

Abstract—Session-based recommendation aims to predict

following user behaviors based on short-term anonymous

sessions. Although there are many types of existing

recommendation models, it is still a challenging problem to dig

out the profound relationship between users and items from

short sessions. Therefore, complex transformation patterns and

the dynamic evolution of user interests are considered in the

session, and this paper proposes a new method, named

Enhanced Multi-Head Self-Attention Graph Neural Networks

for Session-based Recommendation (EMSAGNN). The model

first converts sequence data into graph structure and feeds

them into graph neural networks to dynamically learn the

complex transition patterns and capture user preferences. Then,

an enhanced multi-head self-attention network further learns

sessions to capture rich hidden information in items. Finally,

with the learned information, EMSAGNN calculates the

probability scores of different items to recommend more

suitable items for users. We conduct extensive experiments and

comparisons on two public e-commerce datasets. The

experimental results show that our proposed model is superior

to the state-of-the-art methods.

Index Terms—session-based recommendation, graph neural

networks, enhanced multi-head self-attention, deep learning

I. INTRODUCTION

ITH the improvement of information technology,

users are often easily lost in massive information and

cannot find target items. To solve these problems,

personalized recommendation systems emerge. In recent

years, users’ private information has been protected more

strictly. Meanwhile, many users are reluctant to leave factual

information when browsing or searching. When users’

personal information is not available, traditional

recommendation methods cannot capture users’ interest

preferences based on a simple session sequence, which leads

to inaccurate recommendation results. Therefore,

session-based recommendation systems [1] are essential.

Because users’ preferences may be affected by multiple

factors, such as age, gender, region, and season, user-based or

Manuscript received June 12, 2021; revised November 8, 2021. This

work was supported in part by the National Natural Science Foundation of
China under Grant No. 51874171.

Wenhao Pan is a master student of School of Computer Science and

Software Engineering, University of Science and Technology LiaoNing,
Anshan, 114051, China (e-mail: pwh5253@163.com).

Kai Yang is an associate professor of School of Computer Science and
Software Engineering, University of Science and Technology LiaoNing,

Anshan, 114051, China (Corresponding author, e-mail:

asyangkai@126.com).

content-based methods [2]–[4] cannot detect or capture

dynamic changes in user interest. In contrast, session-based

methods have natural advantages in learning the

dependencies between items in a short-term session.

Moreover, they can use the characteristics of the session to

explore the current preference of users. Therefore, the main

task of the session recommendation system is to extract

information from sessions and learn users’ interests. As a

result, the session-based recommendation has gradually

become a study hotspot in recommendation systems

[11]–[13].

Most traditional session recommendation models are

based on the Markov chain [8]–[10]. They assume that the

user’s subsequent action depends only on the previous one or

several previous ones so that the Markov chain model can

only capture short-term item information. However, it is

impossible to learn the global dependencies of the entire

session. With the rapid development of deep learning [29],

neural network methods have been widely applied in various

fields. Inspired by the successful cases of recurrent neural

networks (RNNs) [25] in sequence modeling [14], [15], more

and more researchers use RNNs to learn the session

information. Compared to Markov chain methods, recurrent

neural network models have natural advantages—they learn

the entire session and improve performance. Among them,

GRU4REC [11] and NARM [12] are two typical

representatives. They improve the accuracy of

recommendations from the perspective of the items and the

users, taking advantage of the rich information in the items.

At the same time, RNNs-based models also have apparent

shortcomings. They consider complete session information

but ignore the dynamic changes of user interests and are very

time-consuming.

After Transformer model [16] is proposed by Google in

2017, the self-attention mechanism gradually becomes the

mainstream method for session-based recommendations, e.g.,

SASRec [17] and STAMP [18]. They apply attentional

mechanisms to learn global information about sessions and

further improve the models’ performance. With the progress

of graph neural networks (GNNs) [19], [20], Wu et al.

propose the SR-GNN [21] model that applies GNNs to

session-based recommendations. The model builds a session

sequence into graph structure data and considers the

interrelationships between items, which provides a new

direction for session-based recommendations.

Although the above methods have achieved exciting and

advanced results, they still have some limitations. First of all,

they do not consider the complex transition patterns between

Enhanced Multi-Head Self-Attention Graph

Neural Networks for Session-based

Recommendation

Wenhao Pan, Kai Yang

W

Engineering Letters, 30:1, EL_30_1_05

Volume 30, Issue 1: March 2022

__

mailto:pwh5253@163.com
mailto:asyangkai@126.com

all items. The global and local preferences of users both play

crucial roles in improving the model performance [8], [9].

