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Abstract—With the rapid consumption of fossil fuels, 

traditional power generation methods not only cannot issue 

future energy needs, but also bring serious environmental 

problems. As a clean and renewable energy, wind energy plays 

an increasingly important role in energy supply structure. 

However, the wind speed itself is intermittent, unstable and 

random, which brings severe challenges to wind power 

generation. Aimed at improving the accuracy and reliability of 

short-term wind speed forecasting, this paper proposes a new 

hybrid model. The model includes time-varying filter, modal 

decomposition, permutation entropy, adaptive noise modal 

decomposition, adaptive neuro-fuzzy inference system (ANFIS), 

packet data processing method neural network (GMDH), and 

improved monarch butterfly optimization algorithm (IMBO). 

First, the original wind speed sequence is significantly 

decomposed twice to obtain the sub-sequence to be predicted. 

Then, the reconstructed data uses ANFIS and GMDH neural 

network models to predict sequences in different frequency 

domains to get prediction results. To further improve the 

performance of the model, the improved monarch butterfly 

optimization algorithm is used to modify the model parameters. 

Finally, the final prediction result is obtained by summing the 

prediction results of each component. In addition, for verifying 

the performance of the model, this paper designs six sets of 

comparative experiments from two dimensions to verify the 

model on three data sets. The results show that the model 

proposed in this paper has high prediction accuracy and good 

stability. 

Index Terms— wind speed prediction, neural network, 

secondary decomposition, data mining, IMBO, hybrid predictor 
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I. INTRODUCTION 

ITH the rapid development of human society, the 

consumption of energy is also increasing day by day. 

According to the "2017 World Energy Outlook" issued by the 

IEA, total global energy consumption will increase by 30% by 

the end of 2040.  

Due to the limited and non-renewable fuel, the energy 

supply is far from meeting the needs of future social 

development. In order to solve the problem of energy 

depletion, human beings have found that the emergence of 

renewable energy can cause tremendous changes in the 

energy consumption structure, and may become the pillar of 

future energy [1]. The Paris Agreement was adopted at the 

Paris Climate Change Conference on December 12, 2015. 

One of the goals of this agreement is to fully universalize the 

supply of decarbonized electricity by 2050, and wind power 

generation plays an indispensable role in achieving this goal. 

Fig. 1 shows the future global wind energy installation plan.  

As a typical renewable energy, wind power generation has 

the advantages of clean, pollution-free, wide distribution, and 

mature technology. However, there are some unavoidable 

problems in the process of wind power generation, which is 

mainly reflected in the random, non-stationary, and 

non-continuous output of wind speed [2].These problems 

have seriously affected the safety and operating efficiency of 

power grid installations. To solve these problems as much as 

possible, accurate short-term wind speed prediction is an 

effective way. Improving the accuracy of short-term wind 

speed forecasting can not only help the grid to carry out 

effective power dispatching, but also avoid a huge loss of grid 

supply, thereby achieving the purpose of improving economic 

benefits [3, 4]. 

From the perspective of forecasting methods, wind speed 

forecasting can be divided into three categories [5]: physical 

methods, statistical methods and hybrid methods. Shukul and 

Li integrated the ARIMA model into the Kalman filtering 

method and artificial neural network to improve the 

performance of wind speed prediction [6]. The support vector 

machine (SVM) method based on statistical theory is 

commonly used to solve nonlinear problems. Some 

experiments have proved that this method is superior to 

general artificial neural networks in short-term wind speed 

prediction [7]. 
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Fig. 1.  Global wind energy installation plan  

 

For example, in 2017, Jiang et al. proposed a hybrid model 

for short-term wind speed prediction based on the support 

vector machine (SVM) method, and achieved good prediction 

results [8]. Meanwhile, Zhang et al. used the genetic 

algorithm to optimize the parameters of least squares to 

support the vector of the machine. However, genetic 

algorithms are complicated to operate and are not suitable for 

overall modeling [9]. 

As the research continues to deepen, researchers have 

found that it is difficult to obtain forecast data with higher 

accuracy and precision only by relying on a single model. In 

the follow-up research process, a large number of 

experimental results show that the prediction results of the 

mixed model are far better than the single model. For example, 

Zhang et al. propose that the wind speed is predicted by 

different models, and the final prediction result is the product 

of the prediction results of each model and its weight 

coefficient [10]. Zhang's team combined EEMD (Ensemble 

Empirical Mode Decomposition)-CS (Cuckoo Search)-WNN 

(Wavelet Neural Network) to propose a new hybrid method of 

short-term wind speed prediction based on the cuckoo search 

optimization algorithm [11]. Zhang et al. proposed a wind 

speed prediction method based on the quadratic 

decomposition algorithm and Elman neural network [12]. The 

data decomposition strategy in the proposed model uses WPD 

(Wavelet Packet Decomposition and FEEMD (Fast 

Integrated Empirical Mode Decomposition). 

In the process of determining the weight coefficients of the 

mixed model, it is found that it is easy to fall into a local 

optimal situation, which leads to deviations in the prediction 

results [13]. In order to solve this problem, the researchers 

found through experiments that intelligent optimization 

algorithms help to achieve higher accuracy in the hybrid 

forecasting model [14, 15]. In 2019, Jiang et al. proposed a 

hybrid wind speed prediction system based on fuzzy time 

series and intelligent optimization algorithms. Comparative 

experiment results show that the prediction results are better 

than the traditional hybrid model [16]. 

Other examples include the multi-step wind power 

prediction model based on the error factor of the single 

objective gray wolf algorithm and the integrated method 

proposed by Hao et al [17]. To obtain a stable input sequence 

and make the prediction result better, the preprocessing of the 

data is also particularly important [18]. For example, the 

decomposition of wind speed series as a common data 

preprocessing method can make the input data more stable. 

The predictive model uses the pre-processed data to more 

easily capture the non-linear characteristics, which is 

beneficial to improve the precision and accuracy of the 

predictive results [19, 20]. 

The data pre-processing strategies adopted in this paper 

combine the empirical mode decomposition (TVF-EMD) 

based on time-varying filtering technology [21], permutation 

entropy improvement and the modal decomposition with 

adaptive noise (P-CEEMAND) [18, 22, 23]. Through the 

deep secondary decomposition of the original wind speed 

series, the time series obtained can better meet the 
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requirements of the model for the typical characteristics of the 

input data. 

