
 

 

 

Abstract— In this paper, a study of the stress-strength 

reliability model is introduced subject to the exponentiated 

power generalized Weibull distribution. The maximum 

likelihood estimator for the stress-strength reliability function 

is deduced. The asymptotic confidence interval for the stress-

strength reliability function is derived. The fuzzy stress-

strength reliability function is discussed using the triangular 

membership function. A Bayesian estimator for the stress-

strength reliability function is deduced. A real data application 

is introduced to show the results for the stress-strength model 

based on real data and compare the use of exponentiated 

power generalized Weibull distribution with existing 

distributions.        

 

Index Terms— Reliability, Stress-strength, exponentiated 

power generalized Weibull distribution, maximum likelihood 

estimation, Bayesian estimation, fuzzy number, triangular 

membership function. 

I. INTRODUCTION 

ong (2012) presented an asymptotic interval 

estimation for        when X and Y are two 

independent variables that follow the generalized Pareto 

distribution based on the modified signed log-likelihood 

ratio statistic. Asgharzadeh et al. (2013) deduced the 

maximum likelihood estimator and of R and its asymptotic 

confidence interval in case of the stress and strength 

variables having a generalized logistic distribution with the 

same unknown scale but different shape parameters or with 

the same unknown shape but different scale parameters. 

Also, the Bayesian estimator for R was deduced.   Hussian 

(2013) presented the estimation of          when X 

and Y are two variables that follow the generalized inverted 

exponential distribution with different parameters. He 

discussed the maximum likelihood and the Bayes estimators 

for the reliability function. 

 Ghitany et al. (2015) developed the study of the point 

and interval estimation of the reliability of a stress-strength 

system from power Lindley distribution using different 

methods of the maximum likelihood, nonparametric and 

parametric bootstrap. Li and Hao (2016) studied the 

estimation of          when X and Y follow 

generalized exponential distributions containing one outlier. 

Mokhlis (2017) proposed the study of the reliability of the 

stress-strength model subject to an exponential distribution 

with general form. Li and Hao (2017) introduced the 

estimation of          when X and Y are two 
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independent variables that follow inverse Weibull 

distributions with different parameters. Iranmanesh et al. 

(2018) presented the estimation of stress-strength reliability 

parameter          when X and Y are independent 

random variables that follow inverted gamma distribution. 

Mohie El-Din et al. (2018) discussed the stress-strength 

reliability model          when X and Y follow an 

exponentiated generalized inverse Weibull distribution with 

different parameters. Juvairiyya and  Anilkumar (2018) 

introduced the likelihood and Bayesian estimation methods 

for the  stress-strength reliability under the Pareto 

distribution with upper record values. 

Muhammad et al. (2020) proposed the estimation of 

stress-strength reliability parameter          based on 

complete samples when the two independent variables X 

and Y have Poisson half logistic distribution. Al-omari et al. 

(2020) presented the estimation of the stress-strength 

reliability for exponentiated Pareto distribution using 

median and ranked set sampling methods. 

Most papers in the literature assumed the study of the 

deterministic reliability of the stress-strength models. This 

paper presents the fuzzy reliability function for the stress-

strength model assuming that reliability with triangular 

membership function under the exponentiated power 

generalized Weibull distribution. To obtain the fuzzy 

reliability function, the maximum likelihood estimator and 

the asymptotic confidence interval for the stress-strength 

reliability function are obtained. Bayesian estimators and the 

credible interval for the stress-strength reliability function 

are discussed.  A real data application is introduced to show 

the results for the stress-strength model and compare 

different distributions.        

II. EXPONENTIATED POWER GENERALIZED WEIBULL 

DISTRIBUTION 

Peña-Ramírez et al. (2018) proposed the exponentiated 

power generalized Weibull distribution with four parameters 

with cumulative distribution function and probability 

density function which given as follows  

                
    

 
      ,        

and 

                 
    

   
        

                     

where   is the scale parameter and           are the 

shape parameters. This distribution is flexible to model the 

failure rates of reliability applications.  

III. STRESS-STRENGTH RELIABILITY 

Let X and Y are two independent random variables, then 

the stress-strength reliability function will be given by 

Fuzzy Stress-Strength Reliability Subject to 

Exponentiated Power Generalized Weibull 
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Solving the integral yields an expression for the stress-

strength reliability function  

  
  

     
 

A. Maximum Likelihood Estimation 

Assume the two independent random samples 

             and              are observed from the 

exponentiated power generalized Weibull distributions with 

the parameters            and           , respectively. 

