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Abstract—During 2020, the new coronavirus disease (COVID-
19) was spreading rapidly, having devastating consequences and
causing serious problems in 213 countries and territories. Until
July 15, 2020, the total recorded cases was 12 415 672 and total
death around 557 925 in the World, with an increasing trend of
global new cases making COVID-19 one of the most disastrous
outbreak since the Spanish flu. Prevention, testing and control
are the main methods to reduce the propagation of the virus.
Mathematical modeling remains one of the best ways to analyse
the spread of this virus and control its prevalence. In this sense,
we propose, in the present paper, a SIAR compartment model
with control in order to reduce the reproduction number R0

and slow down the epidemic outbreak.
A stability analysis of equilibrium points is carried out and
numerical simulations are performed to stress on the impact
of different prevention levels and control the spread of the
pandemic.

Index Terms—COVID-19, Mathematical model, Basic repro-
duction number, Stability analysis, Simulation

I. INTRODUCTION

The year 2020 was marked by a new coronavirus which
emerged first in the city of Wuhan, Hubei, China, in early
December, 2019 and has spread all around the world. Until
July 15, 2020, the virus has affected 213 countries and
territories. The virus caused serious problems in terms
of morbidity, mortality (12 415 672 total cases and total
deaths 557 925 [1]), economic loss (the average index loss
of industrial production across countries is 18% for high
income countries, 24% for upper-middle income countries
and 22% for lower-middle income countries [2]) and general
social disturbances.
According to the World Health Organization (WHO)[3],
coronaviruses are a large family of viruses that can
be pathogenic in animals or humans. It is known that
in humans, several coronaviruses can cause respiratory
infections in different levels from the common cold to
more serious illnesses such as Middle East Respiratory
Syndrome (MERS) and Severe Acute Respiratory Syndrome
(SARS). The last coronavirus is responsible for coronavirus
disease 2019 (COVID-19). This new virus and disease
has been labeled a ”pandemic” after its outbreak and has,
consequently, affected many countries around the World.
The most common symptoms of COVID-19 are fever, dry
cough, and fatigue. However, some people can present other
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less common symptoms such as body aches and pains, nasal
congestion, headache, conjunctivitis, sore throat, diarrhea,
loss of taste or smell, rash, or discoloration of the fingers
on the hand or foot. Although showing very mild signs,
some infected people can transmit the virus (silently) to
others. These individuals are called asymptomatic carriers
and represent 40% to 45% of COVID-19 infections[4].
In order to help in the management and the reduction of
this pandemic’s risky effects, mathematical models can be
a source of information helping decision makers to develop
and implement efficient strategies ([5], [6]). The best
example is the SIR model developed in 1924 by Kermack
and McKendrick [7] and based on a system of differential
equations which revolve around the reproduction number of
the virus R0 and its evolution [8].
Several mathematical models have been proposed to
investigate the pandemic of COVID-19. The epidemic
spreading in China has been analysed in [9], [10], [11],
[12], [13], [14], [15], [16]. Furthermore, the impact of
simulation modelling to reduce the spread of COVID-19
has been studied in [17], [18]. Prem et al. [19] examined
how changes in population mixing have affected outbreak
progression in Wuhan.
In this study, we use a modified SIR model that includes the
compartment of asymptomatic persons a SIAR model [20]
with control. The present work aims to propose different
strategies to reduce the infected population and slow down
the epidemic outbreak.

II. FORMULATION OF THE MODEL AND STABILITY
ANALYSIS

A. Parameters of the Model

Let N denotes the population size. Death is proportional to
the population size with death rate constant µ and we assume
a constant Λ due to births and immigration. consequently, we
write:

dN

dt
= Λ− µN

This population of size N is formed by Susceptible S,
symptomatic Infective I , Asymptomatic Infective A and
Removed R.
Otherwise, the formula:

(β1I + β2A)S

N

gives the incidence i.e. the rate at which susceptible indi-
viduals become infectious. If the time unit is days, then the
incidence is the number of new infection per day.
The contact rate β1 is the average number of adequate
contacts of susceptible with symptomatic infected person per
day while the daily contact rate β2 is the average number of
adequate contacts of susceptible with asymptomatic infected
person.
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I

N
is the population fraction of symptomatic infected people

while
A

N
represents the population fraction of asymptomatic

infected people.
The parameters σ1 and σ2 represent respectively infection
duration among symptomatic and asymptomatic infected
people while α is the death rate from COVID-19.
It should be noted that the man life span (1/µ) is taken equal
to 76 years and time units of weeks, months or years could
also be used.

