
 

  

Abstract—Session-based recommendation aims to predict 

following user behaviors based on short-term anonymous 

sessions. Although there are many types of existing 

recommendation models, it is still a challenging problem to dig 

out the profound relationship between users and items from 

short sessions. Therefore, complex transformation patterns and 

the dynamic evolution of user interests are considered in the 

session, and this paper proposes a new method, named 

Enhanced Multi-Head Self-Attention Graph Neural Networks 

for Session-based Recommendation (EMSAGNN). The model 

first converts sequence data into graph structure and feeds 

them into graph neural networks to dynamically learn the 

complex transition patterns and capture user preferences. Then, 

an enhanced multi-head self-attention network further learns 

sessions to capture rich hidden information in items. Finally, 

with the learned information, EMSAGNN calculates the 

probability scores of different items to recommend more 

suitable items for users. We conduct extensive experiments and 

comparisons on two public e-commerce datasets. The 

experimental results show that our proposed model is superior 

to the state-of-the-art methods.  

 
Index Terms—session-based recommendation, graph neural 

networks, enhanced multi-head self-attention, deep learning  

 

I. INTRODUCTION 

ITH the improvement of information technology, 

users are often easily lost in massive information and 

cannot find target items. To solve these problems, 

personalized recommendation systems emerge. In recent 

years, users’ private information has been protected more 

strictly. Meanwhile, many users are reluctant to leave factual 

information when browsing or searching. When users’ 

personal information is not available, traditional 

recommendation methods cannot capture users’ interest 

preferences based on a simple session sequence, which leads 

to inaccurate recommendation results. Therefore, 

session-based recommendation systems [1] are essential. 

Because users’ preferences may be affected by multiple 

factors, such as age, gender, region, and season, user-based or 
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content-based methods [2]–[4] cannot detect or capture 

dynamic changes in user interest. In contrast, session-based 

methods have natural advantages in learning the 

dependencies between items in a short-term session. 

Moreover, they can use the characteristics of the session to 

explore the current preference of users. Therefore, the main 

task of the session recommendation system is to extract 

information from sessions and learn users’ interests. As a 

result, the session-based recommendation has gradually 

become a study hotspot in recommendation systems 

[11]–[13].  

Most traditional session recommendation models are 

based on the Markov chain [8]–[10]. They assume that the 

user’s subsequent action depends only on the previous one or 

several previous ones so that the Markov chain model can 

only capture short-term item information. However, it is 

impossible to learn the global dependencies of the entire 

session. With the rapid development of deep learning [29], 

neural network methods have been widely applied in various 

fields. Inspired by the successful cases of recurrent neural 

networks (RNNs) [25] in sequence modeling [14], [15], more 

and more researchers use RNNs to learn the session 

information. Compared to Markov chain methods, recurrent 

neural network models have natural advantages—they learn 

the entire session and improve performance. Among them, 

GRU4REC [11] and NARM [12] are two typical 

representatives. They improve the accuracy of 

recommendations from the perspective of the items and the 

users, taking advantage of the rich information in the items. 

At the same time, RNNs-based models also have apparent 

shortcomings. They consider complete session information 

but ignore the dynamic changes of user interests and are very 

time-consuming.  

After Transformer model [16] is proposed by Google in 

2017, the self-attention mechanism gradually becomes the 

mainstream method for session-based recommendations, e.g., 

SASRec [17] and STAMP [18]. They apply attentional 

mechanisms to learn global information about sessions and 

further improve the models’ performance. With the progress 

of graph neural networks (GNNs) [19], [20], Wu et al. 

propose the SR-GNN [21] model that applies GNNs to 

session-based recommendations. The model builds a session 

sequence into graph structure data and considers the 

interrelationships between items, which provides a new 

direction for session-based recommendations.  

Although the above methods have achieved exciting and 

advanced results, they still have some limitations. First of all, 

they do not consider the complex transition patterns between 
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all items. The global and local preferences of users both play 

crucial roles in improving the model performance [8], [9]. 