Secondly, although some models consider complete sessions,

the learning effect of session information is still poor. As the

length of a sequence increases, it is easy to ignore previous

items’ information [11], [12]. Then, most models learn static

preferences to predict the results and do not consider dynamic

changes in users’ interests [17], [18]. Finally, a session

cannot be viewed as a simple time sequence, and the

transition pattern between items should be more complicated

[23].

We propose a new session-based recommendation model

applying a graph neural network and an enhanced multi-head

self-attention network to solve the above problems. First, we

construct the session sequence as a session graph and use

GNN to calculate the embedding vector of each item node.

Secondly, to better capture the dynamic changes of users’

interest preferences, we propose an enhanced multi-headed

self-attention network to learn complex transition patterns

and global dependencies in session. Third, we combine users’

global and local preferences to predict their item needs

accurately. Finally, we conducted a number of experiments

on two benchmark e-commerce datasets. Experimental

results show that this method performs well in session-based

recommendation tasks.

II. RELATED WORK

A. Traditional Session Recommendation Methods

Traditional session-based recommendation models include

sequential pattern mining [5]–[7] and Markov chain methods

[8]–[10]. They have natural advantages in taking the

dependencies between users and items. Moreover, it is the

most intuitive solution for session-based recommendations.

For example, Rendel et al. propose the FPMC [8] model that

combines matrix decomposition and first-order Markov

chain methods. It calculates the probability of

recommendation by learning users’ global interest

preferences and the transition relationship between items.

Hidasi et al. make improvements to FPMC by adding a

nonlinear transformation and propose the HRM [9] model.

Since Markov chain methods assume that a recommended

item depends on the most recent interacted items. Therefore,

they can only capture point-based dependencies, ignoring the

collective global dependencies between users and items.

Instead, we construct a session graph to capture more

complex transition patterns across inherent session

information.

B. Deep Learning-based Session Recommendation Methods

In recent years, deep learning has achieved excellent

computer vision, pattern recognition, and natural language

processing. With the widespread application of neural

network methods, more and more models have begun to use

them in recommendation systems [24]. As an essential

branch of recommendation systems, session-based

recommendations are gradually becoming a deep learning

technology research hotspot.

Inspired by the successful case of RNNs [25] in sequence

modeling. [14], [15]. Hidasi et al. first propose the

GRU4REC [11] model based on recurrent neural networks. It

uses multi-layer gated recurrent units (GRUs) to learn the

session sequence. The NARM [12] model propose by Li et al.

stacks GRUs as an encoder to capture more transitional

information of items and adds an attention mechanism.

Compared with traditional methods, these models have

achieved excellent results and apply RNNs in session-based

recommendations. Inspired by Transformer [16], Kang et al.

propose a SASRec [17] model, which applies a self-attention

mechanism to model users’ historical behavior sequences.

Liu et al. propose the STAMP [18] model with a new

attention mechanism, which can reduce the impact of time

sequences by capturing users’ global and local preferences

for joint prediction. Compared with Markov chain and

recurrent neural network models, the attention model is more

efficient and easier to understand. It has been well applied in

AFM [26] and DIN [27] models.

C. Graph Neural Network-based Session Recommendation

Methods

Graph neural network is a generalized neural network

based on graph structure that has emerged in recent years [19],

[20]. Because of its unique computing ability, it has attracted

the attention and research of many researchers. An early

application of GNNs in session-based recommendation is the

SR-GNN [21] model proposed by Wu et al. They use GNNs

to process transitional relationships between users and items.

The proposed model provides a new perspective for session

recommendations. Xu et al. propose a graph contextual

self-attention model (GC-SAN) [30], which can capture the

long-term dependencies of items. Yu et al. propose a new

target attention graph neural network (TAGNN) [22]. In

TAGNN, target-aware attention adaptively activates users’

different levels of interest towards various target items. The

model considers the diversity of users’ interests, improving

its representation ability.

Compared with the above methods, we propose a new

network model to conduct deep mining of sessions. In

addition, we consider dynamic changes in users’ interests.

Therefore, the model can simultaneously learn users’ global

and local interest preferences and is unlimited to inherent

behavior sequences.

III. METHODS

In this section, we mainly introduce the construction of the

EMSAGNN model. First, we apply graph neural networks to

calculate the embedding vector of each item. Secondly, in a

Transformer-like structure [16], the decoder layer is deleted,

and the encoder layer is modified to be more suitable for

session recommendations. Finally, build a prediction layer to

calculate the predicted scores of different items for the next

click. Next, we will introduce each part of the model in detail.