B. Equations of the Model

A schematic representation of the model is shown in figure
Fig. 1.

Fig. 1: Compartments population

We consider SIAR compartmental model that is to say
that susceptible individuals become symptomatic infected

with a p
(β1I + β2A)S

N
rate, or asymptomatic infected with

a (1− p)
(β1I + β2A)S

N
rate, then removed with immunity

after recovery from infection.

The dynamics of this disease is described by the following
differential equations:



dS(t)

dt
= Λ− S (t) (β1I (t) + β2A (t))

N (t)
− µS (t)

dI(t)

dt
=

pS (t) (β1I(t) + β2A (t))

N (t)
− (σ1 + µ+ α)I (t)

dA(t)

dt
=

(1− p)S (t) (β1I (t) + β2A (t))

N (t)
− (σ2 + µ)A (t)

dR(t)

dt
= σ1I (t) + σ2A− µR (t)

and with the condition S(t)+ I(t)+A(t)+R(t) = N(t).
So:

R(t) = N(t)− S(t)− I(t)−A(t) .

The previous system becomes:

dS(t)

dt
= Λ− S (t) (β1I (t) + β2A (t))

N (t)
− µS (t)

dI(t)

dt
=

pS (t) (β1I(t) + β2A (t))

N (t)
− (σ1 + µ+ α)I (t)

dA(t)

dt
=

(1− p)S (t) (β1I (t) + β2A (t))

N (t)
− (σ2 + µ)A (t)

dN(t)

dt
= Λ− µN (t)− α I (t)

Up to now, there is no vaccine against COVID-19 but
prevention and control can avoid the catastrophic effect of
this disease. Mathematically, we introduce controls u1 and
u2 which represent:

• Prevention denoted u1: it combines the different mea-
sures such as confining healthy individuals, isolating in-
fected individuals and tracing every contact. Moreover,
it also takes into consideration physical distancing, self-
protection and testing.

• Patient care u2: hospitalization, treatment and screen-
ing.

Introducing these two controls to the model above leads to
the following controlled model:



dS(t)

dt
= Λ− S (t) (1− u1) (β1I (t) + β2A (t))

N (t)
− µS (t)

dI(t)

dt
=

pS (t) (1− u1) (β1I(t) + β2A (t))

N (t)
−(σ1 + µ+ α+ u2)I (t)

dA(t)

dt
=

(1− p)S (t) (1− u1) (β1I (t) + β2A (t))

N (t)
−(σ2 + µ)A (t)

dN(t)

dt
= Λ− µN (t)− α I (t)

(1)

C. Positivity of Solutions

Theorem 1:
The set Ω = {(S, I, A,N) ∈ R4/0 ≤ S, I, A,N ≤ Λ

µ
}

is positively invariant under system (1). Thus the model is
epidemiologically and mathematically well posed.

Proof :
See Appendix B.1

D. Stability analysis
1) Equilibrium points and R0:

For the model above, equilibrium points are defined such that
there is no variations in S, I, A, N with respect to t:

Λ −
S (t) (1 − u1) (β1I (t) + β2A (t))

N (t)
− µS (t) = 0 (2)

pS (t) (1 − u1) (β1I(t) + β2A (t))

N (t)
− (σ1 + µ + α + u2)I (t) = 0 (3)

(1 − p)S (t) (1 − u1) (β1I (t) + β2A (t))

N (t)
− (σ2 + µ)A (t) = 0 (4)

Λ − µN (t) − α I (t) = 0 (5)

From the equation (5), we have:

N∗ =
Λ

µ
− α

µ
I∗
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From the equation (2), we have:

S∗ (β′
1I

∗ + β′
2A

∗)

N∗ = Λ− µS∗ .

