve different problem type of SBRP, and they
are also implemented successfully in our former studies
[5],[8],[30]. They can be executed sequentially or randomly,
and also be organized by variable neighborhood descent
(VND).

E. Initial Solution Construction Components

The initial solution construction algorithm components
provide an initial solution for SBRP. They are implemented
in the corresponding class files, including saving methods,
sweep algorithm, LBH algorithm [18], gain tour methods,
and several insertion methods. For every initial solution
algorithm implemented in this framework, it also is adopted
to the heterogeneous SBRP by adding the attributes about
bus types to the route.

For single-school SBRP, an initial solution could be ob-
tained by these algorithms quickly. While for multi-school
SBRP, owing to its large scale, the initial solution is not
easy to generate. Therefore, the two-stage initial solution
generation method is designed. The first stage is to divide
the multiple schools SBRP into several single school SBRP
problems according to the school, and then generate an initial
solution for each single school SBRP. Finally, these initial
solutions are combined in the second stage.

These algorithm components are all implemented based
on the basic data structure. Each algorithm component is
encapsulated in an object-oriented class. There are some
overloading methods to be called by different SBRP problem
types.
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Fig. 4. inter-route neighborhood operators
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Fig. 5. intra-route neighborhood operators

F. Heuristic Strategies

To enhance the equality of algorithms, we also design
several heuristic strategies, including search strategy, pertur-
bation strategy, fleet adjustment strategy and neighborhood
solution evaluation functions and acceptance rules. They
are used in the local search procedure to lead the search
trajectory of single-solution metaheuristics.

Search strategy is a kind of strategy that is used to specify
the rule of point or edges in the local search phase. Random
search strategy is to select randomly one stops in the stops
list or neighborhood list. In the fixed search strategy, every

student stop is selected to be executed in a fixed sequence in
the stops list or neighborhood list. While for shorted route
first strategy, all the routes are sorted in ascending order by
the number of student stops, and the route having fewest
student stops will be firstly executed in the local search.

Perturbation strategy is usually applied in the shaking
procedure of VNS or perturbation procedure of ILS. The
commonly used perturbation methods are shift or swapping
of multiple points, and the cross of route segments. In addi-
tional, the framework also provides some large neighborhood
space perturbation methods, such as ejection chain-based
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methods and ruin-and-recreated methods [5],[30]. Generally
speaking, these perturbation methods have two parameters,
which are the number of trials and the strength of distur-
bance measured by the number of points in the perturbation
procedure. Once they could find a feasible solution, it will
break the loop and return the solution.

For heterogeneous SBRP, reasonable fleet adjustment of
the routes could have lower total cost of the solution. Fleet
adjustment strategy tries to change the bus type of route
to decrease the total cost of the route. The inter-route
neighborhood operators are followed by the fleet adjustment
strategy, only when without violating other constraints of the
route except the capacity constraint. The successful of fleet
adjustment depends on whether the type of bus that meets
the conditions can be found. The fleet adjustment strategy is
designed based on the route segment. For multi-school SBRP,
the student stops and schools appear alternately on the route,
so we cannot change directly the fleet type of whole route.
We divide the whole route into several route segments by the
school stops, and then find the reasonable fleet to meet the
needs of all the route segments. For every route segment, the
determination rules of the fleet type of bus can be found in
[30].

Neighborhood solution evaluation functions and accep-
tance rules determine whether a new obtained neighborhood
solution in the local search could be accepted or not, which
forces the algorithm to search in the direction of decreasing
objective value. Among the objectives of SBRP, cost is
the main optimization objective, which is related with the
number of routes, total travel distance, total cost and so
on. For homogeneous SBRP, the optimization objectives of
SBRP usually are the number of school buses and (or) total
travel distance. While for heterogeneous SBRP, the total cost
of solution is the main optimization objective. For different
optimization objectives of SBRP, the neighborhood solution
evaluation functions and acceptance rules are designed in our
framework and described as follows.