Secondly, although some models consider complete sessions, 

the learning effect of session information is still poor. As the 

length of a sequence increases, it is easy to ignore previous 

items’ information [11], [12]. Then, most models learn static 

preferences to predict the results and do not consider dynamic 

changes in users’ interests [17], [18]. Finally, a session 

cannot be viewed as a simple time sequence, and the 

transition pattern between items should be more complicated 

[23].  

We propose a new session-based recommendation model 

applying a graph neural network and an enhanced multi-head 

self-attention network to solve the above problems. First, we 

construct the session sequence as a session graph and use 

GNN to calculate the embedding vector of each item node. 

Secondly, to better capture the dynamic changes of users’ 

interest preferences, we propose an enhanced multi-headed 

self-attention network to learn complex transition patterns 

and global dependencies in session. Third, we combine users’ 

global and local preferences to predict their item needs 

accurately. Finally, we conducted a number of experiments 

on two benchmark e-commerce datasets. Experimental 

results show that this method performs well in session-based 

recommendation tasks.  

II. RELATED WORK 

A. Traditional Session Recommendation Methods 

Traditional session-based recommendation models include 

sequential pattern mining [5]–[7] and Markov chain methods 

[8]–[10]. They have natural advantages in taking the 

dependencies between users and items. Moreover, it is the 

most intuitive solution for session-based recommendations. 

For example, Rendel et al. propose the FPMC [8] model that 

combines matrix decomposition and first-order Markov 

chain methods. It calculates the probability of 

recommendation by learning users’ global interest 

preferences and the transition relationship between items. 

Hidasi et al. make improvements to FPMC by adding a 

nonlinear transformation and propose the HRM [9] model. 

Since Markov chain methods assume that a recommended 

item depends on the most recent interacted items. Therefore, 

they can only capture point-based dependencies, ignoring the 

collective global dependencies between users and items. 

Instead, we construct a session graph to capture more 

complex transition patterns across inherent session 

information.  

B. Deep Learning-based Session Recommendation Methods 

In recent years, deep learning has achieved excellent 

computer vision, pattern recognition, and natural language 

processing. With the widespread application of neural 

network methods, more and more models have begun to use 

them in recommendation systems [24]. As an essential 

branch of recommendation systems, session-based 

recommendations are gradually becoming a deep learning 

technology research hotspot.  

Inspired by the successful case of RNNs [25] in sequence 

modeling. [14], [15]. Hidasi et al. first propose the 

GRU4REC [11] model based on recurrent neural networks. It 

uses multi-layer gated recurrent units (GRUs) to learn the 

session sequence. The NARM [12] model propose by Li et al. 

stacks GRUs as an encoder to capture more transitional 

information of items and adds an attention mechanism. 

Compared with traditional methods, these models have 

achieved excellent results and apply RNNs in session-based 

recommendations. Inspired by Transformer [16], Kang et al. 

propose a SASRec [17] model, which applies a self-attention 

mechanism to model users’ historical behavior sequences. 

Liu et al. propose the STAMP [18] model with a new 

attention mechanism, which can reduce the impact of time 

sequences by capturing users’ global and local preferences 

for joint prediction. Compared with Markov chain and 

recurrent neural network models, the attention model is more 

efficient and easier to understand. It has been well applied in 

AFM [26] and DIN [27] models.  

C. Graph Neural Network-based Session Recommendation 

Methods 

Graph neural network is a generalized neural network 

based on graph structure that has emerged in recent years [19], 

[20]. Because of its unique computing ability, it has attracted 

the attention and research of many researchers. An early 

application of GNNs in session-based recommendation is the 

SR-GNN [21] model proposed by Wu et al. They use GNNs 

to process transitional relationships between users and items. 

The proposed model provides a new perspective for session 

recommendations. Xu et al. propose a graph contextual 

self-attention model (GC-SAN) [30], which can capture the 

long-term dependencies of items. Yu et al. propose a new 

target attention graph neural network (TAGNN) [22]. In 

TAGNN, target-aware attention adaptively activates users’ 

different levels of interest towards various target items. The 

model considers the diversity of users’ interests, improving 

its representation ability.  