Where β′
1 = (1− u1)β1 and β′

2 = (1− u1)β2 .
So, from the equation (3), we have:

p(Λ− µS∗)− δ1I
∗ = 0 ,

where δ1 = (σ1 + µ+ α+ u2)

=⇒ S∗ =
Λ

µ
− δ1

pµ
I∗ .

So, from the equation (4) we have:

(1− p)
δ1
p
I∗ − δ2A

∗ = 0 ,

where δ2 = (σ2 + µ)

=⇒ A∗ =
(1− p)δ1

pδ2
I∗ .

In the equation (3), we substitute N∗ , S∗ and A∗ .
Therefore:

p

(
Λ

µ
−

δ1

pµ
I
∗
)(

1
Λ
µ − α

µ I∗

)(
β
′
1I

∗
+ β

′
2

(1 − p)δ1

pδ2
I
∗
)

− δ1I
∗
= 0

p

(
Λ

µ
−

δ1

pµ
I
∗
)(

β
′
1I

∗
+ β

′
2

(1 − p)δ1

pδ2
I
∗
)

− δ1

(
Λ

µ
−

α

µ
I
∗
)

I
∗
= 0

I
∗
[
p

(
Λ

µ
−

δ1

pµ
I
∗
)(

β
′
1 + β

′
2

(1 − p)δ1

pδ2

)
− δ1

(
Λ

µ
−

α

µ
I
∗
)]

= 0

I
∗
[
p

(
Λ

µ
−

δ1

pµ
I
∗
)

×
pβ′

1δ2 + (1 − p)β′
2δ1

pδ2
− δ1

(
Λ

µ
−

α

µ
I
∗
)]

= 0

I
∗
[(

pΛ − pδ1I
∗)× pβ′

1δ2 + (1 − p)β′
2δ1

pδ2
− δ1

(
Λ − αI

∗)]
= 0

So,

I∗ = 0

or

(pΛ− pδ1I
∗)× pβ′

1δ2 + (1− p)β′
2δ1

pδ2
− δ1 (Λ− αI∗) = 0

=⇒ I∗ = 0

or

δ1αI
∗−δ1I

∗×
pβ′

1δ2 + (1 − p)β′
2δ1

pδ2
= δ1Λ−pΛ×

pβ′
1δ2 + (1 − p)β′

2δ1

pδ2

=⇒ I∗ = 0

or(
pα −

pβ′
1δ2 + (1 − p)β′

2δ1

δ2

)
I∗ = pΛ

(
1 −

pβ′
1δ2 + (1 − p)β′

2δ1

δ1δ2

)
=⇒ I∗ = 0

or(
pα −

pβ′
1δ2 + (1 − p)β′

2δ1

δ2

)
I∗ = pΛ

(
1 −

pβ′
1δ2 + (1 − p)β′

2δ1

δ1δ2

)
=⇒ I∗ = 0
or

I∗ =
pΛ (R0 − 1)

(δ1R0 − pα)
,

where,

R0 =
pβ′

1δ2 + (1− p)β′
2δ1

δ1δ2

=
pβ1(1− u1)

δ1
+

(1− p)β2(1− u1)

δ2

=
pβ1(1− u1)

σ1 + u2 + µ+ α
+

(1− p)β2(1− u1)

σ2 + µ

is the basic reproduction number for the model (see
Appendix A.1):

• If I∗ = 0 , then A∗ = 0 and S∗ = N∗ =
Λ

µ
.

Consequently the first equilibrium point is E0 =(
Λ

µ
, 0, 0,

Λ

µ

)
.