In this paper, the main contributions are as follows: 

(1) Unlike most forecasting models that use a single raw 

data processing method. This paper adopts a new 

master-slave decomposition algorithm (TPD), which is based 

on time-varying filtering, permutation entropy to improve 

modal decomposition and adaptive noise decomposition to 

achieve secondary decomposition, thereby eliminating the 

interference caused by non-stationary factors in the original 

data. Make full use of the instantaneous amplitude and 

frequency information to adaptively design the local cut-off 

frequency. 

(2) Based on effective learning strategies, a hybrid 

prediction model is established. More specifically, for 

improving model training efficiency and prediction accuracy, 

the model combines two learning methods of supervised 

learning and adaptive fuzzy neural network as a training 

model for data samples. The improved adaptive fuzzy 

inference system combined with GMDH neural network is 

mainly used for the prediction of complex systems and can 

deal with linear and nonlinear time series signals well. 

(3) In order to avoid the proposed hybrid model from 

falling into the local optimum, the monarch butterfly 

optimization algorithm based on greedy strategy optimization 

is introduced on the basis of the model in this paper. 

(4) For three sets of mean wind speed data collected with 

15-minutes time stamps. In this paper, six different models are 

tested independently to verify the working effect of each 

model, and the prediction results of each model are compared 

and corresponding conclusions are drawn. 

The original data set in this article originated from a wind 

farm in Jiangsu Province, China. The data contains real-time 

wind speed data at different times and places in different 

months for easy comparison. In the research of this article, the 

first 1500 samples of each site sample are used to train the 

proposed prediction model, 1201-1500 are used as the 

verification data, and the total of 500 samples 1501-2000 are 

as for test set. The three sets of original wind speed data are 

shown in Fig. 2. 

II. METHODOLOGY 

In this part, it specifically incorporates the selection of 

wind speed sequence sites, the principle of data preprocessing 

related methods, the principle and structure of hybrid models 

and the principle of intelligent optimization algorithm. Finally, 

the realization processes of experimental prediction are given.  

A. The Running Flow of the Model 

(1) First of all, on the basis of obtaining the original wind 

speed data, use the time-varying filter (TVF) optimized EMD 

for data decomposition. After discarding the high-frequency 

noise components, two main frequency component sequences 

are obtained. 

(2) Secondly, after the two main frequency components are 

obtained by the previous decomposition, the CEEMDA 

grouping method based on permutation entropy is used to 

decompose the data for the second time. The data is 

decomposed into sub-sequences of different frequencies 

according to the relationship of frequency and domain 

distribution. 

(3) The obtained sub-sequences are divided into training 

sets and test sets. For each site sample, the first 1200 samples 

are used to train the prediction model, 1201-1500 are used as 

the verification data, and the 1501-2000 samples are used as 

the test set. 

(4) The GMDH neural network and the ANFIS adaptive 

fuzzy neural network are used to process the wind speed 

sequence of the corresponding frequency. The first prediction 

results that need to be improved are obtained, and the two 

models are described and explained in detail in section 2. 

 

Training Data Testing Data  
Fig. 2.  Original wind speed datasets 

 

 (5) We find that the prediction result is found to be 

unsatisfactory after finishing step four. The specific 

manifestation is that it is easy to fall into the local optimum 

during the model prediction process, which leads to a 

decrease in overall prediction accuracy. To solve this problem, 

the Monarch Butterfly algorithm is improved in this study to 

optimize the prediction model, and finally the final prediction 

result is completed. The algorithm improvement method is 

given in the second section of the third part. 

(6) Finally, in order to verify the prediction ability and 

generalization ability of the proposed model, three different 

classical prediction models and four different optimization 

algorithms are used for comparison with a total of seven 

different prediction models. The performance evaluation 

indicators to verify the proposed model are given in the 

second part of the third section. 

The structure of the proposed model and execution process 

of the hybrid model proposed in this article are given in Fig. 3 

and Fig. 4. 

B. Principles of Data Preprocessing 

The basic idea of the data preprocessing method adopted in 

this paper is based on decomposing the sequence a(t) into a 

collection of multiple single-component IMFs plus a non-zero 
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average residual component rQ(t) [24]. The processes of the 

second decomposition algorithm are shown in Fig. 5. 

 (t) (t)

1
Q

Q
a IMF r

i

 


 (1) 

where Q is the number of IMFs, rQ(t) is the final residual 

signal, and the first-generation residual signal r1=<m(x(i))>. 

a: The first decomposition method 

The whole process of the algorithm is divided into three 

steps: estimating the local cut-off frequency, estimating the 

local mean, and checking whether the residual margin meets 

the stopping criterion [21]. 

(1) Estimated cut off frequency 

  
       

   
1 2 2 1

1 22 4
bis

f t f t t t
f t

l t l t

   
    (2) 

(2) Estimated local mean 

Different from the convention methods of calculating the 

local meaning, this paper uses the time-varying filter 

technique to estimate the local meaning. Furthermore, it uses 

the non-uniform b-spline approximation as the time-varying 

filter[25]. The advantage is that it can improve the stability 

and robustness of traditional modal decomposition and 

reprocessing data under the condition of satisfying the low 

sampling rate. Let β
n 

(t) be the n-order b-spline function, m is the 

step length of the sequence, and define the time sequence in 

the b-spline space [26, 27]. 

      /n n

m

k

h t c k t m k




    (3) 

where c(k) is the b-spline coefficient, and t represents the 

order and knot of a given b-spline. 

    : /n n

mb t t m   (4) 

The asterisk indicates the convolution operator. For a given 

time series a(t), the b-spline coefficients are uniquely 

determined by minimizing the approximation error ρ
2 

m. 

       
2

2 * n

m mm
t

a t c b t





    (5) 

where [.]↑m is the up-sampling operation (adding zeros 

between each sample) by m.  

(3) Check whether the residual margin meets the stopping 

criterion. 