A. Problem Statement

The main task of session-based recommendation is to use

the anonymous behavior sequence to predict the user’s next

interaction. Here, we define the formula of the problem. Let

V = {v1, v2, …, vm} represent a set of all unique items in

session set. The session s can be represented by the list s = [v1,

v2, …, vn], where vi ∈ V represents the clicked items in

session s. This problem can be expressed as predicting the

user’s next click vn+1 based on the session s. We input the

Engineering Letters, 30:1, EL_30_1_05

Volume 30, Issue 1: March 2022

__

G
rap

h
 N

eu
ral N

etw
o
rk

nx P
red

ictio
n

 L
ay

er

M
u
lti-H

ead

S
elf-A

tten
tio

n

F
eed

-F
o
rw

ard

C
o

n
cat

L
in

ear⋮

𝑦

Session Graph 𝐺𝑠

𝑣2

𝑣3

𝑣1 𝑣4

ℎ4

ℎ3

ℎ2

ℎ1

Session 𝑠

 𝑣2 𝑣1 𝑣4 𝑣3 𝑣1 𝑣2 𝑣3 ++

ℎ𝑒𝑎𝑑𝑛

ℎ𝑒𝑎𝑑1

ℎ𝑒𝑎𝑑2

Fig. 1. The architecture of EMSAGNN. First, it uses graph neural networks to calculate the embedding vector of each item. Secondly, a new enhanced
multi-head self-attention network is constructed. Finally, we use the prediction layer to calculate the predicted scores of different items for the next click.

session s into the model, and the output ŷ is obtained, where ŷ

= {ŷ1, ŷ2, …, ŷm} is the predicted scores of all items and ŷi is

the probability score of item vi. Thus, we construct and train a

classifier that learns the probability score of each candidate in

item set V. The top-N items in ŷ are the candidate items

recommended to users.

B. Constructing Session Graphs

We construct a session into a session graph Gs = (Vs, Es). In

session graph Gs, the node set Vs contains all nodes in the

graph, i.e., vi ∈ Vs. The Es represents the set of all directed

edges in the graph, and each directed edge (vi, vi+1) ∈ Es

means that the user clicks item vi after vi+1. Since there may

be multiple repeatedly clicked items in the session, assigning

a weight to each directed edge is necessary. Finally, we use

the GNN to calculate the embedding vector of each item in

the session graph.

C. Item Representation Learning

We input the session graph into the GNN to learn the

embedding vectors of the nodes. Then, use the connection

matrix of items to represent a session sequence. This paper

uses the gated sequence graph neural network (GGNN) [28]

to learn the embedding vectors of nodes, a variant of graph

neural network. Formally, the update function of node vi of

session graph Gs is as follows:

 1
[,0]

T

i i
h e= (1)

 1 1

: 1
[, ,]

t t t T

i i n
a A h h H b

− −
= + (2)

 1
()

t t t

i z i z i
z W a U h

−
= + (3)

 1
()

t t t

i r i r i
r W a U h

−
= + (4)

 1
tanh(())

t t t t

i o i o i i
h W a U r h

−
= + (5)

1

(1)
t t t t t

i i i i i
h z h z h

−
= − + (6)

Here we take session s = [v2, v1, v4, v3, v1, v2, v3] as an

example, where hi represents the embedding vector of node vi.

In Equation (1), ei is the initial state of node vi. When the

dimension of the input feature ei of the node is less than d,

zeros are padded such that hi ∈ Rd. In Equation (2), Ai: ∈

R1×2n selects two columns corresponding to node vi from

matrix A. The matrix A ∈ Rn×2n determines the

communication mode of the nodes in the graph. The series

connection of Aout and Ain represents the weighted connection

of the in-degree and the out-degree. The following [h1, …,

hn]T aggregates the features of all nodes at time t - 1 to form

an n-dimensional vector. ai ∈ R2d represents the interaction

between a node and its adjacent node through a directed edge.

The result here considers the two-way information transfer

since two columns of Aout and Ain are taken in the matrix A. H

∈ Rd×2d represents the control weight, and b represents the

bias vector. Equations (3)-(6) are similar to the calculation

process of GRU, zi controls the forgotten information, and ri

controls the newly generated information. Then, σ(∙)

represents the Sigmoid function and ⊙ represents the dot

product operator. Finally, learn the embedding representation

of all nodes in the session graph, and get the final node

vector.