• If I∗ =
pΛ (R0 − 1)

(δ1R0 − pα)
, then

A∗ =
(1− p)δ1Λ (R0 − 1)

δ2 (δ1R0 − pα)

S∗ =
Λ

µ
− δ1

pµ

pΛ (R0 − 1)

(δ1R0 − pα)

=
Λ

µ

(
1− δ1 (R0 − 1)

(δ1R0 − pα)

)
=

Λ

µ

(
δ1 − pα

δ1R0 − pα

)

and

N∗ =
Λ

µ
− α

µ

pΛ (R0 − 1)

(δ1R0 − pα)

=
Λ

µ

(
1− pα (R0 − 1)

(δ1R0 − pα)

)
=

Λ

µ

(
R0 (δ1 − pα)

δ1R0 − pα

)
Then if R0 > 1 , the second equilibrium point is:

E1 = (S∗, I∗, A∗, N∗) ,

where

S∗ =
Λ

µ

(
δ1 − pα

δ1R0 − pα

)
,

I∗ =
pΛ (R0 − 1)

(δ1R0 − pα)
,

A∗ =
(1− p)δ1Λ (R0 − 1)

δ2 (δ1R0 − pα)

and N∗ = Λ
µ

(
R0 (δ1 − pα)

δ1R0 − pα

)
.

Theorem 2: :
The previous system admits two equilibrium points:

1) If R0 < 1 , the system admits a trivial equilibrium

E0 = (
Λ

µ
, 0, 0,

Λ

µ
).

2) If R0 > 1 , then there exists an endemic equilibrium
E1 = (S∗, I∗, A∗, N∗).
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Where,

S∗ =
Λ

µ

(
δ1 − pα

δ1R0 − pα

)
, I∗ =

pΛ (R0 − 1)

(δ1R0 − pα)
,

A∗ =
(1− p)δ1Λ (R0 − 1)

δ2 (δ1R0 − pα)
and N∗ = Λ

µ

(
R0 (δ1 − pα)

δ1R0 − pα

)
Theorem 3:

The basic reproduction number of the system (2) is given by

R0 =
pβ1(1− u1)

σ1 + u2 + µ+ α
+

(1− p)β2(1− u1)

σ2 + µ
= RI +RA

RI : the contribution of symptomatic infectious individ-
uals.

RA : the contribution of Asymptomatic infectious indi-
viduals.

2) Impact of control:
The effect of prevention and patient care is measured by
considering their impact on the reproduction number R0.
Thus, this effect is determined by differentiating R0 with
respect to u1 (respectively u2)

∂R0

∂u1
= −

(
pβ1

σ1 + u2 + µ+ α
+

(1− p)β2

σ2 + µ

)
≤ 0

∂R0

∂u2
= −1

2

(
pβ1(1− u1)

(σ1 + u2 + µ+ α)2
+

(1− p)β2(1− u1)

(σ2 + µ)2

)
≤ 0

Since
∂R0

∂u1
(resp.

∂R0

∂u2
) is negative, it implies that R0 is

a decreasing function of u1 (resp. u2). This indicates that
the control u1 (resp. u2) has a negative impact on R0 and
will lead to reduction in this disease burden.

3) Local stability of E0:
The local stability of the equilibrium points is based on the
matrix of linearization (Jacobian matrix) given by:

J =

−β′
1I

∗+β′
2A

∗

N∗ − µ −S∗β′
1

N∗ −S∗β′
2

N∗ τ

p(β′
1I

∗+β′
2A

∗)
N∗

pS∗β′
1

N∗ − δ1
pS∗β′

2
N∗ −pτ

(1−p)(β′
1I

∗+β′
2A

∗)
N∗

(1−p)S∗β′
1

N∗
(1−p)S∗β′

2
N∗ − δ2 −(1− p)τ

0 −α 0 −µ



with τ =
S∗(β′

1I
∗+β′

2A
∗)

N∗2

For E0, the matrix of linearization (Jacobian matrix)
becomes:

J (E0) =


−µ −β′

1 −β′
2 0

0 pβ′
1 − δ1 pβ′

2 0

0 (1− p)β′
1 (1− p)β′

2 − δ2 0

0 −α 0 −µ


Then the characteristic polynomial of J (E0) is giving by:

P0(λ) = (λ+ µ)
2
(λ2 + (δ1 + δ2 − pβ′

1 − (1− p)β′
2)λ

+δ1δ2(1−R0))

Thus the eigenvalues of the matrix J (E0) are −µ and the
roots of the polynomial:

Q0(λ) = λ2+(δ1 + δ2 − pβ′
1 − (1− p)β′

2)λ+δ1δ2(1−R0).