Calculation stop criterion θ(t): 

  
 

 
Loughlin

avg

B t
t

f t
    (6) 

where BLoughlin(t) is the instantaneous bandwidth, and favg(t) is 

the average cutoff frequency. When θ(t) becomes smaller 

instantaneously, the bandwidth also becomes smaller. Given a 

threshold ζ, if θ(t)≤ζ, stop the decomposition. 

b: The second decomposition method 

After the modal decomposition of the time-varying filter, 

the sub-sequences retained after removing high-frequency 

noise have good smoothness and good linear characteristics. 

However, due to the wind speed sequence itself, there are still 

low-frequency signals and other unstable factors. In order to 

meet the data requirements of the predictive model, it is 

required to accurately capture the linear characteristics of 

wind speed [3]. The proposed permutation entropy grouping 

method based on adaptive noise modal decomposition 

performs a deep secondary decomposition of the primary data, 

and then separates the basic sequence and the remaining 

low-frequency signals. At the same time, the introduction of 

permutation entropy can help us detect the complexity of the 

decomposed sequence as an indicator of whether the demand 

is met. The adjacent entropy values are used to reconstitute 

IMFs into new sub-sequences. The secondary decomposition 

wind speed sequence can be expressed as [28]: 

(1) Calculate the first-order modal component IMF1: 

 11IMF a r    (7) 

(2) Calculate the n-order residual rQ: 

   1 1

i

Q Q q qr m r b w     (8) 

where bq is the k-th mode obtained from EMD. 

(3)  Calculate the n-th order modal component IMFn: 

 1Q QIMFQ r r     (9) 

The phase space reconstruction of the second decomposition 

signal, for the time series a(t), t=1,2..., n, embedding 

dimension is defined as u, the extension time is t, and the 

reconstruction component k=n-(ψ-1)*t. 

(4)  Get the reconstruction space as [22, 23]: 

 1,2, , K

K K K

     

        

     

       
 
 
           
 
 
           

 (10) 

(5)  Extract symbol sequence 

Arrange the j-th reconstructed component in the 

reconstruction matrix in ascending numerical order, and the 

resulting sorted index value will form a set of completely 

arranged symbol sequence S numbered u. 

(6)  Calculate position information from reconstructed      

components 

Count the k reconstruction components corresponding to 

each arrangement in u!. The number of occurrences in the full 

arrangement of the number of times corresponding to each 

column is divided by the total number of times in the column 

to get the probability of each corresponding position. 

Therefore, there are m! column corresponding to the full array, 

and the probability of each column corresponding to the 

position is P1, P2, ..., Pk. 

(7) Calculate permutation entropy 

 (m) ln

1
P j j

k
H P P

j

  


  (11) 

(8) Normalization processing 

 0 / ln(m!) 1P PH H     (12) 

 when Pj=1/m!, Hp(m) reaches the maximum value 

ln(m!).The eigenvalues λi (λi ≥ 0, i = 1, 2, ···, K), Compute the 

left singular vector (Ui) and the right singular vector (Ri) of X, 

and the matrix X and xi are described as follows: 

 
T

i i i ix U R  (13) 

where, d = max(i, λi >0) = Rank(XXT), Ui and Ri represent the 

left and right singular vectors of XXT respectively. 
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Fig. 3.  The structure of the proposed model 
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Fig. 4.  Model implementation path 
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Fig. 5. Data preprocessing process 

 

C. Low-frequency model 

The system is composed of a radical basis function neural 

network combined with a fuzzy system[29]. Combined with 

the data characteristics after the second decomposition of this 

article, Fig. 9 shows a basic ANFIS model structure. In 

general, basic ANFIS architecture has five layers [30]. 

The first layer: as a fuzzy layer, the function is to pass the 

input signal obtained by each node to the next layer, and the 

output of each unit can be expressed as: 

  
2

1

i

i i

i

b
x c

O x exp
a



 
   
     
    

 

  (14) 

where x is the input signal, and ai, bi, and ci are the premise 

parameters of the model. 

The second layer: as a rule layer, the degree of membership 

output by each node represents the trigger strength of the 

fuzzy rule. 

    2 , 1,2i

iO v x y i       (15) 

The third layer: the normalization layer, each node of this 

layer is a fixed node, marked as n. The ratio of the trigger 

intensity of the ith node to the sum of the trigger intensity of 

all rules is: 

 1
3

1 2

, 1, 2i

i

v
O v i

v v
  


  (16) 

The fourth layer: the de-blurring layer, to get the output 

value for each rule. 

  4 , 1,2i

i i i i i iO v f v p x q y r i       (17) 

where vi is the normalized combustion intensity of the third 

layer, and pi, qi, ri are independent variable parameters. 

The fifth layer: the summation layer, which realizes the 

output of the ANFIS model by summing the output value of 

each rule obtained in the previous layer. 

 
5 , 1,2i

i iO v f i    (18) 

D.  High-frequency nonlinear model 

GMDH neural network is a way of using high-order 

binomial iteration to obtain the nonlinear relationship 

between input and output data. For a certain actual time series, 

the goal of the model is to find a multiple-input single-output 

mathematical relationship that can replace the actual function. 

This mathematical relationship can be used to indirectly 

predict the actual value. A better way to establish the 

connection between input and output is to use the Volterra 

functional series. The basic expression is as follows [31]: 

 0

1 1 1

...
n n n

i i ij i j

i i j

y a a x a x x
  

       (19) 

For each pair of (xi, xj) as input variables, the regression 

method is used to calculate the coefficient ai. After 

calculating the results of parameters, the prediction accuracy 

should be as small as possible, so in this model let the 

coefficient take the minimum value. 

The mathematical relationship is expressed as: 

 
 

2

i 1
y

min

M

i i

i

G
a

M




 
   (20) 

where M is the total number of samples. 

Using the second-order expression of Eq. (21), the matrix 

equation can be determined as Aa=Y, where Y is the vector of 

observed output values. 
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 
 
 
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  (21) 

In order to solve the above standard equation, the least 

square method of multiple regression analysis can be used to 

achieve. 

  
1

T Ta A A A Y


   (22) 

For the total amount of data M, this equation will determine 

the vector of the best coefficients of the quadratic equation Eq. 

(22) [32]. Fig. 10 shows the basic model architecture of 

GMDH in combination with the research objects of this 

article. 