Compared with the above methods, we propose a new 

network model to conduct deep mining of sessions. In 

addition, we consider dynamic changes in users’ interests. 

Therefore, the model can simultaneously learn users’ global 

and local interest preferences and is unlimited to inherent 

behavior sequences.  

III. METHODS 

In this section, we mainly introduce the construction of the 

EMSAGNN model. First, we apply graph neural networks to 

calculate the embedding vector of each item. Secondly, in a 

Transformer-like structure [16], the decoder layer is deleted, 

and the encoder layer is modified to be more suitable for 

session recommendations. Finally, build a prediction layer to 

calculate the predicted scores of different items for the next 

click. Next, we will introduce each part of the model in detail.  

A. Problem Statement 

The main task of session-based recommendation is to use 

the anonymous behavior sequence to predict the user’s next 

interaction. Here, we define the formula of the problem.  Let 

V = {v1, v2, …, vm} represent a set of all unique items in 

session set. The session s can be represented by the list s = [v1, 

v2, …, vn], where vi ∈ V represents the clicked items in 

session s. This problem can be expressed as predicting the 

user’s next click vn+1 based on the session s. We input the  
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Fig. 1.  The architecture of EMSAGNN. First, it uses graph neural networks to calculate the embedding vector of each item. Secondly, a new enhanced 
multi-head self-attention network is constructed. Finally, we use the prediction layer to calculate the predicted scores of different items for the next click. 

 

session s into the model, and the output ŷ is obtained, where ŷ 

= {ŷ1, ŷ2, …, ŷm} is the predicted scores of all items and ŷi is 

the probability score of item vi. Thus, we construct and train a 

classifier that learns the probability score of each candidate in 

item set V. The top-N items in ŷ are the candidate items 

recommended to users.  

B. Constructing Session Graphs 

We construct a session into a session graph Gs = (Vs, Es). In 

session graph Gs, the node set Vs contains all nodes in the 

graph, i.e., vi ∈ Vs. The Es represents the set of all directed 

edges in the graph, and each directed edge (vi, vi+1) ∈ Es 

means that the user clicks item vi after vi+1. Since there may 

be multiple repeatedly clicked items in the session, assigning 

a weight to each directed edge is necessary. Finally, we use 

the GNN to calculate the embedding vector of each item in 

the session graph.  

C. Item Representation Learning 

We input the session graph into the GNN to learn the 

embedding vectors of the nodes. Then, use the connection 

matrix of items to represent a session sequence. This paper 

uses the gated sequence graph neural network (GGNN) [28] 

to learn the embedding vectors of nodes, a variant of graph 

neural network. Formally, the update function of node vi of 

session graph Gs is as follows:  
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Here we take session s = [v2, v1, v4, v3, v1, v2, v3] as an 

example, where hi represents the embedding vector of node vi. 

In Equation (1), ei is the initial state of node vi. When the 

dimension of the input feature ei of the node is less than d, 

zeros are padded such that hi ∈ Rd. In Equation (2),  Ai: ∈ 

R1×2n selects two columns corresponding to node vi from 

matrix A. The matrix A ∈  Rn×2n determines the 

communication mode of the nodes in the graph. The series 

connection of Aout and Ain represents the weighted connection 

of the in-degree and the out-degree. The following  [h1, …, 

hn]T aggregates the features of all nodes at time t - 1 to form 

an n-dimensional vector. ai ∈ R2d represents the interaction 

between a node and its adjacent node through a directed edge. 

The result here considers the two-way information transfer 

since two columns of Aout and Ain are taken in the matrix A. H 

∈ Rd×2d  represents the control weight, and b represents the 

bias vector. Equations (3)-(6) are similar to the calculation 

process of GRU, zi controls the forgotten information, and ri 

controls the newly generated information. Then, σ(∙) 

represents the Sigmoid function and ⊙ represents the dot 

product operator. Finally, learn the embedding representation 

of all nodes in the session graph, and get the final node 

vector.  