For R0 < 1, we have:

δ1δ2(1−R0) > 1

and

R0 =
pβ′

1δ2 + (1− p)β′
2δ1

δ1δ2
< 1

=⇒ δ1δ2(1−R0) > 1 and R0 =
pβ′

1

δ1
+

(1− p)β′
2

δ2
< 1

=⇒ δ1δ2(1−R0) > 1,
pβ′

1

δ1
< 1 and

(1− p)β′
2

δ2
< 1

=⇒ δ1δ2(1−R0) > 1, δ1−pβ′
1 > 0 and δ2−(1−p)β′

2 > 0
=⇒ δ1δ2(1−R0) > 1 and δ1+ δ2− pβ′

1− (1− p)β′
2 > 0 .

So for R0 < 1 the coefficients of polynomial Q0 are
positive.
Then, following Routh-Hurwitz conditions for the
polynomial Q0, the state E0 is locally asymptotically
stable for R0 < 1 .

4) Global stability of E0:
Theorem 4:

E0 is globally asymptotically stable.

Proof:
Since we have an asymptotic study, we replace N by:

N∗ =
Λ

µ
(because lim

t→+∞
N(t) = N∗ =

Λ

µ
).

So we consider the following Liapunov function:

V = β′
1δ2I + β′

2δ1A

So,
V̇ = β′

1δ2
dI

dt
+ β′

2δ1
dA

dt

= β′
1δ2

(
pS (t) (1− u1) (β

′
1I(t) + β′

2A (t))

N∗ − δ1I (t)

)

+β′
2δ1

(
(1− p)S (t) (1− u1) (β

′
1I (t) + β′

2A (t))

N∗

− δ2A (t))

= (pβ′
1δ2 + (1− p)β′

2δ1)

(
S (t)

N∗ (β′
1I(t) + β′

2A (t))

)
−δ1δ2 (β

′
1I(t) + β′

2A (t))

=

(
R0δ1δ2)

S (t)

N∗ − δ1δ2

)
(β′

1I(t) + β′
2A (t))

= δ1δ2

(
R0

S (t)

N∗ − 1

)
(β′

1I(t) + β′
2A (t))

≤ δ1δ2 (R0 − 1) (β′
1I(t) + β′

2A (t))

So, for R0 ≤ 1 , we obtain V̇ ≤ 0 .
On the other hand,

V̇ = 0 ⇒ β′
1I(t) + β′

2A (t)

Engineering Letters, 30:1, EL_30_1_12

Volume 30, Issue 1: March 2022

 
______________________________________________________________________________________ 



=⇒ I = A = 0 (because I ≥ 0 and A ≥ 0)

Thus the set {E0} is the largest invariant set within the set

{(x1, x2, x3, x4)/V̇ (x1, x2, x3, x4) = 0}

So according to the invariant set theorem, every trajectory
in Ω tends to E0 as time t increases and as E0 is locally
stable then it is globally asymptotically stable. Therefore
E0 is globally asymptotically stable.

5) Local stability of E1:
Theorem 5:

If R0 > 1 and σ2 ≥ σ1 + u2 + α , then E1 is locally
asymptotically stable.

Remark 1:
The condition σ2 ≥ σ1+u2+α is equivalent to the condition:

1

σ2 + µ
≤ 1

σ1 + u2 + µ+ α
,

where :

•
1

σ1 + u2 + µ+ α
is the average duration of the infec-

tious period of symptomatic infectious persons.

•
1

σ2 + µ
is the average duration of the infectious period

of asymptomatic infectious persons.

(i.e we suppose that the average duration of the infectious
period of symptomatic infectious persons is greater than or
equal to the average duration of the infectious period of
asymptomatic infectious persons.)