The GMDH neural network has the ability to self-update 

the next-level neural unit to ensure prediction accuracy. The 

input layer neuron of GMDH neural network is only 

responsible for transmitting the input signal to the middle 

hidden layer neurons. Each node and output node of the 

hidden layer has only two inputs, so the GMDH neural 

network has only one output. Fig. 6 shows the processing unit 

of the GMDH neural network. 

 

Gk.1

Gk-1.i

Gk-1.j

  
Fig. 6. Processing unit of GMDH neural network 
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E. Improved Monarch Butterfly optimization algorithm 

The algorithm includes two processes of individual 

migration and adaptation to the environment. The monarch 

butterfly optimization algorithm defines each individual 

butterfly as X=x1, x2, …., xD, and the entire group is 

distributed on two continents, denoted as "land 1" and "land 

2" respectively. For a random individual located in "land 1", 

the probability is p, then the probability of being located in 

"land 2" is 1-p, and the whole group can be divided into two 

groups. The behavior of the group on "land 1" is migration, 

and the behavior of the group on "land 2" is adaptation to the 

environment. The details of the algorithm implementation are 

as follows: 

(1) Migration 

The calculation formula for the migration behavior of the 

individual located in "land1" is expressed as: 

 1

2

, *

, *

d
d r
new d

r

x rand pre p
x

x rand pre p

 
 


  (23) 

where x
d  

new is the dth dimension of the new individual, r1 is a 

random individual in land1, r2 is a random individual in land 

2, rand is a uniform random number between 0-1, and pre is a 

constant. The new individual belongs to the land 1 group. If 

the individual is better than the corresponding parent 

individual, then replace the parent position, otherwise the 

individual will be discarded. 

(2) Adapt to the environment 

The formula for calculating the adaptive behavior of an 

individual located in "land 2" is expressed as: 

 

 max

2

, 1

, 1 & 2
, 3

, 1 & 2
3

dx rand p
best

d dx x rand p rand BAR
i new r

Sd dx Levy x rand p rand BAR
r it






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


   

 (24) 

where x
d  

i,new best is the dth dimension of the optimal individual, 

r3 is the random individual in land 2, Smax is the maximum 

step size of the monarch butterfly, generally taken as 1, t is the 

current iteration number, levy is the Levy flying random, and 

BAR is a constant. 

The main disadvantage of MBO is that it has poor standard 

deviations and poor average fitness on some benchmarks. In 

order to improve the overall performance of the algorithm, 

this paper introduces a greedy strategy in the basic MBO 

method. The improved algorithm is called IMBO. 

In the traditional MBO algorithm, every new individual 

butterfly has the same probability of being passed on to the 

next generation [33, 34]. The IMBO algorithm after 

introducing the greedy strategy only accepts butterfly 

individuals with better fitness. Specifically, the use of greedy 

strategies can continuously update and optimize the 

generation of the next generation of individuals. The details of 

this greedy strategy are as follows: 

 
   1 1

1
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,
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d d d

i i id

i new
d

i

x f x f x
x

x else

 
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 
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  (25) 

where x
d+1 

i,new is the new butterfly individual produced by the 

next generation, f(x
d+1 

 i ) and f(x
d  

i+1 ) are the fitness of the 

corresponding individuals x
d+1 

 i  and x
d  

i+1, respectively. Based 

on the above analysis, the introduction process of the entire 

greedy strategy can be expressed as follow. 

 

Title The structure of optimize Monarch Butterfly optimization algorithm. 

Input: 

X: individual butterfly 

P: the random probability 

x
d  

new: the dimension of the new individual 

R: a random individual 

x
d  

i,new: the  dimension of the optimal individual 

Output: x
d+1 

i,new 
Step 1: Initialization.  

Initialize the population P of NP butterflies; set the maximum generation 

Max(g), butterfly number NP1 in Land 1 and butterfly number NP2 in Land 

2. 

Step 2: Fitness evaluation. 

Step 3: While t<Max(g) do 

        To classify the offspring population. 

         Divide all population into two sub-populations. 

for i= 1 to NP1 do 

for k=1 to D do 

Generate by Eq. (30) and Eq. (24). 

         end for k    

Generate by greedy strategy as Eq. (25). 

 

F. IMBO-Hybrid model  

Monarch Butterfly Optimization Algorithm (MBO) was 

proposed in 2016, which was mainly inspired by Monarch 

Butterfly migration and reproduction behavior. In order to 

obtain the optimal individuals in the population, the main 

strategy is to update the location and migration distance of 

breeding individuals. However, this algorithm has some 

limitations in global search. Considering this problem, 

corresponding improvement measures are proposed.  

At the same time, ANFIS and GMDH neural networks are 

very sensitive to the input layer and hidden layer, the initial 

connection weight between hidden layer and output layer 

neurons, and the initial threshold between the hidden layer 

and the output layer. The initial weight of neural network and 

the threshold of network layer are two important parameters 

which determine the accuracy and precision of the model. 

However, these two parameters of conventional ANFIS and 

GMDH neural network are artificially assigned according to 

engineering experience, which is obviously unreasonable. In 

order to solve this problem, this paper uses the improved 

monarch optimization algorithm to determine these two 

important parameters. The structure of the IMBO-Hybrid 

model is shown in Fig. 7. 

Based on the above improved strategies, parameters used 

in the mixed model were determined after repeated 

independent tests, as shown in TABLE I. 

III. DATA PREPROCESSING RESULTS 

Due to the repeatability of data decomposition, so as to 

ease the unnecessary workload of this article, this article does 

not show the preprocessing results of the data sets of the other 

two sites. In the hybrid model advocated in this work, 

TVF-EMD and P-CEEMAND are used to process the original 

wind speed, including de-noise, decomposition, and 

localization. Fig. 11 shows the primary data of the site after 
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being decomposed by TVF-EMD. On the basis of a 

decomposition, 11 intrinsic mode functions (IMFs) are 

obtained after P-CEEMAND decomposition. The secondary 

data is shown in Fig. 8. 
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Fig. 7. The structure of IMBO-Hybrid model 

 

TABLE I   

PARAMETER INITIALIZATION 

Parameter name Value 

Number of iterations 300 

Population size 50 

Evolution times 20 

Proportion of producers 0.2 

Security threshold 0.8 

Number of input layer nodes 5 

Number of hidden layer nodes 20 

Number of output layer nodes 1 

 

In order to further verify the data characteristics of the 

captured IMF components, this paper uses component linear 

characteristics and frequency domain amplitude analysis on 

the basis of the data in Fig. 8. Only by satisfying the data 

characteristic requirements of these two aspects can it be 

enough to demonstrate the effectiveness of the secondary 

decomposition strategy proposed in this paper. 