𝑣2 𝑣1 𝑣4

(a) Session Graph

𝑣3

𝑣3 𝑣3

0 1/2 0 1/2 0 1/2 1/2 0

1/2 0 1/2 0 1 0 0 0

1 0 0 0 0 1/2 0 1/2

0 0 1 0 1 0 0 0

𝑣1 𝑣2 𝑣4 𝑣1 𝑣2 𝑣4
𝑣1

𝑣2

𝑣4

Outgoing Edges Incoming Edges

(b) A=[Aout, Ain]

𝑣3

Fig. 2. Session graph and the connection matrix A

D. Enhanced Multi-Head Self-Attention Networks

Compared with traditional models, we fully consider the

relevance of items and the dynamic evolution of user interests

and introduce an enhanced multi-head self-attention network.

Therefore, it can divide the vector space into multiple heads

to learn more item information. The improved model can

better learn the dependencies between items and extract

transition patterns by splitting the sequence.

The self-attention mechanism maps the query and

key-value pairs to the output and calculates it as a weighted

sum of values, where the corresponding key and query

determine the assigned weight. The matrices Q, K, and V are

obtained by the linear transformation of the embedding

matrix H, i.e., H = [h1, …, hn]. In practice, the input of the

self-attention network is the embedding matrix H or the

previous encoder block output, which is calculated as follows

[16]:

 ()
Q

Q linear H HW= = (7)

 ()
K

K linear H HW= = (8)

 ()
V

V linear H HW= = (9)

Engineering Letters, 30:1, EL_30_1_05

Volume 30, Issue 1: March 2022

__

 (, ,) ()

T

k

QK
Attention Q K V softmax V

d
= (10)

where WQ, WK, WV represent the projection matrices. We

calculate the inner product of each row pair of the matrices Q

and K. To prevent too large inner products, they are divided

by the square root of dk. The matrix obtained by multiplying

Q by the transpose of K represents the intensity of attention

on items. Then, a softmax function calculates the attention

coefficients of items. An item in the session adaptively

assigns weights to other items through the self-attention

mechanism. In this way, each item learns interdependency

with other items.

In the previous section, we introduce how to calculate the

output matrix through self-attention mechanisms. However,

the multi-head self-attention network is constituted of many

self-attention mechanisms. The multi-head self-attention

network divides the embedding vector into multiple

subspaces and can focus on information in different spaces

and integrate them. Combining multiple self-attention blocks

enhances the network’s learning ability, which helps the

network capture rich spatial information, which is calculated

as follows [16]:

1

(, ,) (, ,)
O

h
S MH Q K V Concat head head W= = (11)

 (, ,)
Q K V

i
head Attention HW HW HW= (12)

where WQ, WK, WV represent the parameter matrices, H

represents the embedding matrix, and h represents the

number of self-attention heads.

After that, we add a point-wise feed-forward network,

which consists of two linear transformations and a ReLU

activation function, and increases the nonlinearity of the

model, which is calculated as follows [16]:

1 1 2 2

() ()FFN S ReLU SW b W b= + + (13)

Following the multi-head self-attention and feed-forward

networks, we apply residual connection and dropout

technology to solve the overfitting problem of multi-layer

networks, which is calculated as follows:

 (())S S Dropout MH S = + (14)

 (())F S Dropout FFN S = + (15)

where W1, W2 represent the weight matrices, b1, b2 represent

the bias vectors.

For simplicity, we represent the above enhanced

multi-head self-attention networks as a whole:

 ()F EMSAN H= (16)

After the first enhanced multi-head self-attention network

block, the embedding vectors of all the previous items are

synthesized. Finally, to further learn the transition patterns of

the session, we stack the multiple network blocks, and the

b-th block is calculated as:

 1
()

b b
F EMSAN F

−
= (17)

We observe in experiments that b = 1 obtains better

performance compared to other values.

E. Prediction Layer

The prediction layer is constituted of dot product score

calculation and softmax function. We use the embedding

vector of session s to calculate the score ŝi of each candidate

item vi:

 ˆ ()
b T

i i
s F h= (18)

where hi represents the embedding vectors of all items in the

session.

Then, we use the softmax function to ŝ to get the

probability score ŷ of the item:

 ˆ ˆ()y softmax s= (19)

where ŝ ∈ Rm represents the predicted scores of all candidate

items, and ŷ ∈ Rm represents the probability of item to be

clicked next.

For each session graph Gs, we apply the cross-entropy loss

function:

1

ˆ ˆ ˆ() log() (1) log(1)
m

i i i i

i

L y y y y y
=

= − + − − (20)

where y represents the one-hot vector of a ground truth item.