(1) Minimizing the number of routes strategy. It is suitable
for the SBRP that the number of school buses are the first

optimization objective. This strategy uses a lexicographical
evaluation mechanism and it is defined in Equation(1).

Eval(S) = 〈|S|,−
∑
r∈S
|r|2,

∑
r∈S

d(r)〉 (1)

In the function, S is a solution, |S| indicates the number of
routes in the solution S, |r| is the number of nodes in route
r , and d(r) indicates the distance of route r. The fewer
routes of solution is first accepted, and then consider other
conditions. The second component is to maximize

∑
r∈S
|r|2

to encourage the search operators to shift stops from shorter
routes to longer routes. It will make the algorithm walk along
the direction of reducing the number of routes more and more
easily. Finally, the total distance of solution is evaluated, and
it also can be combined with the other strategies defined
below. It is very effective in minimizing the number of routes
[5],[8].

(2)Increasing utilization of vehicle strategy. This strategy
tends to accept the neighborhood solution whose vehicle
utilization is increased. It is always combined with other
neighborhood solution acceptance rules as a kind of com-
pensation mechanism. When a new neighborhood solution is
obtained by inter-route neighborhood operators, it could be
regarded as an evaluation function to determine whether the
solution could be accepted or not. It is defined in Equation(2).

f = min{|Qm−Dm|, |Qp−Dp|}−min{|Qk−Dk|, |Ql−Dl|}
(2)

In equation (2), we assume that the current bus types of
route r and route t are m and p, and the actual load of them
are Dm and Dp. The capacities of bus types of m and p are
Qm and Qm. After the neighborhood operators executing and
fleet adjustment, the new bus types of these two routes are k
and l. If f > 0, it means that the vehicle utilization of route
r or t is increased, the new solution is accepted. Otherwise,
the cost saving in traveling distance will be considered.

(3) Record-to-record acceptance rule. This strategy uses
the idea of record-to-record travel algorithm (RRT), which
is a variant of SA. RRT uses record variable to represent the
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fitness of current best solution, and a deviation parameter dev
to represent the range of deviation between the current best
solution and the new neighborhood solution. The definition
of the rule is in Equation (3).

S = { R, f(R) < record
R, f(R) < (1 + dev)× record, dev ∈ [0, 1]

}
(3)

In equation (3), R is the new neighborhood solution, S
is the current best solution, record is the fitness value of
solution, and dev is the relative coefficient. If the objective
value of R is better than record or less than (1 + dev) ×
record, R is selected as the new best solution and record
will be updated. Otherwise R is rejected.

(4) Probability acceptance rule. It uses the probability
acceptance rules of SA and its definition is in Equation (4).

S = { R, f(R) < f(S)
R, e[−(f(R)−f(S))/T ] > p, p ∈ (0, 1)

} (4)

In Equation (4), R is the new neighborhood solution, S is
the current best solution, f(S) is the fitness value of solution,
and T is the current temperature. If the objective value of R
is better than f(S), R is accepted. Otherwise, R is accepted
by a certain probability.

These neighborhood solution evaluation and acceptance
heuristics strategies are used as the parameters of algorithm.
Like used in Vogel [13], the heuristic rules and the optimiza-
tion objective of SBRP are also defined as an enumerated
type. The value of each constant in this enumerated type
is a number that is power of 2. Each bit of the binary
represents a heuristic strategy to determine whether to enable
the corresponding strategy through the and operation.

IV. APPLICATION DEVELOPMENT AND EXPERIMENT
RESULTS

In this section, we development the applicaitons of frame-
work for three SBRP problems and CVRP. We first design an
ILS metaheuristic algorithm on the basis of the framework
for homogeneous SBRP with three operation modes, and
compare it with existing algorithms. And then, we extend the
ILS algorithm to CVRP and test on the benchmark instances.