The likelihood function of                 for the 

observed samples is given as follows 

        

 

   

      

 

   

 

          
         

              
     

 

   

          
                

     

 

   

    
              

  
 

            
  

 

 
    

 

 

The log-likelihood function of                 is 

obtained as follows 

 
                                              

                          

 

   

                
  

 

   

          
   

 

   

                       
    

 

   

              

 

   

                
  

 

   

          
  

 
 

   

                       
  

 

 

 

   

 

The partial derivatives of the log-likelihood function with 

respect to                 are obtained as follows 

     

  
 
   

 
           

  

 

   

        
   

 

   

         
  

    

    
      

            
           

   

           
   

 

   

           
  

 

   

        
  

 
 

   

         
  

    

    
      

  
 
         

           
  

 

           
  

 

 

   

 

     

  
 
   

 
       

  
 

     
 

 

   

         
       

 

 

   

         
      

       
          

   

           
   

 

   

       
  

 

     
 

 

   

         
  

   
 

   

  
 

         
      

  
   

  
          

  
 

           
  

 

 

   

 

     

  
 
   

 
         

 

   

        
  

        

     
 

 

   

          
       

        

 

   

     

    
      

       
         

        
   

           
   

 

   

         

 

   

        
  

        

     
 

 

   

          
  

   
 

   

  
        

     

    
      

  
   

  
         

        
  

 

           
  

 

 

   

 

     

   
 

 

  
                 

    

 

   

 

     

   
 
 

  
                 

  
 

 

 

   

 

 

Equating the partial derivatives to zero and then solving 

the resulting equations numerically yields the maximum 

likelihood  estimators for the parameters      .  

  
     

  
   

     

  
   

     

  
   

     

   
   

     

   
   

 

The maximum likelihood  estimators for the parameters 

          can be obtained from the following relations   

    
  

                 
   

  

  
   

 

    
  

                 
   

  

  
   

 

The maximum likelihood  estimators for the stress-

strength reliability function can be obtained as 

   
   

       
 

   

B. Asymptotic Confidence Interval      

     The asymptotic variance (AV) of an estimate    which is 

a function of the two independent statistics             is 

given by (see Rao (1973))   

              
  

   
 
 

        
  

   
 
 

 

where  
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        and the asymptotic 

          confidence interval for R is given by 

    
  

 
 

            
  

 
 

      

         
 
 
 

 
 
 

 
 

 

C. Fuzzy Stress-Strength Reliability 

      Assume that the stress-strength reliability is a fuzzy 

function with triangular membership function. the interval 

for the fuzzy stress-strength reliability is given by 

                                      
where                    [L, U] is the confidence 

interval for R and M is the maximum likelihood estimator 

for R.  

 

D.  Bayesian Estimation 

      The Bayesian estimator for the stress-strength reliability 

will be obtained assuming that the parameters           are 

independent random variables with the following prior 

distributions  

                
                

The joint prior distribution of the two parameters    and    

is given by 

         
  

    
  

      
  
      

                                              

The joint posterior density of the parameters    and    is 

given by 

              
                          

                                  
 

 

 

 

 

The Bayesian estimator of the reliability function R under 

the squared error loss function using the posterior mean is 

given by 

                                     

 

 

 

 

 

Using Lindley approximation (see Lindley (1980)), the 

Bayesian estimator of R under the squared error loss 

function can be obtained using the following formula 
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The Bayesian estimator of R under the squared error loss 

function is deduced as 

                 
    

 
 
  

 
 

     
  

 
 
    

   
     

      

 
 
    

   
       

 

The Bayesian estimator of the reliability function R under 

Linex loss function is given by  

     
 

 
                 

  
 

 
                              

 

 

 

 

            

The Bayesian estimator of R under Linex loss function is 

given by   

     
 

 
                  

Using Lindely approximation, the Bayesian estimator of R 

under Linex loss function is given by   

 

     
 

 
         

 

 
          

  

   
 
 

 
   

   
         

  

          
  

   
 
 

 
   

   
         

   

  
              

   
         

  

   
        

  

  
              

   
         

  

   
        

  

 
 

 
        

    
  

   
         

    

        
    

  

   
         

       

the Bayesian estimator of R under Linex loss function is 

deduced as   

       
 

 
           

 
 

          
                   

           

    
    

   
    

     
 

 

  
    

   
    

         
 

 
 

           
 

 
 
 

 
    

E. The Credible Interval 

       The posterior probability density function of R can be 

derived and the result is 

 

      
  

    
           

             

                        
            

 

It can be shown that the posterior distribution of    and    

are given by 
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From the relations between the gamma distribution and chi-

square distribution, it can be shown that 
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The posterior distribution of R can be written as 

 

   
                          

     
    

                          
  

 

  
    

                    

  

 

 

And therefore a           credible interval for R will be 

given by 

 

   
 

 
   

 
                

 
  

    
 

 
  

  
 
 
                

 
  

 

where 

                             
     

     and             

                
  

 

  
     

 

IV. REAL DATA APPLICATION 

     The following data from Crowder (2000) will be used 

which represents the breaking strengths of single carbon 

fibers of length 1 in data set1 and of length 10 in data set 2.  