In the end, we apply back-propagation through time

algorithms to train the EMSAGNN.

IV. EXPERIMENTS

This section mainly introduces datasets, baselines, and

evaluation indicators. Then, the performance and parameters

of the EMSAGNN model are studied.

A. Datasets

We choose two typical benchmark e-commerce datasets to

evaluate the performance of the models.

 Yoochoose is the dataset of RecSys Challenge 2015 [34].

It records the click flows of an e-commerce website

within 6 months.

 Diginetica is the dataset of CIKM Cup 2016 [35]. It

contains transaction data suitable for session-based

recommendations.

TABLE I

STATISTIC DETAILS OF THE DATASETS IN THE EXPERIMENTS

Dataset Yoochoose Diginetica

clicks 557,248 982,961

train sessions 369,859 719,470

test sessions 55,898 60,858

items 16,766 43,097

Average length 6.16 5.12

Engineering Letters, 30:1, EL_30_1_05

Volume 30, Issue 1: March 2022

__

For a fair comparison, we follow the preprocessing method

proposed by the predecessors and filter out the sessions with

length 1 and the items with fewer than 5 clicks in the two

datasets [21], [22]. After data preprocessing, the Yoochoose

dataset has 7,985,580 sessions and 37,483 items, and the

Diginetica dataset has 204,771 sessions and 43,097 items.

Then, we divide a session of length n into n - 1 training

sequences of lengths 2 to n to expand the dataset, and the last

item is used as the label item. The Yoochoose dataset is too

large, and we choose the most recent parts 1/64 of the training

data.

Session 𝑠

Training sequence 1

Training sequence 2

Training sequence 6

𝑣2 𝑣1 𝑣4 𝑣3 𝑣1 𝑣2 𝑣3

𝑣2 𝑣1

𝑣2 𝑣1 𝑣4

𝑣2 𝑣1 𝑣4 𝑣3 𝑣1 𝑣2 𝑣3

⋮ ⋮

Fig. 3. The preprocessing of training sequences

B. Baselines

We chose the following representative methods for

performance comparison to prove the effectiveness of the

EMSAGNN model.

 POP recommends items with many interactions with

users, which is a standard baseline method in Top-N

recommendations.

 S-POP recommends the most popular items in the

session for users and takes the top-N frequent items as

the recommended targets.

 BPR-MF [31] is a commonly used matrix factorization

algorithm, which uses the BPR objective function to

calculate the pairwise ranking loss.

 FPMC [8] applies the combination of matrix

factorization and Markov chain to capture the

dependencies between items.

 Item-KNN [32] is a classic collaborative filtering

algorithm that recommends products by calculating the

cosine similarity between items.

 GRU4REC [11] uses recurrent neural network

modeling to predict the next possible interactive item

through item dependencies.

 NARM [12] applies attention mechanisms and recurrent

neural networks to capture users’ primary purposes and

sequence behaviors.

 STAMP [18] splits user sessions into global and local

interests for joint prediction.

 RepeatNet [33] adds the probability calculation of

repeated recommendations and in a very clever way.

 SR-GNN [21] applies graph neural networks to capture

the dependencies between users and items.

 GC-SAN [30] dynamically constructs the graph

structure data and captures rich local information

through graph neural networks.

 TAGNN [22] introduces target-aware attention

adaptively activates users’ different interest levels

towards various target items.

C. Evaluation Metrics

We choose the two most popular evaluation metrics to

estimate the predicted performance of all models.

HR@20 (Hit Rate): This metric takes into account the

accuracy of predicted items. When the ground truth is 1, the

hit ratio is equal to recall, which is the proportion of correctly

predicted items.

 @ 20 hit
n

HR
N

= (21)

where N represents the total of test sets, and nhit represents the

number of correct items in the top 20 ranking lists.

MRR@20 (Mean Reciprocal Rank): This metric takes

into account the ranks of predicted items. When the ranking

exceeds 20, MRR@20 is set to zero. Therefore, the higher the

MRR@20 value, the correct prediction is closer to the top

ranking list.

1 1

@ 20
()

i testv s i

MRR
N Rank v

= (22)

where vi represents the prediction items, and stest represents

the test sets.

D. Experiment Setting

We have conducted many experiments on the EMSAGNN

model and used the Adam optimizer to optimize these

parameters to obtain optimized performance. The initial

learning rate is set to 0.0005 and decays by 0.1 after every 3

epochs. At the same time, the L2 regularization parameter is

set to 10-5 to alleviate overfitting.