A. An Iterated Local Search Metaheuristic

We design an ILS algorithm based on the proposed frame-
work for three operation mode of homogeneous SBRP prob-
lems, including single-school SBRP, single load SBRP and
mixed load SBRP. The optimization objective of three SBRP
problems is to minimize the number of school buses. Because
of the ILS algorithm for three SBRP problems, an adaptive
selection mechanism is developed to select the initial solution
construction method, neighborhood operators, perturbation
and search strategy, according to the solved problem. The
general description of ILS algorithm is described in the
Algorithm 1.

Step (1) generates an initial solution according by the
problem of SBRP. For single-school SBRP, we use saving
methods to construct an initial solution. While for multi-
school SBRP, the two-stage initial solution generation meth-
ods that described in Section III are used. Step (2) defines the
neighborhood operators used in the local search process of

Algorithm 1 ILS
Input: input the number of iterations (M ), the size of

neighborhood list (L), the deviation value(deviation), the
perturbation factor (p), problem type (type) and heuristic
strategies (rules)
Output: best solution S∗

1: S∗ = S = GetInitialSolution(type);
2: NbList = GetOperatorsList(type);
3: PList = GetStops(S);
4: Record = Cost(S);
5: while loop number is smaller or equal to M do
6: for each operator op in NbList do
7: RandomPerturb(PList,rules);
8: for each student stop st in PList do
9: Sb = GetSolution(S, st, L, op, rules);

10: S = AcceptSolution(S,Sb,deviation,Record);
11: S∗ = GetBetter(S,S∗);
12: S = Perturbation(S,p,type,rules);
13: return S∗

ILS. For single-school SBRP, the neighborhood operators in-
cludes Shift(1,0), Shift(2,0), Swap(1,1), Swap(1,2), Relocate,
Or-opt and 2-opt. The point-pair operators, such as SPI, WRI
and SBR are used for multi-school SBRP. Step (3) obtains
the list of student stops, and Step (4) sets the cost of solution
S to Record. The main loop is controlled by a loop count
M in Step (5)∼(12). For every operator in operator set, a
second level loop is defined in Step (6)∼(11). The third-level
loop for each node in stop set PList is described in Step
(8)∼(10). The method RandomPerturb(PList,rules) in step
(7) is to change the sequence of student stops using a certain
search strategy. Step (9)∼(10) indicates that when a new
neighborhood solution Sb is obtained, and the acceptance
rule is applied to decide whether accept it or no. When the
third-level loop is finished, the global best solution S∗ is
updated in step (11). After all the neighborhood operators
are executed, the current solution S is perturbed and then
starts the next iteration. When the top-level loop is finished,
the global best solution S∗ is obtained.

B. Benchmark Instances of SBRP

We use the benchmark instances proposed by [20] es-
pecially for mixed load SBRP to test the performance of
ILS algorithm. There are two kinds of instances: a random
spatial distribution of schools and bus stations (RSRB) and a
clustered distribution (CSCB). We select RSRB01∼RSRB04
and CSCB01∼CSCB04 as the test instances for the multi-
school SBRP. The number of bus stops ranges from 250
to 500, and the number of schools ranges from 6 to 25.
For single-school SBRP, we prepared 12 instances from
RSRB01 and CSCB01. These 12 instances are donated as
R01∼R06 and C01∼C06 respectively. The scale of single-
school problems is between 17 and 75.

For the convenience of comparison, all the problem con-
straints are set in accordance with that in [5],[8],[20],[31].
That is to say, the school bus capacity is 66. The average
speed of the school bus is 20 mile per hour. And beyond that,
the service time of bus stops and schools are calculated by
the same regulation as that in [5],[8],[20],[31]. The maximum
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riding time of students in the school bus is 2700 seconds or
5400 seconds. The distance between any two school stops
and schools is calculated by Manhattan distance.