 

𝑣2 𝑣1 𝑣4 

(a) Session Graph

𝑣3 

𝑣3 𝑣3 

0 1/2 0 1/2 0 1/2 1/2 0

1/2 0 1/2 0 1 0 0 0

1 0 0 0 0 1/2 0 1/2

0 0 1 0 1 0 0 0

𝑣1 𝑣2 𝑣4 𝑣1 𝑣2 𝑣4 
𝑣1 

𝑣2 

𝑣4 

Outgoing Edges Incoming Edges

(b) A=[Aout, Ain]

𝑣3 

 
Fig. 2.  Session graph and the connection matrix A 

 

D. Enhanced Multi-Head Self-Attention Networks 

Compared with traditional models, we fully consider the 

relevance of items and the dynamic evolution of user interests 

and introduce an enhanced multi-head self-attention network. 

Therefore, it can divide the vector space into multiple heads 

to learn more item information. The improved model can 

better learn the dependencies between items and extract 

transition patterns by splitting the sequence. 

The self-attention mechanism maps the query and 

key-value pairs to the output and calculates it as a weighted 

sum of values, where the corresponding key and query 

determine the assigned weight. The matrices Q, K, and V are 

obtained by the linear transformation of the embedding 

matrix H, i.e., H = [h1, …, hn]. In practice, the input of the 

self-attention network is the embedding matrix H or the 

previous encoder block output, which is calculated as follows 

[16]:  

 

 ( )
Q

Q linear H HW= =  (7) 

 ( )
K

K linear H HW= =  (8) 

 ( )
V

V linear H HW= =  (9) 
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where WQ, WK, WV represent the projection matrices. We 

calculate the inner product of each row pair of the matrices Q 

and K. To prevent too large inner products, they are divided 

by the square root of dk. The matrix obtained by multiplying 

Q by the transpose of K represents the intensity of attention 

on items. Then, a softmax function calculates the attention 

coefficients of items. An item in the session adaptively 

assigns weights to other items through the self-attention 

mechanism. In this way, each item learns interdependency 

with other items.  

In the previous section, we introduce how to calculate the 

output matrix through self-attention mechanisms. However, 

the multi-head self-attention network is constituted of many 

self-attention mechanisms. The multi-head self-attention 

network divides the embedding vector into multiple 

subspaces and can focus on information in different spaces 

and integrate them. Combining multiple self-attention blocks 

enhances the network’s learning ability, which helps the 

network capture rich spatial information, which is calculated 

as follows [16]:  

 

 
1
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h
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where WQ, WK, WV represent the parameter matrices, H 

represents the embedding matrix, and h represents the 

number of self-attention heads.  

After that, we add a point-wise feed-forward network, 

which consists of two linear transformations and a ReLU 

activation function, and increases the nonlinearity of the 

model, which is calculated as follows [16]:  

 

 
1 1 2 2

( ) ( )FFN S ReLU SW b W b= + +  (13) 

 

Following the multi-head self-attention and feed-forward 

networks, we apply residual connection and dropout 

technology to solve the overfitting problem of multi-layer 

networks, which is calculated as follows:  

 

 ( ( ))S S Dropout MH S = +  (14) 

 ( ( ))F S Dropout FFN S = +  (15) 

 

where W1, W2 represent the weight matrices, b1, b2 represent 

the bias vectors.  

For simplicity, we represent the above enhanced 

multi-head self-attention networks as a whole:  

 

 ( )F EMSAN H=  (16) 

 

After the first enhanced multi-head self-attention network 

block, the embedding vectors of all the previous items are 

synthesized. Finally, to further learn the transition patterns of 

the session, we stack the multiple network blocks, and the 

b-th block is calculated as:  

 

 1
( )

b b
F EMSAN F

−
=  (17) 

 

We observe in experiments that b = 1 obtains better 

performance compared to other values.  