It can be seen from the Fig. 8 that the abnormal value of the 

component data is far smaller than the standard value, 

accounting for less than five thousandths of the total data. In 

addition, from the margin assignment data in the figure, it can 

be seen that the first five component data have good linear 

characteristics. This also provides conditions and basis for us 

to use the ANFIS model to predict sub-frequency domain 

components. 

 

 
Fig. 8. Secondary data decomposition 

IV. RESULT ANALYSIS 

A. Performance evaluation index 

In the basic experiment of this paper, four classic error 

indicators, MAE, MSE, RMSE and MAPE, were used to 

measure and evaluate the prediction accuracy of wind speed 

by the hybrid model. Their significance and calculation 

formulas are shown in TABLE II.  

 

TABLE II  

THE PERFORMANCE EVALUATION INDEX 

Index Significance Formula 

MAE Mean Absolut Error 
1

1 n

i i

i

MAE y y
n 

   

MSE Mean Square Error  
2

1

1
=

n

i i

i

MSE y y
n 

   

RMSE 
Root Mean Squared 

Error 
 

2

1

1 n

i i

i

RMSE y y
n 

    

MAPE 
Mean Absolute 

Percentage Error  1

1
100%

n
i i

i i

y y
MAPE

n y


    

 

where iy  is the true wind speed; iy  is the predicted wind 

speed, and n is the number of wind speeds forecasted. 

 Firstly, MSE can measure the difference between the 

actual value and the predicted value of wind speed data. 

Intuitively speaking, the smaller the MSE value is, the higher 

the prediction accuracy of the model will be, and the smaller 

the error will be. Then MAE and RMSE, a pair of indicators, 

can be verified with each other to ensure that the sign problem 

of prediction error will bring bad influence to the result. 

Finally, MAPE shows that the error between the predicted 

value and the real value can reflect the stability of the model 

to a certain extent 
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Fig. 9.  ANFIS neural network model structure 
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Fig. 10.  GMDH neural network structure 

 

 
Fig. 11.  First data decomposition sequence diagram 

 

The purpose of this paper is to verify the performance of 

the proposed model in a more comprehensive way. The 

following is the specific process in the experiment. First, 11 

stationary wind velocity sub-sequences are obtained based on 

the secondary decomposition (TPD decomposition) 

technique. Then, on the basis of the proposed model, the 

optimized monarch butterfly algorithm is used to optimize the 

model so as not to fall into the local optimum during the 

prediction process. Finally, on this basis, the ANFIS model is 

used to process the first five sequences with low-frequency 

timing while using the GMDH model to process. In addition, 

by combining the frequency domains of different frequency 

domains, the subsequences of each group are obtained. The 

results are shown in TABLE III. 
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TABLE III  

NUMBER OF IMF AFTER FREQUENCY DOMAIN 

Data  IMFS  sub-series 

Data1 11 5 

Data2 11 5 

Data3 11 6 

 

Finally, the final prediction result is achieved by summing 

the prediction results of each component. The prediction 

result is the performance index value of each sub-series and 

the index corresponding to the original wind speed sequence 

of each station. The sites and subsequences are shown in 

TABLE III. At the same time, Fig. 12, Fig. 13 and Fig. 14 are 

the comparison between the actual wind speed curves. And 

the predicted wind speed curve after each sub-sequence is 

predicted by the model in step experiment is shown. It can be 

concluded from TABLE IV. 

(1) MAE and RMSE values of sub-sequence decomposed 

in frequency domain are lower than those obtained by direct 

prediction of original wind speed data. The results show that 

the proposed data preprocessing strategy achieves good 

results and can effectively improve the prediction accuracy of 

the prediction model. 

(2) It is not difficult to find that the MAPE value of 

subsequence increases with the increase of sequence 

frequency. This is because the variation of MAPE values 

depends not only on the error between the actual value and the 

predicted value, but also on the degree of concentration in the 

sample size. 

(3) For the prediction of different sites, the corresponding 

indicators are quite different. The enlightenment to us is that 

in the subsequent model comparison experiment, the error 

between the predicted value and the real value of each site 

should be evaluated separately. 

B. Prediction results analysis 

Based on existing real wind speed data and predicted wind 

speed data, the performance of the proposed hybrid model is 

verified. In this paper, we design a comparison experiment 

between transverse and other classical prediction models and 

longitudinal intelligent optimization algorithm.  

Experiment 1 compares the proposed model with several 

classical time series models. In this paper, two classic neural 

network prediction models (ANFIS and GMDH) are used as 

comparison models to test the prediction ability of the mixed 

model. The main purpose of choosing ANFIS and GMDH as 

comparison models is to comprehensively consider linear and 

non-linear models and neural network models to test the 

performance of the models. 

Experiment 2 compares the prediction effects of using 

different optimization algorithms to optimize parameters 

based on the proposed hybrid model. The classic monarch 

butterfly optimization algorithm (MBO), particle swarm 

optimization algorithm (PSO), and genetic algorithm (GA) 

are selected to compare with the updated monarch butterfly 

optimization algorithm (IMBO) based on the greedy strategy 

in this paper. The overall structure of the input and output of 

each group of models remains unaffected, and only the 

corresponding changes are made in the optimization 

algorithm to find the best parameters for model optimization. 

a: Comparative experiment of different classic prediction 

models 

The experimental results show that the proposed model has 

a strong predictive ability for short-term wind speed 

prediction. After setting the prediction parameters of the 

model, experiments are carried out on three stations, and the 

experimental results gained are shown in TABLE V. At the 

same time, Fig. 15 shows prediction curves.  

For site 1, the four model evaluation indicators of the 

established model are better than the other two models, and 

the most satisfactory prediction accuracy is obtained.  