C. Parameters Setting of ILS

The ILS algorithm was implemented by C# based on the
proposed framework and executed on a computer with Intel
Core i7 3.4GHz CPU and 8GB of RAM. The parameters
values were selected after some preliminary experiments.
The maximum iteration number is set to 50, and deviation is
10−4. The parameter rules, which is the heuristic strategies
of ILS, is combined with shorted route first search strategy,
minimizing the number of routes strategy and record-to-
record acceptance rules. Besides these parameters, the other
parameters have different values according to the solved
problem type of SBRP. For single-school SBRP, the value
of parameter L is set to the smaller number of problem
scale and 30. The perturbation method is based on ruin-and-
recreate strategy and the perturbation factor p is set to 0.2.
While for multi-school SBRP, the length of neighborhood
list L is set to 150 owing to its large scale. The number of
nodes moved in multiple points shift perturbation methods
is set to a random integer within the range of [2,5]. The ILS
algorithm was executed 10 times over each instance.

D. Experiment Results of SBRP

For single-school SBRP, the results on R01∼R06 and
C01∼C06 instances with a maximum ridding time of 2700 s
and 5400 s are shown in TABLE I. The column Stops is the
problem scale. Column Nc represents the solution obtained
by CPLEX 12.6, which are reported in [5]. Columns Num
and Dis indicate the route number and total travel distance in
seconds obtained by ILS algorithm. The column Navg and
T are the average route number and the average execution
time respectively. The optimal solutions given by CPLEX
are labeled with a star(*), and the optimal solutions found
by our algorithm are also labeled with a star(*).

As shown in TABLE I, we can find that the ILS algorithm
outperforms CPLEX solver. Compared with CPLEX, ILS
algorithm find less route numbers and the average route num-
bers is 10.58 and 9.92 respectively. While for the instances
such as C01 and C05, the ILS algorithm can reduce 1 or 2
school buses. In additional, The ILS algorithm can also get
the optimal route numbers that are found by CPLEX. The
ILS algorithm can also obtain the optimal total travel distance
for C04, C06 and R02. Finally, the ILS algorithm uses less
computation time and all the instances can be solved within
2 seconds.

In order to evaluate the performance of ILS algorithm, we
use it solve the single load SBRP and mixed load SBRP.
The results of these approaches on RSRB01∼RSRB04 and
CSCB01∼CSCB04 with different maximum ridding time
(MRT) are shown in TABLE II. In the table, column In-
stances indicates the benchmark instance. For ILS algorithm,
the columns N and Navg indicate the best route number and
the average route number among the 10 solutions respective-
ly. Column Dis is the total travel distance in miles of the best
solution and the column T is the average computation time in
seconds. In additional, we also compared our ILS algorithm
with existing algorithms [8], [20], [31]. For single load SBRP,

the results obtained by post-improvement heuristic [20] and
simulate annealing [31] are shown in columns PH and SA.
While for mixed load SBRP, the columns PH and RRT in
TABLE II indicate the results founded in [20] and [8].

Seen from the results of TABLE II, the ILS algorithm
is more competitive than the existing algorithm for single
load SBRP and mixed load SBRP. First, the ILS algorithm is
effective to solve these two multi-school SBRP problems. For
single load SBRP, it reduces the average route numbers by
24.66% and 6.27% when compared with post improvement
heuristic(PH) [20] and simulate annealing(SA) [31]. While
for mixed load SBRP, it improved on average by 9.72%
and 0.95% respectively, compared with post improvement
heuristic [20] and RRT [8]. In additional, the ILS algorith-
m can solve these both multi-school SBRP in reasonable
computation time. The average computation time of both
problems are 69.37 seconds and 141.30 seconds respectively.
For the large instances, which have 500 student stops and
25 schools, the ILS algorithm can found the better solution
within five minutes.

Taking into account the results that are shown on these two
tables, we can come to a conclusion that the proposed ILS
algorithm implemented based on the framework is effective
and it is suitable to solve three SBRP problems.