E. Prediction Layer 

The prediction layer is constituted of dot product score 

calculation and softmax function. We use the embedding 

vector of session s to calculate the score ŝi of each candidate 

item vi:  

 

 ˆ ( )
b T

i i
s F h=  (18) 

 

where hi represents the embedding vectors of all items in the 

session.  

Then, we use the softmax function to ŝ  to get the 

probability score ŷ of the item:  

 

 ˆ ˆ( )y softmax s=  (19) 

 

where ŝ  ∈ Rm represents the predicted scores of all candidate 

items, and ŷ ∈ Rm represents the probability of item to be 

clicked next.  

For each session graph Gs, we apply the cross-entropy loss 

function:  

 

 
1

ˆ ˆ ˆ( ) log( ) (1 ) log(1 )
m
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i
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where y represents the one-hot vector of a ground truth item.  

In the end, we apply back-propagation through time 

algorithms to train the EMSAGNN.  

IV. EXPERIMENTS 

This section mainly introduces datasets, baselines, and 

evaluation indicators. Then, the performance and parameters 

of the EMSAGNN model are studied.  

A. Datasets 

We choose two typical benchmark e-commerce datasets to 

evaluate the performance of the models.  

 Yoochoose is the dataset of RecSys Challenge 2015 [34]. 

It records the click flows of an e-commerce website 

within 6 months.  

 Diginetica is the dataset of CIKM Cup 2016 [35]. It 

contains transaction data suitable for session-based 

recommendations.  

 
TABLE I 

STATISTIC DETAILS OF THE DATASETS IN THE EXPERIMENTS  

Dataset Yoochoose Diginetica 

# clicks 557,248 982,961 

# train sessions 369,859 719,470 

# test sessions 55,898 60,858 

# items 16,766 43,097 

Average length 6.16 5.12 
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For a fair comparison, we follow the preprocessing method 

proposed by the predecessors and filter out the sessions with 

length 1 and the items with fewer than 5 clicks in the two 

datasets [21], [22]. After data preprocessing, the Yoochoose 

dataset has 7,985,580 sessions and 37,483 items, and the 

Diginetica dataset has 204,771 sessions and 43,097 items. 

Then, we divide a session of length n into n - 1 training 

sequences of lengths 2 to n to expand the dataset, and the last 

item is used as the label item. The Yoochoose dataset is too 

large, and we choose the most recent parts 1/64 of the training 

data.  

 

Session 𝑠 

Training sequence 1

Training sequence 2

Training sequence 6

𝑣2 𝑣1 𝑣4 𝑣3 𝑣1 𝑣2 𝑣3 

𝑣2 𝑣1 

𝑣2 𝑣1 𝑣4 

𝑣2 𝑣1 𝑣4 𝑣3 𝑣1 𝑣2 𝑣3 
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Fig. 3.  The preprocessing of training sequences 

 

B. Baselines 

We chose the following representative methods for 

performance comparison to prove the effectiveness of the 

EMSAGNN model.  

 POP recommends items with many interactions with 

users, which is a standard baseline method in Top-N 

recommendations.  

 S-POP recommends the most popular items in the 

session for users and takes the top-N frequent items as 

the recommended targets.  

 BPR-MF [31] is a commonly used matrix factorization 

algorithm, which uses the BPR objective function to 

calculate the pairwise ranking loss.  

 FPMC [8] applies the combination of matrix 

factorization and Markov chain to capture the 

dependencies between items.  

 Item-KNN [32] is a classic collaborative filtering 

algorithm that recommends products by calculating the 

cosine similarity between items.  

 GRU4REC [11] uses recurrent neural network 

modeling to predict the next possible interactive item 

through item dependencies.  

 NARM [12] applies attention mechanisms and recurrent 

neural networks to capture users’ primary purposes and 

sequence behaviors.  

 STAMP [18] splits user sessions into global and local 

interests for joint prediction.  

 RepeatNet [33] adds the probability calculation of 

repeated recommendations and in a very clever way.  

 SR-GNN [21] applies graph neural networks to capture 

the dependencies between users and items.  