 
TABLE I 

DATA SET 1 (THE BREAKING STRENGTHS OF SINGLE CARBON 

FIBERS OF LENGTH 1) 

2.247 2.640 2.842 2.908 3.099 3.126 3.245 3.328 3.355 3.383 

3.572 3.581 3.681 3.726 3.727 3.728 3.783 3.785 3.786 3.896 

3.912 3.964 4.050 4.063 4.082 4.111 4.118 4.141 4.216 4.251 

4.262 4.326 4.402 4.457 4.466 4.519 4.542 4.555 4.614 4.632 

4.634 4.636 4.678 4.698 4.738 4.832 4.924 5.054 5.099 5.134 

5.359 5.473 5.571 5.684 5.721 5.998 6.060    

 

TABLE II 

DATA SET 2 (THE BREAKING STRENGTHS OF SINGLE CARBON 

FIBERS OF LENGTH 10) 

1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 2.397 2.445 

2.454 2.454 2.474 2.518 2.522 2.525 2.532 2.575 2.614 2.616 

2.618 2.624 2.659 2.675 2.738 2.740 2.856 2.917 2.928 2.937 

2.937 2.977 2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 

3.243 3.264 3.272 3.294 3.332 3.346 3.377 3.408 4.435 3.493 

3.501 3.537 3.554 3.562 3.628 3.852 3.871 3.886 3.971 4.024 

4.027 4.225 4.395 5.020       

 

The maximum likelihood estimators for the parameters 

and the reliability of the stress-strength model according to 

data set 1 and data set 2 are obtained as              

                                     and the 

        . The asymptotic 95% confidence interval for R is 

[0.733, 0.849]. The results of the intervals for the fuzzy 

stress-strength reliability function are obtained in Table III.  

 
TABLE III 

THE INTERVALS FOR THE FUZZY STRESS-STRENGTH 

RELIABILITY FUNCTION 

                

0.1 [0.7388, 0.8432] 

0.2 [0.7446, 0.8374] 

0.3 [0.7504, 0.8316] 

0.4 [0.7562, 0.8258] 

0.5 [0.7620, 0.8200] 

0.6 [0.7678, 0.8142] 

0.7 [0.7736, 0.8084] 

0.8 [0.7794, 0.8026] 

0.9 [0.7852, 0.7968] 

 

 

To fit the two data sets with the exponentiated power 

generalized Weibull distribution, the Kolmogorov-Simrnov 

and Anderson-Darling goodness of fit tests are used and the 

results are shown in Table IV which indicated that the 

exponentiated power generalized Weibull distribution fits 

well to data set 1 and data set 2.  

 
TABLE IV 

KOLMOGOROV-SIMRNOV AND ANDERSON-DARLING 

GOODNESS OF FIT TESTS FOR DATA SETS 1 AND 2 

Data Set 
Kolmogorov-Simrnov  

Test 
Anderson-Darling Test 

Data Set 1 
0.121 < 0.180 (critical 

value) 

1.771 < 2.492 (critical 

value) 

Data Set 2 
0.131 < 0.170 (critical 

value) 

1.839 < 2.492 (critical 

value) 

 

The goodness of fit of the two data sets is tested for 

different distributions using the log-likelihood function (Log 

L), Akaike information criteria (AIC), Akaike information 

criteria corrected (AICC) and Bayesian information criteria 

(BIC). The goodness of fit for the exponentiated power 

generalized Weibull distribution (EPGW) is compared with 

the exponentiated  Weibull distribution (EW), power 

generalized Weibull distribution (PGW), Nadarajah-

Haghighi distribution (N-H), exponentiated Nadarajah-

Haghighi distribution (EN-H) and exponentiated exponential 

distribution (EE). The maximum likelihood estimators 

(MLE) for the parameters, Log L, AIC, AICC and BIC for 

the data set 1 and data set 2 are shown in Table V and Table 

VI, respectively.  