E. Comparison with Baseline Methods

We compared EMSAGNN with representative baseline

methods to evaluate the performance of the model. All

methods use two evaluation indicators for evaluation, and the

experimental results are shown in Table II. Experimental

results show that the performance of this model is better than

other baseline methods, which verifies the advantages of the

model.

For traditional non-personalized recommendation models,

such as POP and S-POP, they cannot mine the in-depth

information in the session because the modeling method is

too simple. Item-KNN outperforms the BPR-MF and FPMC

models. The main reason is that Item-KNN is based on the

similarity matrix for modeling, which takes advantage of the

similarity between the items. However, Item-KNN ignores

the order relationship between items, and the prediction

results are not accurate. With the development of deep

learning technology, the prediction accuracy of the model has

been dramatically improved. The GRU4REC model is the

first method to use recurrent neural networks. It takes

advantage of the natural advantages of recurrent neural

networks to process sequence data and achieve proud

performance. This shows that deep learning technology has a

great potential for session-based recommendations. The

NARM and STAMP models use an attention mechanism,

which effectively improves the models’ performance.

Engineering Letters, 30:1, EL_30_1_05

Volume 30, Issue 1: March 2022

__

TABLE Ⅱ
PERFORMANCE COMPARISON OF EMSAGNN WITH BASELINE METHODS

Methods
Yoochoose Diginetica

HR@20 MRR@20 HR@20 MRR@20

POP 6.71 1.65 0.89 0.20

S-POP 30.44 18.35 21.06 13.68

BPR-MF 31.31 12.08 5.24 1.98

FPMC 45.62 15.01 26.53 6.95

Item-KNN 51.60 21.81 35.75 11.57

GRU4REC 60.64 22.89 29.45 8.33

NARM 68.32 28.63 49.70 16.17

STAMP 68.74 29.67 45.64 14.32

RepeatNet 70.71 31.03 47.79 17.66

SR-GNN 70.57 30.94 50.73 17.59

GC-SAN 70.66 30.04 50.90 17.63

TAGNN 71.02 31.12 51.31 18.03

EMSAGNN 71.43 31.88 51.48 18.04

RepeatNet considers the phenomenon of repeated purchases

and improves the performance through repeated

recommendations, which is better than the previous methods.

SR-GNN constructs the session as a session graph and

considers the translation patterns between items. The

GC-SAN model applies a self-attention behind the GNN to

learn the long-term dependence of the session. However, it is

not easy to obtain in-depth local information in the session.

The TAGNN model proposes a target perception module, and

overall performance is better than the SR-GNN and GC-SAN.

The comprehensive performance of the method GNN-based

is better than that RNN-based.

In summary, we propose a model that shows the best

performance under two evaluation metrics. Furthermore,

these results demonstrate the efficiency of the EMSAGNN

model.

F. Ablation Studies

This section conducts further research and analysis on the

model’s architecture to prove its validity.

We compare the model in this paper with no graph neural

network (EMSAGNN-baseEmbedding) and basic attention

(EMSAGNN-baseAttention) models. From Table Ⅲ, the

performance of EMSAGNN is better than

EMSAGNN-baseEmbedding and EMSAGNN-baseAttention

models. This further verified the complementarity of the

graph neural network and enhanced multi-head self-attention

network, which plays an essential role in improving the

model’s prediction performance.
TABLE Ⅲ

PERFORMANCE COMPARISON OF DIFFERENT ARCHITECTURES

Methods
Yoochoose Diginetica

HR@20 MRR@20 HR@20 MRR@20

EMSAGNN-

baseEmbedding
70.56 30.31 50.32 16.25

EMSAGNN-

baseAttention
69.08 29.52 48.85 16.20

EMSAGNN 71.43 31.88 51.48 18.04

G. Hyperparameter Studies

The values of hyperparameters play important roles in

improving model performance. However, for different

models, the values of hyperparameters are also different. This

section selects some common hyperparameters to discuss and

observe the influence on model performance.

The model uses an enhanced multi-head self-attention

network to learn and aggregate information from multiple

spaces, which helps the network to capture richer session

information. We change the number of attention heads from 1

to 12 and observe the model performance. In Fig. 4, the

increase in attention heads does not improve the model’s

performance. However, too many attention heads limit the

expressive ability of attention. The experimental results show

that the best number of heads in the Yoochoose dataset is 4,

and the Diginetica dataset is 10. When the number of

attention heads is bigger or smaller than the optimal value, it

will affect the model’s performance.