Proof: For E1 the matrix of linearization (Jacobian
matrix) is giving by:

J (E1) =

−β′
1I

∗ + β′
2A

∗

N∗ − µ −S∗β′
1

N∗ −S∗β′
2

N∗ τ

p (β′
1I

∗ + β′
2A

∗)

N∗
pS∗β′

1

N∗ − δ1
pS∗β′

2

N∗ −p ∗ τ

(1−p)(β′
1I

∗+β′
2A

∗)
N∗

(1−p)S∗β′
1

N∗ −(1− p) ∗ τ

0 −α 0 −µ


with τ =

S∗ (β′
1I

∗ + β′
2A

∗)

N∗2
.

We have,

S∗ =
Λ

µ

(
δ1 − pα

δ1R0 − pα

)
and

N∗ = Λ
µ

(
R0 (δ1 − pα)

δ1R0 − pα

)
.

Thus,

S∗

N∗ =
Λ

µ

(
δ1 − pα

δ1R0 − pα

)
× µ

Λ

(
δ1R0 − pα

R0 (δ1 − pα)

)
=

1

R0

So,
J (E1) =



−R0Y − µ − β′
1

R0
− β′

2

R0
Y

pR0Y
pβ′

1

R0
− δ1

pβ′
2

R0
−pY

(1− p)R0Y
(1− p)β′

1

R0

(1− p)β′
2

R0
− δ2 − (1− p)Y

0 −α 0 −µ


where,

Y =
S∗ (β′

1I
∗ + β′

2A
∗)

N∗2
.

Then the characteristic polynomial of J (E1) is given by:

P1(λ) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−R0Y − µ− λ −
β′
1

R0
−

β′
2

R0
Y

pR0Y
pβ′

1

R0
− δ1 − λ

pβ′
2

R0
−pY

(1− p)R0Y
(1− p)β′

1

R0

(1− p)β′
2

R0
− (1− p)Y

−δ2 − λ

0 −α 0 −µ− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= − (λ+ µ)×∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −
β′
1

R0
−

β′
2

R0
Y

0
pβ′

1

R0
− δ1 − λ

pβ′
2

R0
−pY

0
(1− p)β′

1

R0

(1− p)β′
2

R0
− δ2 − λ − (1− p)Y

R0 −α 0 −µ− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= − (λ+ µ)×∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −
β′
1

R0
−

β′
2

R0
Y

0
pβ′

1

R0
− δ1 − λ

pβ′
2

R0
−pY

0
(1− p)β′

1

R0

(1− p)β′
2

R0
− δ2 − λ − (1− p)Y

0 β′
1 − α β′

2 −R0Y − µ− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (λ+ µ) [λ3 +

(
R0Y + µ+ δ1 + δ2 − (1−p)β′

2+pβ′
1

R0

)
λ2

+
(
R0Y δ2 +R0Y δ1 − pαY + µ

(
δ1 + δ1 − (1−p)β′

2+pβ′
1

R0

))
λ

+R0Y δ1δ2 − αpY δ2]

Therefore, the eigenvalues of the matrix J (E1) are
−µ and the roots of the polynomial:

Q1(λ) = λ3 +Aλ2 +Bλ+ C ,
where,

A = R0Y + µ+ δ1 + δ2 −
(1− p)β′

2 + pβ′
1

R0
B = R0Y δ2 +R0Y δ1 − pαY

+µ

(
δ1 + δ2 −

(1− p)β′
2 + pβ′

1

R0

)
C = R0Y δ1δ2 − αpY δ2

• We have,

δ1+δ2−
(1− p)β′

2 + pβ′
1

R0
=

(1− p)β′
2δ

2
1 + pβ′

1δ
2
2

(1− p)β′
2δ1 + pβ′

1δ2
≥ 0

So, A > 0.
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• We have,
δ1 = σ1 + u2 + µ+ α > α ≥ pα and R0 > 1
=⇒ R0δ1 − pα > 0 =⇒ B > 0

• We have δ1 = σ1 + u2 +µ+α > α ≥ pα and R0 > 1.
then, R0δ1 − pα > 0
=⇒ Y δ2(R0δ1 − pα) > 0 =⇒ C > 0.