For site 2, according to the values of MAE, MAPE, RMSE 

and MAPE, a single model has the ability to predict by 

analogy. In the prediction laboratory, the MAPE values of 

ANFIS and GMDH are 15.990% and 12.206%, respectively. 

In contrast, the MAPE value of the proposed model is 9.871%, 

which is 6.199% and 2.335% percent higher than the above 

model respectively. 

For site 3, according to the four evaluation criteria adopted, 

the hybrid model established in this paper is still superior to 

other models. Among them, MSE, MAE, MAPE and RMSE 

are 0.186%, 0.234%, 4.426% and 0.432%, respectively. In 

the remaining model, the methods of predicting accuracy 

from good to bad are ANFIS and GMDH, and their MAPE 

values are 15.550% and 15.593%, respectively. 

The prediction results of the built model are significantly 

different from those of other independent models. 

Specifically, regardless of the prediction step, the evaluation 

index value obtained by the established model is significantly 

lower than the evaluation index value obtained by the 

comparison model. Therefore, we can conclude from the 

experiment that the hybrid prediction model proposed in this 

paper is superior to the traditional single model in terms of 

short-term wind speed prediction. 

b: Model experiment of different optimization algorithms 

The purpose of this experiment is to compare the 

IMBO-based hybrid model proposed in this paper with other 

hybrid models based on different algorithms. Specifically, 

this paper adopts particle swarm optimization, genetic 

algorithm, monarch butterfly optimization algorithm as the 

comparison algorithm. So as to reasonably verify the 

performance of IMBO, this paper selects two classical 

optimization algorithms and the unimproved Monarch 

butterfly optimization algorithm. Experiments are carried out 

on the premise that the common parameters are maintained 

and other relevant parameters are reasonable. TABLE XIV 

shows the calculated evaluation index values of these three 

sites. It can be seen from the table that the prediction 

performance of the proposed hybrid model is better than the 

combined model optimized by other comparison optimization 

algorithms. 

For example, the MAPE value of the hybrid model 

optimized by the improved monarch butterfly optimization 

algorithm is 1.5%~4.5%, while the MAPE value of the hybrid 

model improved based on the legacy algorithm is 3.6%~5.9%. 

Fig. 17 shows the prediction curves of various multi-objective 

optimization algorithms, and it is not difficult to draw the 

conclusions given above. 
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TABLE IV    

THE ERROR RESULT OF THE PREDICTED RESULT 

 Dataset1 Dataset2 Dataset3 

 MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

sub-series1 0.103 0.157 3.215 0.101 0.222 4.215 0.124 0.105 2.154 

sub-series2 0.053 0.089 2.984 0.054 0.084 1.145 0.042 0.084 0.983 

sub-series3 0.045 0.065 1.364 0.045 0.061 0.878 0.013 0.053 0.624 

sub-series4 0.031 0.051 0.542 0.007 0.021 0.688 0.021 0.051 0.314 

sub-series5 0.013 0.014 0.064 None None None 0.016 0.042 0.226 

sub-series6 None None None None None None 0.008 0.034 0.185 

Our-model 0.245 0.376 8.151 0.270 0.411 6.935 0.224 0.369 4.486 

 
Fig. 12. The prediction result curve of the verification data set 1 

 
Fig. 13. The prediction result curve of the verification data set 2 

 
Fig. 14.  The prediction result curve of the verification data set 3 
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TABLE V  

THE PREDICTION ERROR INDEX VALUE OF EXPERIMENT 1 

 MSE(m/s) MAE(m/s) MAPE(m/s) RMSE(m/s) 

 

Dataset1 

Proposed-model 0.304 0.217 8.33 0.551 

ANFIS 1.314 1.325 10.21 0.556 

GMDH 1.351 1.451 9.77 0.631 

 

Dataset2 

Proposed-model 0.326 0.372 9.871 0.571 

ANFIS 1.456 1.414 15.990 1.859 

GMDH 1.256 1.069 12.206 1.804 

 

Dataset3 

Proposed-model 0.186 0.234 4.426 0.432 

ANFIS 0.907 0.805 15.550 1.440 

GMDH 0.720 0.798 15.593 1.456 

 

 

 
Fig. 15.  The result curve of experiment 1 
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C. Computational complexity comparison 

Based on the previous experimental results, the superiority 

of the new hybrid model and other models and algorithms can 

be well verified, but some performance of the model itself 

cannot be well verified. 

To further illustrate the superiority of IMBO in running 

time, in this experiment, the running time and convergence of 

15 independent experiments are used to measure the 

performance of IMBO in time and space. Other parameters of 

the selected algorithm are shown in TABLE VI. 

 
TABLE VI   

SELECTED ALGORITHM PARAMETERS 

Algorithms The definition parameters Value 

IMBO,MBO Max iteration 200 
PSO Particles 50 

 Position [-2,2] 

 Max velocity 2 

 Min velocity -2 

GA Particles 50 

 Position [-5,5] 

 Max velocity -5 

 Min velocity 5 

 

The running time of 15 groups of independent experiments 

and the maximum, minimum, and average values generated 

by convergence are summarized in TABLE VII. 

 
TABLE VII  

THE OPERATION OF THE FOUR ALGORITHMS 

Indexes  IMBO MBO GA PSO 

Running 

times 

Max 78.66 79.54 80.14 85.14 

Min 71.21 72.14 73.45 76.14 

Average 75.93 75.84 76.79 80.64 

Convergent 

generation 

Max 58 69 65 84 

Min 42 53 64 65 

Average 48 61 69 74 

 

The operation of the four algorithms is 

summarized in TABLE VII, from which it can be seen 

that the average running time of IMBO is slightly 

higher than that of MBO, but smaller than that of GA 

and PSO. At the same time, it is not difficult to find that the 

average number of convergence iterations of IMBO is less 

than that of MBO, GA, and PSO. The average number of 

convergence iterations of the latter three are 61, 69, and 74, 

respectively, while the average number of convergence 

iterations of IMBO is 48 and the corresponding average 

running time is 75.93s. Fig. 16 shows the iterative 

convergence curve of the algorithm. The experimental results 

prove that the improvement of MBO in this paper is effective. 