 
TABLE V 

MLE ESTIMATES, LOG L, AIC, AICC AND BIC FOR THE DATA 

SET 1 

Distribution 
 MLE 

estimates 
Log L AIC AICC BIC 

EPGW          

         

         

         

   
        

-73.827 155.654 156.423 154.677 

Weibull      
         

         
-161.641 327.282 327.504 326.793 

EW        

         

         

   
       

-96.449 198.898 199.350 198.165 

PGW        
         

         

        

-166.711 339.422 339.874 338.689 

N-H      
         

        
-138.658 281.316 281.538 280.827 

EN-H        

         

         

   
       

-211.535 429.070 429.522 428.337 

Exponential             -139.567 281.134 281.206 280.889 

EE      
         

   
        

-89.594 183.188 183.410 182.699 

  

The results obtained in Tables V and VI, indicated that 

the exponentiated power generalized Weibull distribution 

can be a better distribution to model the data sets than the 

distributions power generalized Weibull, Nadarajah-

Haghighi, exponentiated Nadarajah-Haghighi and 

exponentiated exponential. 
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TABLE VI 
MLE ESTIMATES, LOG L, AIC, AICC AND BIC FOR THE DATA SET 2 

Distribution Estimates Log L AIC AICC BIC 

EPGW          

         

         

         

   
        

-191.205 390.410 391.087 389.634 

Weibull      
         

         
-273.413 550.826 551.022 550.438 

EW        

         

         

   
       

-230.357 466.714 467.114 466.132 

PGW        
         

         

        

-278.864 563.728 564.128 563.146 

N-H      
         

        
-268.587 541.174 541.370 540.786 

EN-H        

         

         

   
       

-344.481 694.962 695.362 694.380 

Exponential             -268.549 539.098 539.162 538.904 

EE      
         

   
       

-221.483 446.966 447.162 446.578 

 

In Table VII, the Bayesian estimate under the squared 

error loss and the credible interval for R are  obtained for 

different values of the parameters of the prior distributions 

of          . In Table VIII, The Bayesian estimate of R 

under Linex loss function is obtained for different values of 

the parameters of the prior distributions of         and 

different values of  . 
 

TABLE VII 

THE BAYESIAN ESTIMATE OF      AND THE CREDIBLE 

INTERVAL FOR R 

                   Credible Interval 

(1, 1, 0.5, 0.5) 0.744 [0.680, 0.812] 

(2, 2, 0.5, 0.5) 0.744 [0.681, 0.812] 

(2, 3, 0.5, 0.5) 0.742 [0.678, 0.809] 

(3, 3, 0.5, 0.5) 0.745 [0.682, 0.812] 

(1, 1, 1.5, 1.5) 0.654 [0.616, 0.766] 

(2, 2, 1.5, 1.5) 0.655 [0.617, 0.766] 

(2, 3, 1.5, 1.5) 0.652 [0.614, 0.762] 

(0.5, 0.5, 1, 1) 0.699 [0.644, 0.787] 

(0.5, 0.5, 2, 3) 0.637 [0.621, 0.770] 

(1.5, 1.5, 1, 1) 0.699 [0.645, 0.787] 

(2, 3, 2, 3) 0.635 [0.620, 0.705] 

 

TABLE VIII 

THE BAYESIAN ESTIMATE OF     

              
    

        
     

          
    

      
    

       
(1, 1, 0.5, 0.5) 0.725 0.723 0.726 0.721 

(2, 2, 0.5, 0.5) 0.730 0.728 0.731 0.727 

(2, 3, 0.5, 0.5) 0.733 0.731 0.733 0.730 

(3, 3, 0.5, 0.5) 0.735 0.734 0.736 0.733 

(1, 1, 1.5, 1.5) 0.589 0.566 0.598 0.552 

(2, 2, 1.5, 1.5) 0.594 0.572 0.603 0.559 

(2, 3, 1.5, 1.5) 0.596 0.575 0.605 0.562 

(0.5, 0.5, 1, 1) 0.653 0.643 0.657 0.637 

(0.5, 0.5, 2, 3) 0.498 0.447 0.516 0.412 

(1.5, 1.5, 1, 1) 0.658 0.649 0.662 0.644 

(2, 3, 2, 3) 0.507 0.460 0.525 0.428 

IV. CONCLUSION 

      The study of the fuzzy stress-strength reliability model 

subject to the exponentiated power generalized Weibull 

distribution is introduced. The maximum likelihood 

estimator and the asymptotic confidence interval for the 

stress-strength reliability function are obtained. Bayesian 

estimators and the credible interval for the stress-strength 

reliability function are derived.  An application based on real 

data is introduced to show the results for the stress-strength 

model and compare the exponentiated power generalized 

Weibull distribution with other different distributions. This 

comparison shows that the exponentiated power generalized 

Weibull model can be considered a better model to fit the 

data sets.        
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