On the other hand,

AB =

(
R0Y + µ+ δ1 + δ2 −

(1− p)β′
2 + pβ′

1

R0

)
×

(R0Y δ2 +R0Y δ1 − pαY )

+µ

(
R0Y + µ+ δ1 + δ2 −

(1− p)β′
2 + pβ′

1

R0

)
×(

δ1 + δ2 −
(1− p)β′

2 + pβ′
1

R0

)
= (R0Y + µ) (R0Y δ2 +R0Y δ1 − pαY ) + δ1R0Y δ2

+

(
δ2 −

(1− p)β′
2 + pβ′

1

R0

)
×

(R0Y δ2 +R0Y δ1 − pαY ) + δ1 (R0Y δ1 − pαY )

+µA

(
δ1 + δ2 −

(1− p)β′
2 + pβ′

1

R0

)
= R0Y δ1δ2 + (R0Y + µ)×(

R0Y δ2 +R0Y

(
δ1 −

pα

R0

))
+

(
δ2 −

(1− p)β′
2 + pβ′

1

R0

)
×(

R0Y δ2 +R0Y

(
δ1 −

pα

R0

))
+R0Y δ1

(
δ1 −

pα

R0

)
+µA

(
δ1 + δ2 −

(1− p)β′
2 + pβ′

1

R0

)
Since
• δ1 −

pα

R0
≥ 0 for R0 > 1

• δ2 −
(1− p)β′

2 + pβ′
1

R0
=

pβ′
1(δ2 − δ1)

(1− p)β′
2δ1 + pβ′

1δ2
≥ 0

for δ2 > δ1

• δ1+δ2−
(1− p)β′

2 + pβ′
1

R0
=

(1− p)β′
2δ

2
1 + pβ′

1δ
2
2

(1− p)β′
2δ1 + pβ′

1δ2
≥ 0

Then,

AB > R0Y δ1δ2 > C =⇒ AB − C > 0.

We have,

A > 0, B > 0 , C > 0 and AB − C > 0.

Thus, using Routh Hurwitz stability criterion, it can be
concluded that E1 is locally asymptotically stable.

III. SIMULATIONS

Simulations are performed by taking parameters in (Table
1) and using data from Morocco [21]

To solve the system (1) numerically we will use the
Gauss-Seidel-like implicit finite-difference. The time interval
[t0, T ] is discretized with a step h (time step size) such that
ti = t0 + ih
i = 0, 1, · · · , n and tn = T
The derivatives are approached by the following finite
differences:

TABLE I: Input parameters of the SIAR COVID-19 model

Symbol Meaning Value
β1 Effective contact rate with symp-

tomatic infected person
0.6

β2 Effective contact rate with asymp-
tomatic infected person

0.4

1

µ+ σ1
Infection duration among symptomatic
infected person

7.6

1

µ+ σ2
Infection duration among
asymptomatic infected person

7.22

α Death rate from COVID-19 0.006

Si+1 − Si

h
= Λ− Si+1 (1− u1 ) (β1 Ii + β2 Ai)

Ni
− µSi+1

Ii+1 − Ii
h

=
pSi+1 (1− u1 ) (β1 Ii+1 + β2 Ai)

Ni
− (σ1 + µ+ α+ u2 ) Ii+1

Ai+1 −Ai

h
=

(1− p)Si+1 (1− u1 ) (β1 Ii+1 + β2 Ai+1)

Ni
− (σ2 + µ)Ai+1

Ni+1 −Ni

h
= −α Ii+1 − µNi+1 + Λ

Then,

Si+1 =
ΛhNi +NiSi

hµNi + (1− u1 ) (β1 Ii + β2 Ai)h+Ni

Ii+1 =
p (1− u1 )β2 hAiSi+1 +NiIi

−p (1− u1 )β1 hSi+1 +
(
1
h + σ1 + µ+ α+ u2

)
hNi

Ai+1 =
(1− p) (1− u1 )β1hIi+1Si+1 +NiAi

− (1− p) (1− u1 )β2 hSi+1 + (σ2 + µ)hNi +Ni

Ni+1 =
(−α Ii+1 + Λ)h+Ni

hµ+ 1

The simulation’s results are given by Fig. 2 − Fig.7 be-
low, corresponding to different scenarios developed to illus-
trate the effect of control on the number of reproductions.