E. Extending the ILS algorithm for CVRP
The proposed ILS algorithm can be easy to extend for

CVRP, because single-school SBRP is the similar with
CVRP. For single-school SBRP, the school bus starts from
the depot and visits the bus stops in a specific order, and
then the school node. If we make the coordinate of school
node same as that of depot node, the routes of SBRP are the
same as those of CVRP. The other constraints of SBRP, such
as service time of bus stops and maximum ridding time of
students, can be modified to adapt for CVRP. Specifically,
the service time of nodes can be read from the instance
file, which need not to be calculated by the demand of
students like SBRP. The maximum ridding time of students
is set to a bigger positive integer in order to ignore the
constraint. The parameters setting of ILS algorithm are same
as that for single-school SBRP. It should be noted that the
optimization objective of CVRP is the total travel distance.
Thus, the heuristic strategies of ILS algorithm should exclude
the strategy of minimizing route number.

Next, we use ILS algorithm to solve standard bench-
mark instances of CVRP. The performance of the ILS
algorithm is tested on 50 best known CVRP instances,
which include problem sets B, E and P respectively. All
the instances may be downloaded from the site 〈https :
//neo.lcc.uma.es/vrp〉. And then, we compare ILS algo-
rithm with the extended savings algorithm (ESA) proposed
by [32] and ant colony optimization algorithm(LNS-ACO)
implemented by [33].

TABLE III and TABLE IV shows the results of these
algorithms. The column BKS denotes the best known so-
lution of benchmark instance. The column Best represents
the best total distance obtained by the ILS algorithm, and
the column T is the average computation time of ILS algo-
rithm in seconds. The results of extended savings algorithm
(ESA) [32] and ant colony optimization algorithm (LNS-
ACO) [33] are shown in columns ESA and LNS-ACO.
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TABLE I
RESULTS OF SINGLE-SCHOOL SBRP

Instances MRT=2700 MRT=5400

Name Stops Nc Num Navg Dis(s) T(s) Nc Num Navg Dis(s) T(s)

C01 70 17 16 16.3 35013 1.51 15 14 14.8 34059 1.53

C02 35 12 12 12 22798 0.55 11* 11* 11* 22849 0.68

C03 30 9* 9* 9.5 18867 0.59 8* 8* 8* 16490 0.72

C04 23 7* 7* 7* 13327* 0.32 7* 7* 7* 13327* 0.37

C05 75 20 18 18 36657 1.61 18 18 18 36671 1.70

C06 17 6* 6* 6* 9609* 0.23 6* 6* 6* 9431* 0.27

R01 38 9* 9* 9.9 18574 0.74 9* 9* 9* 17526 0.69

R02 40 9* 9* 9.8 18866* 0.77 9* 9* 9.1 18062 0.76

R03 51 13* 13* 13.2 21560 1.04 13* 13* 13* 21055 1.03

R04 35 10 10 10 20807 0.72 7* 7* 7.6 19696 0.73

R05 42 9* 9* 9.8 18404 0.87 9* 9* 9.1 17874 0.84

R06 44 9* 9* 9.6 18255 0.85 8* 8* 8.8 17410 0.87

Avg 41.67 10.83 10.58 10.93 21061.42 0.82 10 9.92 10.12 20370.83 0.85

TABLE II
RESULTS OF SINGLE LOAD SBRP AND MIXED LOAD SBRP

Instances MRT

Single Load Mixed Load

PH SA
ILS

PH RRT
ILS

N Navg Dis T(s) N Navg Dis T(s)