 GC-SAN [30] dynamically constructs the graph 

structure data and captures rich local information 

through graph neural networks.  

 TAGNN [22] introduces target-aware attention 

adaptively activates users’ different interest levels 

towards various target items.  

C. Evaluation Metrics 

We choose the two most popular evaluation metrics to 

estimate the predicted performance of all models.  

HR@20 (Hit Rate): This metric takes into account the 

accuracy of predicted items. When the ground truth is 1, the 

hit ratio is equal to recall, which is the proportion of correctly 

predicted items.  

 

 @ 20 hit
n

HR
N

=  (21) 

 

where N represents the total of test sets, and nhit represents the 

number of correct items in the top 20 ranking lists.  

MRR@20 (Mean Reciprocal Rank): This metric takes 

into account the ranks of predicted items. When the ranking 

exceeds 20, MRR@20 is set to zero. Therefore, the higher the 

MRR@20 value, the correct prediction is closer to the top 

ranking list.  

 

 
1 1

@ 20
( )

i testv s i

MRR
N Rank v

=   (22) 

 

where vi represents the prediction items, and stest represents 

the test sets.  

D. Experiment Setting 

We have conducted many experiments on the EMSAGNN 

model and used the Adam optimizer to optimize these 

parameters to obtain optimized performance. The initial 

learning rate is set to 0.0005 and decays by 0.1 after every 3 

epochs. At the same time, the L2 regularization parameter is 

set to 10-5 to alleviate overfitting.  

E. Comparison with Baseline Methods 

We compared EMSAGNN with representative baseline 

methods to evaluate the performance of the model. All 

methods use two evaluation indicators for evaluation, and the 

experimental results are shown in Table II. Experimental 

results show that the performance of this model is better than 

other baseline methods, which verifies the advantages of the 

model.  

For traditional non-personalized recommendation models, 

such as POP and S-POP, they cannot mine the in-depth 

information in the session because the modeling method is 

too simple. Item-KNN outperforms the BPR-MF and FPMC 

models. The main reason is that Item-KNN is based on the 

similarity matrix for modeling, which takes advantage of the 

similarity between the items. However, Item-KNN ignores 

the order relationship between items, and the prediction 

results are not accurate. With the development of deep 

learning technology, the prediction accuracy of the model has 

been dramatically improved. The GRU4REC model is the 

first method to use recurrent neural networks. It takes 

advantage of the natural advantages of recurrent neural 

networks to process sequence data and achieve proud 

performance. This shows that deep learning technology has a 

great potential for session-based recommendations. The 

NARM and STAMP models use an attention mechanism, 

which effectively improves the models’ performance.  
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TABLE Ⅱ 
PERFORMANCE COMPARISON OF EMSAGNN WITH BASELINE METHODS 

Methods 
Yoochoose Diginetica 

HR@20 MRR@20 HR@20 MRR@20 

POP 6.71 1.65 0.89 0.20 

S-POP 30.44 18.35 21.06 13.68 

BPR-MF 31.31 12.08 5.24 1.98 

FPMC 45.62 15.01 26.53 6.95 

Item-KNN 51.60 21.81 35.75 11.57 

GRU4REC 60.64 22.89 29.45 8.33 

NARM 68.32 28.63 49.70 16.17 

STAMP 68.74 29.67 45.64 14.32 

RepeatNet 70.71 31.03 47.79 17.66 

SR-GNN 70.57 30.94 50.73 17.59 

GC-SAN 70.66 30.04 50.90 17.63 

TAGNN 71.02 31.12 51.31 18.03 

EMSAGNN 71.43 31.88 51.48 18.04 

 

RepeatNet considers the phenomenon of repeated purchases 

and improves the performance through repeated 

recommendations, which is better than the previous methods. 

SR-GNN constructs the session as a session graph and 

considers the translation patterns between items. The 

GC-SAN model applies a self-attention behind the GNN to 

learn the long-term dependence of the session. However, it is 

not easy to obtain in-depth local information in the session. 