The enhanced multi-head self-attention network can learn

the deep dependencies of items to get the user’s dynamic

interest preferences. We choose 1-6 layers of network for

experimental testing. In Fig. 5, the best number of network

layers in both datasets is 1. As the number of network layers

increases, the performance of the model will also decrease.

We also try to select the appropriate embedding size for

specific tasks. We choose the embedding size from {70, 80,

90, 100, 110, 120} for the Yoochoose dataset, and {30, 40, 50,

60, 70, 80} for the Diginetica dataset. Generally, there is a

dimension with the best effect in the range. In Fig. 6, the

optimal embedding size of the Yoochoose dataset is 100, and

that of the Diginetica dataset is 60. The embedding size limits

learning ability when too small, and is easy to overfit when

too large.

In Fig. 7, we consider the impact of the number of layers of

feed-forward networks on the model’s performance. We

choose 1-6 layers of feed-forward networks to test the model.

It is observed that the optimal number of network layers is 4

on both datasets. Too many or too few network layers will

affect the learning ability of the model.

V. CONCLUSIONS

In situations where user information and long-term history

are not available, session-based recommendations are

essential. This paper proposes a new model combining

enhanced multi-head self-attention networks and graph

neural networks. It considers the complex transition patterns

between items and the dynamic evolution of user interests.

The prediction is jointly made through users’ global and local

interest preferences. The experimental results show that our

proposed model achieves state-of-the-art results compared

with representative methods on two public e-commerce

datasets.

Engineering Letters, 30:1, EL_30_1_05

Volume 30, Issue 1: March 2022

__

Fig. 4. The performance under different numbers of attention heads

Fig. 5. The performance under different numbers of layers of EMSAN

Fig. 6. The performance under different embedding sizes

Fig. 7. The performance under different numbers of layers of feed-forward network

Engineering Letters, 30:1, EL_30_1_05

Volume 30, Issue 1: March 2022

__

REFERENCES

[1] J. B. Schafer, J. A. Konstan and J. Riedl, “Recommender systems in

e-commerce,” in Proc. ACM Conf. Electronic Commerce, pp. 158–166,

1999.
[2] Y. Hu, Y. Koren and C. Volinsky, “Collaborative filtering for implicit

feedback datasets,” in Proc. 8th IEEE International Conference on

Data Mining, pp. 263–272, 2008.
[3] Y. Koren, “Factorization meets the neighborhood: a multifaceted

collaborative filtering model,” in Proc. 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,

pp. 426–434, 2008.

[4] Y. Koren, R. Bell and C. Volinsky, “Matrix factorization techniques
for recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[5] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in Proc. 20th International Conference on Very Large Data

Bases, pp. 487-499, 1994.

[6] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc. 11th
International Conference on Data Engineering, pp. 3-14, 1995.

[7] J. Pei, J. W. Han, B. Mortazavi-Asl and H. Pinto, “PrefixSpan: Mining

sequential patterns efficiently by prefix-projected pattern growth,” in
Proc. International Conference of Data Engineering, pp. 215-224,

2001.
[8] S. Rendle, C. Freudenthaler and L. Schmidt-Thieme, “Factorizing

personalized markov chains for next-basket recommendation,” in Proc.

19th International Conference on World Wide Web, pp. 811–820,
2010.

[9] P. Wang, J. Guo, Y. Lan, J. Xu, S. Wan and X. Cheng, “Learning
hierarchical representation model for next basket recommendation,” in

Proc. 38th International ACM SIGIR Conference on Research and

Development in Information Retrieval, pp. 403-412, 2015.
[10] R. He and J. McAuley, “Fusing similarity models with markov chains

for sparse sequential recommendation,” in Proc. IEEE 16th
International Conference on Data Mining, pp. 191-200, 2016.

[11] B. Hidasi, A. Karatzoglou, L. Baltrunas and D. Tikk, “Session-based

recommendations with recurrent neural networks,” in Proc.
International Conference on Learning Representations, 2015.

[12] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian and J. Ma, “Neural attentive
session-based recommendation,” in Proc. 26th ACM on Conference

Information and Knowledge Management, pp. 1419–1428, 2017.

[13] Y. K. Tan, X. Xu and Y. Liu, “Improved recurrent neural networks for

session-based recommendations,” in Proc. 1st Workshop on Deep

Learning for Recommender Systems, pp. 17–22, 2016.
[14] Zahra Berradi, Mohamed Lazaar, Hicham Omara and Oussama

Mahboub, "Effect of architecture in recurrent neural network applied

on the prediction of stock price," IAENG International Journal of
Computer Science, vol. 47, no.3, pp436-441, 2020.