CSCB01 2700 39 31 28 28.6 1537.06 36.59 30 27 26 27.2 1353.91 69.76

CSCB02 2700 33 26 25 25.8 1785.74 38.51 30 26 25 25.7 1498.86 68.52

CSCB03 2700 66 59 53 53.8 3994.89 103.52 55 49 48 49.5 3708.06 197.43

CSCB04 2700 72 61 58 58.2 4402.98 115.81 62 57 56 57 3787.73 194.36

RSRB01 2700 35 26 26 26.6 1612.97 32.06 30 26 26 26.5 1364.14 49.48

RSRB02 2700 32 27 26 26.2 1907.93 34.98 29 27 26 26.8 1947.59 56.42

RSRB03 2700 66 47 51 52 3167.76 98.28 56 53 51 51.5 3445.47 242.37

RSRB04 2700 68 58 54 54.9 3645.32 113.15 59 52 53 53.8 3163.97 287.17

CSCB01 5400 35 29 23 23.7 1477.33 30.62 24 23 23 23.4 1441.89 46.93

CSCB02 5400 27 23 20 20.1 1457.29 35.45 22 19 19 19.9 1429.54 63.38

CSCB03 5400 52 42 40 40.4 3420.64 101.07 41 39 39 39.9 3323.99 212.56

CSCB04 5400 57 45 41 41.6 3762.63 114.29 43 37 40 40.7 3879.29 242.74

RSRB01 5400 31 28 23 23.8 1495.23 29.87 27 24 24 24.9 1532.03 44.32

RSRB02 5400 30 23 22 22.9 1800.61 31.91 23 23 22 22.3 1875.05 57.95

RSRB03 5400 61 46 46 46.2 3062.63 89.13 47 47 46 46.3 3189.11 198.27

RSRB04 5400 56 41 41 41.4 2804.33 104.75 46 40 40 41.2 2606.46 229.18

Avg 4050 47.5 38.25 36.06 36.64 2583.46 69.37 39 35.56 35.25 36.04 2471.69 141.30

The column Dev indicates the percentage deviation between
best known solution and the best solution obtained by ILS
(Dev = ((Best−BKS)/BKS) ∗ 100).

Seen from the TABLE III and TABLE IV, we can find
that ILS algorithm also effectively solve CVRP and it is able
to obtain better results than ESA [32] and LNS-ACO [33].
For all the instances in sets B, P and E, the ILS algorithm
has lowest averages of Dev values among of these three
algorithms. The percentage deviation values for these three
problem sets are 0.32%, 0.28% and 0.44% respectively.

Among of the 50 instances, the ILS algorithm can find

26 best solutions, which equal the best known solution of
standard instances. The best solution of 19 instances are a
litter bigger than best known solutions, and the percentage
deviation values of 6 instances are below 0.2%. All the
percentage deviation values are all smaller than 1% for these
19 instances. The percentage deviation values of 5 instances
are between 1% and 3%. In all, compared with ESA and
LNS-ACO algorithms, the ILS algorithm has lower average
of percentage deviation values. It also indicates that the
ILS algorithm is capable of finding optimal or near-optimal
solutions for all the instances.
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TABLE III
COMPARISON RESULTS FOR THE PROBLEM SET B AND SET P