D. Stability and directionality 

In order to further verify the stability and sensitivity of the 

mixed model, this paper uses prediction error variance (Var) 

to evaluate the models' prediction stability. The definition and 

calculation formula of Var and DA are expressed as: 

     
2

ˆ ˆVar E y y E y y     (26) 
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  


  (27) 

where y is the predicted value, and y is the observed value. y(t) 

and y(t+1) represent wind speed observations at time t and t+1, 

 1y t   is the predicted value of wind speed at t+1. Based on 

these two indicators, the stability and directivity are compared 

and evaluated respectively. 

 

 

 
Fig. 16. Algorithm iteration convergence curve 

The experimental results are shown in TABLE VIII. The 

experimental result data can prove that the mixed model 

proposed in this paper has the smallest Var value of 0.0117, 

0.0012, 0.0025 and the largest DA value of 85.4557, 82.6464, 

79.1461 on the three data sets, respectively. It can be proved 

that the hybrid model is the most stable. At the same time, the 

hybrid model has the best generalization ability for wind 

speed data of different stations 
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TABLE VIII  

FORECAST ERROR VARIANCE AND DIRECTION ACCURACY VALUE 

Indexes Models 
Dataset 

Dataset1 Dataset2 Dataset3 

Var 

The proposed model 0.0117 0.0012 0.0025 

TPD-ANFIS 0.1430 0.1256 0.2653 

TPD-GMDH 0.1610 0.1132 0.1295 

MBO-ANFIS 0.2794 0.1398 0.1354 

GA-Combination model 0.2662 0.0663 0.0366 

PSO-Combination model 0.1256 0.0465 0.0368 

MBO-Combination model 0.2344 0.0821 0.0363 

DA(%) 

The proposed model 85.4557 82.6464 79.1461 

TPD-ANFIS 71.2136 61.3216 67.2665 

TPD-GMDH 80.8966 45.2133 71.3293 

MBO- ANFIS 79.2324 67.3431 73.3218 

GA-Combination model 82.3154 82.8953 80.3129 

PSO-Combination model 83.5463 82.8613 82.3743 

MBO-Combination model 84.2498 84.9243 81.1665 

 

E. Diebold-Mariano (DM) test 

The error between the predicted value and the actual value 

is defined as a variable, so the confidence level of this 

variable under a certain confidence level can be reflected by 

DM test. In order to further verify the difference in prediction 

accuracy between the hybrid model proposed in this paper 

and other models on the basis of previous experiments, the 

experiment conducted DM index test to further verify, and its 

theoretical description is as follows. 

When the confidence level is given as α, the hypothesis test 

can be expressed as: 
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 (28) 

where et represents the prediction error value at time t. 

In order to accurately calculate the value of L(•), the best 

way is to use a loss function, and this paper takes the error rate 

as the loss function. H0 is defined as the null hypothesis, 

meaning that there is no difference in the performance of the 

two models. Conversely, H1 indicates that there are 

differences between the models. The DM test can be 

described as: 
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where s2 is the variance estimate of dt = L(e
(1) 

t )−L(e
(2) 

t ). 

The value of confidence in this paper is 0.01. TABLE IX 

records the prediction error DM of the proposed model and 

the model performance comparison of the two models. The 

DM statistics are compared with the critical value Z/2. If the 

value of the DM statistics is greater or less than the 

confidence curve, the null hypothesis is rejected. From the 

DM value of the prediction error of the three stations in the 

experiment, it is not difficult to find that the confidence level 

of the comprehensive wind speed prediction strategy adopted 

in this paper is higher than that of other prediction methods. 

Therefore, it is not difficult to prove that the differences and 

advantages between the hybrid model proposed in this paper 

and other combination models with different strategies are 

obvious. The results show that compared with the 

comparative wind speed prediction model, the prediction of 

this model is better. 
TABLE IX   

FORECAST ERROR DM VALUE 

Model Site-One Site-Two Site-three 

TPD-ANFIS 5.6610 5.3283 6.3212 

TPD-GMDH 5.5612 5.3464 6.2166 

Proposed Model 5.8413 5.8461 5.2184 

PSO based ANFIS 3.4131 3.9845 4.3431 

GA based ANFIS 4.4166 4.4655 3.8495 

PSO based GMDH 4.3498 4.2164 4.3189 

GA based GMDH 3.9721 4.4986 3.6894 

MBO based Propose Model 4.3152 3.9213 3.9462 

TPD-MBO based GMDH 4.9499 4.1328 4.8942 

TPD-MBO based Propose Model 4.4213 4.6187 5.3791 

TPD-IMBO based Propose Model 3.9846 3.6548 3.9943 

 

The experimental results obtained based on the three sets of 

horizontal experiments carried out in this research can be seen. 

The hybrid model based on the improved monarch butterfly 

algorithm proposed in this paper has obvious advantages in 

model stability, generalization ability, robustness, and 

prediction accuracy and prediction efficiency. 

 

F. Parametric analysis 

When a parameter of the model changes, it will affect the 

prediction ability of the hybrid model. This paper takes the 

standard deviation of predicted value and error value as the 

corresponding index to conduct sensitivity analysis from two 

aspects of data pretreatment technology and optimization 

algorithm to discuss the sensitivity of model state and output 

results to parameter changes. Index definition is shown in 

TABLE X. 

The three parameters considered in TPD data 

preprocessing are the ratio of the standard deviation of noise 

to the standard deviation of the original sequence, The Times 

of implementation and the maximum number of screening 
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iterations. In the IMBO optimization algorithm, the number of 

monarch butterflies, the number of iterations and the archive 

size are the other three parameters. The detailed comparison 

results are shown in TABLE XI, TABLE XII and TABLE 

XIII. During the first analysis, only one parameter is changed 

at a time, leaving the rest unchanged. The ratios of the 

standard deviation of the noise to the standard deviation of the 

sequence are 0.01, 0.05, 0.1, 0.15, and the achieved numbers 

are 50, 100, 150, 200, and the maximum screening iterations 

are 200, 300, 400, and 500, respectively. Similarly, in the 

second analysis program relative to IMBO, the parameter 

values of the monarch butterfly are set to 20, 40, 60, and 80. 

The number of iterations is 50, 100, 150, which means the 

archive size is 200, 300,400,500. 