The TAGNN model proposes a target perception module, and 

overall performance is better than the SR-GNN and GC-SAN. 

The comprehensive performance of the method GNN-based 

is better than that RNN-based. 

In summary, we propose a model that shows the best 

performance under two evaluation metrics. Furthermore, 

these results demonstrate the efficiency of the EMSAGNN 

model.  

F. Ablation Studies 

This section conducts further research and analysis on the 

model’s architecture to prove its validity.  

We compare the model in this paper with no graph neural 

network (EMSAGNN-baseEmbedding) and basic attention 

(EMSAGNN-baseAttention) models. From Table Ⅲ, the 

performance of EMSAGNN is better than 

EMSAGNN-baseEmbedding and EMSAGNN-baseAttention 

models. This further verified the complementarity of the 

graph neural network and enhanced multi-head self-attention 

network, which plays an essential role in improving the 

model’s prediction performance.  
TABLE Ⅲ 

PERFORMANCE COMPARISON OF DIFFERENT ARCHITECTURES 

Methods 
Yoochoose Diginetica 

HR@20 MRR@20 HR@20 MRR@20 

EMSAGNN- 

baseEmbedding 
70.56 30.31 50.32 16.25 

EMSAGNN- 

baseAttention 
69.08 29.52 48.85 16.20 

EMSAGNN 71.43 31.88 51.48 18.04 

 

G. Hyperparameter Studies 

The values of hyperparameters play important roles in 

improving model performance. However, for different 

models, the values of hyperparameters are also different. This 

section selects some common hyperparameters to discuss and 

observe the influence on model performance.  

The model uses an enhanced multi-head self-attention 

network to learn and aggregate information from multiple 

spaces, which helps the network to capture richer session 

information. We change the number of attention heads from 1 

to 12 and observe the model performance. In Fig. 4, the 

increase in attention heads does not improve the model’s 

performance. However, too many attention heads limit the 

expressive ability of attention. The experimental results show 

that the best number of heads in the Yoochoose dataset is 4, 

and the Diginetica dataset is 10. When the number of 

attention heads is bigger or smaller than the optimal value, it 

will affect the model’s performance.  

The enhanced multi-head self-attention network can learn 

the deep dependencies of items to get the user’s dynamic 

interest preferences. We choose 1-6 layers of network for 

experimental testing. In Fig. 5, the best number of network 

layers in both datasets is 1. As the number of network layers 

increases, the performance of the model will also decrease.  

We also try to select the appropriate embedding size for 

specific tasks. We choose the embedding size from {70, 80, 

90, 100, 110, 120} for the Yoochoose dataset, and {30, 40, 50, 

60, 70, 80} for the Diginetica dataset. Generally, there is a 

dimension with the best effect in the range. In Fig. 6, the 

optimal embedding size of the Yoochoose dataset is 100, and 

that of the Diginetica dataset is 60. The embedding size limits 

learning ability when too small, and is easy to overfit when 

too large.  

In Fig. 7, we consider the impact of the number of layers of 

feed-forward networks on the model’s performance. We 

choose 1-6 layers of feed-forward networks to test the model. 

It is observed that the optimal number of network layers is 4 

on both datasets. Too many or too few network layers will 

affect the learning ability of the model.  

V. CONCLUSIONS 

In situations where user information and long-term history 

are not available, session-based recommendations are 

essential. This paper proposes a new model combining 

enhanced multi-head self-attention networks and graph 

neural networks. It considers the complex transition patterns 

between items and the dynamic evolution of user interests. 

The prediction is jointly made through users’ global and local 

interest preferences. The experimental results show that our 

proposed model achieves state-of-the-art results compared 

with representative methods on two public e-commerce 

datasets.  
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Fig. 4.  The performance under different numbers of attention heads 

 
Fig. 5.  The performance under different numbers of layers of EMSAN 

 
Fig. 6.  The performance under different embedding sizes 

 
Fig. 7.  The performance under different numbers of layers of feed-forward network 
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