Instances BKS
ESA LNS-ACO ILS

Instances BKS
ESA LNS-ACO ILS

Dev Dev Best Dev Dev Dev Best Dev

B-n31-k5 672 0.00 0.00 672 0.00 P-n16-k8 450 0.00 0.00 450 0.00

B-n34-k5 788 0.00 0.00 788 0.00 P-n19-k2 212 3.30 0.00 212 0.00

B-n35-k5 955 0.84 0.00 955 0.00 P-n20-k2 216 0.93 0.00 216 0.00

B-n38-k6 805 1.24 0.00 805 0.00 P-n21-k2 211 0.47 0.00 211 0.00

B-n39-k5 549 0.18 0.00 549 0.00 P-n22-k2 216 0.00 0.00 216 0.00

B-n41-k6 829 4.46 0.00 829 0.00 P-n23-k8 529 0.00 0.00 529 0.00

B-n43-k6 742 0.54 0.00 742 0.00 P-n40-k5 458 0.22 0.00 458 0.00

B-n44-k7 909 1.32 0.00 909 0.00 P-n45-k5 510 0.20 0.00 510 0.00

B-n45-k5 751 0.00 0.00 751 0.00 P-n50-k7 554 0.00 0.00 554 0.00

B-n45-k6 678 1.18 0.00 679 0.15 P-n50-k8 631 0.95 1.90 633 0.32

B-n50-k7 741 0.00 0.00 741 0.00 P-n50-k10 696 0.14 0.00 698 0.29

B-n50-k8 1312 1.30 0.53 1313 0.08 P-n51-k10 741 0.00 0.81 744 0.40

B-n52-k7 747 0.67 0.00 747 0.00 P-n55-k7 568 1.06 0.00 570 0.35

B-n56-k7 707 0.00 0.00 707 0.00 P-n55-k8 576 0.00 0.00 577 0.17

B-n57-k9 1598 0.13 0.00 1600 0.13 P-n55-k10 694 0.14 0.00 699 0.72

B-n63-k10 1496 2.81 1.20 1537 2.74 P-n60-k10 744 0.13 1.48 746 0.27

B-n64-k9 861 0.00 1.51 878 1.97 P-n60-k15 968 0.00 0.93 977 0.93

B-n66-k9 1316 1.90 1.06 1318 0.15 P-n65-k10 792 0.51 1.01 792 0.00

B-n67-k10 1032 1.74 1.74 1034 0.19 P-n70-k10 834 0.00 1.21 835 0.12

B-n68-k9 1272 1.57 1.42 1276 0.31 P-n76-k4 589 2.36 0.84 601 2.04

B-n78-k10 1221 2.05 0.57 1233 0.98 P-n76-k5 627 3.03 2.87 629 0.32

Avg 951.48 1.04 0.38 955.38 0.32 Avg 562.67 0.64 0.53 564.62 0.28

TABLE IV
COMPARISON RESULTS FOR THE PROBLEM SET E

Instances BKS
ESA LNS-ACO ILS

Dev Dev Best Dev

E-n22-k4 375 0.27 0.00 375 0.00
E-n23-k3 569 0.35 0.00 569 0.00
E-n30-k4 503 0.40 0.00 503 0.00
E-n33-k4 835 0.12 0.00 835 0.00
E-n76-k7 682 3.08 1.91 685 0.44
E-n76-k8 735 2.99 1.22 737 0.27
E-n76-k14 1021 2.45 0.88 1039 1.76
E-n101-k14 1071 3.73 1.41 1082 1.03
Avg 723.88 1.67 0.68 728.13 0.44

V. CONCLUSION

In the actual school bus route planning, the number of
schools, the characteristics of the fleet and the operation mod-
e will produce many variations of SBRP. It is necessary to
quickly solve these SBRP variations with different problem
characteristics. For this reason, we proposed a neighborhood-
center metaheuristic algorithm framework to simplify the
design and implementation process of solving algorithms
for SBRP. The framework is designed based on the unified
model expression of these problems and then implemented
by C#, which is known as an object-oriented programming
language. The framework provides many components from

bottom to top, including basic data structure, operation func-
tions, neighborhood operators, basic algorithms and heuristic
strategies and so on. The common part of the framework is
implemented in advance and the users are allowed to expand
based on the framework to realize other difference parts.
Further, we design an ILS algorithm based on the framework
for three SBRP applications and classical CVRP problem.
The ILS algorithm are tested on a set of SBRP instances and
50 best known CVRP problems. The designed ILS algorithm
outperforms existing SBRP algorithms, and it also find 26
optimal solutions for CVRP standard instances. The experi-
mental results not only prove the designed ILS algorithm is
very competitive, but also show that the proposed algorithm
framework is effective and scalability.

In the future, we will improve our algorithm framework
to support math-heuristic algorithms that can combine meta-
heuristics with common exact algorithms. In additional, we
are going to expand the framework to solve more types of
SBRP problems.
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