 

 
TABLE X   

PREDICTIVE SENSITIVITY OF THE FOUR MEASUREMENT INDICATORS TO EACH RELATED MODE.

Metric Definition Equation 

PMAE STD value of MAE of n times PMAE =Std(MAE1, MAE2,…MAEn) 

PMAPE STD value of MAPE of n time PMAPE=Std(MAPE1,MAPE2…MAPEn) 

PRMSE STD value of RMSE of n time PRMSE=Std(RMSE1,RMSE2,…RMSEn) 

PMSE STD value of MSE of n time. PMSE=Std(MSE1, MSE2,…MSEn) 

 
TABLE XI  

STATION 1, THE SENSITIVITY ANALYSIS TABLE OF THE PARAMETERS INVOLVED IN THE MIXED MODEL. 

Parameter 
Site-One 

PMAE PMAPE PRMSE PMSE 

Ratio 0.0033 0.0313 0.0032 0.4642 

Number of realizations 0.0012 0.0137 0.0013 0.7942 

Maximum number of filtering iterations 0.0046 0.0891 0.0012 0.4316 

Number of Monarch Butterflies 0.0032 0.0135 0.0021 0.9546 

Number of iterations 0.0092 0.0321 0.0089 0.4649 

Archive size 0.0075 0.0121 0.0036 0.6434 

 
TABLE XII  

STATION 2, THE SENSITIVITY ANALYSIS TABLE OF THE PARAMETERS INVOLVED IN THE MIXED MODEL. 

Parameter 
Site-Two 

PMAE PMAPE PRMSE PMSE 

Ratio 0.0033 0.0361 0.0033 0.4492 

Number of realizations 0.0014 0.0236 0.0024 0.8421 

Maximum number of filtering iterations 0.0043 0.0491 0.0013 0.5461 

Number of Monarch Butterflies 0.0038 0.0124 0.0025 0.9456 

Number of iterations 0.0084 0.0245 0.0046 0.5162 

Archive size 0.0065 0.0521 0.0064 0.3315 

 
TABLE XIII  

STATION 3, THE SENSITIVITY ANALYSIS TABLE OF THE PARAMETERS INVOLVED IN THE MIXED MODEL. 

Parameter 
Site-Three 

PMAE PMAPE PRMSE PMSE 

Ratio 0.0043 0.0565 0.0046 0.5561 

Number of realizations 0.0026 0.0322 0.0036 0.6231 

Maximum number of filtering iterations 0.0045 0.0434 0.0011 0.4315 

Number of Monarch Butterflies 0.0034 0.0164 0.0026 0.9231 

Number of iterations 0.0086 0.0313 0.0053 0.5242 

Archive size 0.0014 0.5034 0.0034 0.3312 
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TABLE XIV  

THE PREDICTION ERROR INDEX VALUE OF EXPERIMENT 2 

 Indexes MSE(m/s) MAE(m/s) MAPE(m/s) RMSE(m/s) 

 

 

Dataset1 

Proposed Mode 0.072 0.552 1.610 0.269 

MBO-Model 0.512 0.144 4.461 0.716 

PSO- Model 0.540 0.150 4.747 0.735 

GA- Model 0.503 0.149 5.161 0.709 

 

 

Dataset1 

Proposed Mode 0.031 0.036 1.933 0.178 

MBO-Model 0.135 0.083 4.844 0.366 

PSO- Model 0.131 0.082 4.895 0.131 

GA- Model 0.127 0.082 4.827 0.357 

 

 

Dataset1 

Proposed Mode 0.186 0.234 4.553 0.432 

MBO-Model 0.219 0.354 6.451 0.486 

PSO- Model 0.251 0.370 6.738 0.501 

GA- Model 0.235 0.352 6.366 0.485 

 

 

 
Fig. 17.  The result curve of experiment 2
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From the experimental results, it can be found that with 

the change of the parameters in the TPD decomposition 

model, the transformation degree of the four parameters 

PMAE, PMPE, PRMSE and PMSE are relatively low. For 

example, in the site 1 prediction, the ratio of PMAPE values is 

0.0313, the number of realization is 0.0137, and the maximum 

screening iteration is 0.0891. These values are higher than 

most SSE values, but still at a low level. This indicates that the 

TPD decomposition model has a stronger tolerance to 

parameter changes. At the same time, when the parameters in 

the IMBO optimization algorithm change, it can be concluded 

that the sensitivity of the measurement index in the IMBO 

algorithm is not as good as that of the parameters in the TPD 

decomposition technology. This shows that the variation of 

parameters in the optimization algorithm has little influence 

on the prediction accuracy. 

V. CONCLUSION 

The short-term wind speed prediction model proposed in 

this paper combines TVF, EMD, PE, CEEMDAN, GMDH, 

ANFIS, and IMOB. In the model, the deep secondary 

decomposition method implemented on TVF, EMD, PE, 

CEEMDAN, is used as a data preprocessing strategy to 

effectively decompose the original wind speed sequence to 

generate 11 sub-sequences. Then the proposed IMOB 

optimizes the GMDH and ANFIS models to obtain the 

optimal parameters of the model, and at the same time avoids 

the model from falling into the local optimum during the 

prediction process. After that, GMDH is used to process the 

first five sequences, while ANFIS is used to process the 

remaining sequences. Finally, the components of the obtained 

prediction results are summed to obtain the predicted value of 

the original wind speed series.  

The model extracts the advantages of meta-heuristic 

algorithms and artificial neural networks to obtain a hybrid 

predictor, and uses data mining technology to process the 

original wind speed data to improve data quality. The 

TPD-IBMO-ANFIS model, TPD-IBMO-GMDH model, 

PSO-PROPOSED model, GA-PROPOSED model and 

MOB-PROPOSED model are compared to three wind speed 

data sets. After obtaining the final wind speed prediction of 

different models, we can get that the secondary 

decomposition strategy advocated in this paper can make the 

model additionally use the data features to achieve better 

prediction results. For example, in the predictive index of data 

set three in experiment one, the MAPE and RMSE are 

4.426% and 0.423 respectively. The values of MAPE and 

RMSE of the GMDH model are 15.593% and 1.456. 
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