[15] H. Sak, A. Senior, K. Rao and F. Beaufays, “Fast and accurate
recurrent neural network acoustic models for speech recognition,”

arXiv preprint arXiv:1507.06947, 2015.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N.
Gomez, L. Kaiser and I. Polosukhin, “Attention is all you need,” in

Proc. Advances in Neural Information Processing Systems, pp.
5998–6008, 2017.

[17] W. C. Kang and J. Mcauley, “Self-Attentive Sequential

Recommendation,” in Proc. 2018 IEEE International Conference on
Data Mining, pp. 198-206, 2018.

[18] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “Stamp: Short-term
attention/memory priority model for session-based recommendation,”

in Proc. 24th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 1831–1839, 2018.
[19] S. Wu, W. Zhang, F. Sun and B. Cui, “Graph neural networks in

recommender systems: a survey,” arXiv preprint arXiv:2011.02260,
2020.

[20] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner and G. Monfardini,

“The graph neural network model,” IEEE Transactions on Neural
Networks, vol. 20, no. 1, pp. 61-80, 2008.

[21] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie and T. Tan, “Session-based
recommendation with graph neural netwyooorks,” in Proc. AAAI

Conference on Artificial Intelligence, vol. 33, no. 1, pp. 346-353, 2019.

[22] F. Yu, Y. Zhu, Q. Liu, S. Wu, L. Wang and T. Tan, “TAGNN: Target
attentive graph neural networks for session-based recommendation,” in

Proc. 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 1921–1924, 2020.

[23] R. Qiu, J. Li, Z. Huang and H. Yin, “Rethinking the item order in

session-based recommendation with graph neural networks,” in Proc.
28th ACM International Conference on Information and Knowledge

Management, pp. 579-588, 2019.

[24] M. R. Minar and J. Naher, “Recent advances in deep learning: an
overview,” arXiv preprint arXiv:1807.08169, 2018.

[25] W. Zaremba, I. Sutskever and O. Vinyals, “Recurrent neural network
regularization,” arXiv preprint arXiv:1409.2329, 2014.

[26] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, T. Chua, “Attentional

factorization machines: Learning the weight of feature interactions via
attention networks,” arXiv preprint arXiv:1708.04617, 2017.

[27] G. Zhou, C. Song, X. Zhu, X. MA, Y. Yan et al., “Deep interest
network for click-through rate prediction,” in Proc. 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining, pp. 1059-1068, 2018.
[28] Y. Li, R. Zemel, M. Brockschmidt and D. Tarlow, “Gated graph

sequence neural networks,” in Proc. International Conference on
Learning Representations, 2016.

[29] Y. LeCun, Y. Bengio and G. E. Hinton, “Deep learning,” Nature, vol.

521, no.7553, pp. 436–444, 2015.
[30] C. Xu, P. Zhao, Y. Liu, V.S. Sheng, J. Xu, F. Zhuang, J. Fang and X.

Zhou, “Graph contextualized self-attention network for session-based
recommendation,” in Proc. 28th International Joint Conference on

Artificial Intelligence, vol. 19, pp. 3940–3946, 2019.

[31] S. Rendle, C. Freudenthaler, Z. Gantner and L. Schmidt-Thieme, “Bpr:
Bayesian personalized ranking from implicit feedback,” in Proc. 25th

Conference on Uncertainty in Artificial Intelligence, pp. 452–461,

2009.

[32] B. Sarwar, G. Karypis, J. Konstan and J. Riedl, “Item-based

collaborative filtering recommendation algorithms,” in Proc. 10th
International World Wide Web Conference, pp. 285–295, 2001.

[33] P. Ren, Z. Chen, J. Li, Z. Ren, J. Ma and M. D. Rijke, “Repeatnet: a
repeat aware neural recommendation machine for session-based

recommendation,” in Proc. AAAI Conference on Artificial Intelligence,

vol. 33, no. 1, pp. 4806-4813, 2019.
[34] Yoochoose dataset, RecSys Challenge 2015, Available:

https://2015.recsyschallenge.com/challenge.html, 2015.
[35] Diginetica dataset, CIKM cup 2016, Available:

http://cikm2016.cs.iupui.edu/cikm-cup, 2016

Engineering Letters, 30:1, EL_30_1_05

Volume 30, Issue 1: March 2022

__