IV. RESULTS AND DISCUSSION

The numerical simulations below concern the pandemic
state evolution described by the proposed model, applied to
the Moroccan case. In these simulations, we took the daily
pandemic data [1] as a reference, then we tested different
scenarios corresponding to different prevention and patient
care strategies.

The scenario illustrated by Fig. 2 is related to the
pandemic evolution without control. This figure presents a
peak of the pandemic reached in an early stage with a very
high number of infected cases inducing a high pressure on
the health system and a high case fatality rate.
After this simulation without control, we proposed to test
numerically scenarios with different control levels with an
initial reproductive number R0 = 3.3.
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Fig. 2: Evolution of the pandemic without control
u1 = 0, u2 = 0, R0 = 3.3

First, the carried out simulations take into account the
effect of the control u1 on R0. Figure 3 shows that with
a moderate prevention, the reproductive number R0 can
be reduced to 1.7. Furthermore, while pushing the level
of prevention to the maximum level, with very strict
containment and isolation measures, R0 can be reduced to
0.3. Consequently, the pandemic will be eradicated (see
Fig. 4). However, this scenario is unrealistic due to its
consequences on individual freedom and economic activity.

Second, the analysis of the control effect u2 on R0

shows only a slight decrease of R0 even under a maximum
increase of u2 (see Fig .5 and Fig. 6). This can be
explained by the fact that, susceptible people are silently
infected by uncontrolled asymptomatic individuals. Hence,
a combination of these two controls is necessary to reduce
the R0 drastically (R0 = 0.99 < 1) without affecting the
economy and individual freedom (see Fig. 7).

These results show that combining the different preven-
tion’s measures and high patient care quality improve the
prevention against COVID-19 pandemic.

V. CONCLUSION

The spread of pandemics has always been a difficult phe-
nomenon to grasp due to the multitude of included factors.
In the case of the COVID-19 pandemic, the situation is even
more complex because it is a new virus whose behavior is
difficult to predict. Nevertheless, it is mandatory to figure out
its mode of propagation by different tools in order to control
its prevalence.
In this purpose we proposed a mathematical model that
describes the pandemic evolution and allows a better un-
derstanding of the impact of prevention and control on
the basic reproduction number R0, using different scenarios
according to a level of control and prevention. According to
our simulations results coronavirus disease COVID-19 will
continue to spread as long as there is no vaccine or acquired

Fig. 3: Evolution of the pandemic with a moderate control
of u1 (u1 = 0.5, u2 = 0 R0 = 1.7)

Fig. 4: Evolution of the pandemic with a high control of u1

(u1 = 0.9, u2 = 0 R0 = 0.3)

community immunity.
Until now the only way to fight COVID-19 is to take the
essential protective measures against the new coronavirus as
recommended by WHO [3].

APPENDIX A

1. Reproduction number

The basic reproduction number R0, is defined as the
average number of secondary infections produced when one
infected individual is introduced into a host population where
everyone is susceptible [22].

Using notations in [23], the matrices F and V and their
Jacobian matrices for the new infection terms and the remain-
ing transfer term evaluated at the disease free equilibrium are
respectively given by ;

Engineering Letters, 30:1, EL_30_1_12

Volume 30, Issue 1: March 2022

 
______________________________________________________________________________________ 



Fig. 5: Evolution of the pandemic with a moderate control
of u2 (u1 = 0, u2 = 0.5 R0 = 2.2)

Fig. 6: Evolution of the pandemic with a high control of u2

(u1 = 0, u2 = 1 R0 = 2)

F =

 pS (β′
1I + β′

2A)

N
(1− p)S (β′

1I + β′
2A)

N

 ; V =

(
δ1I
δ2A

)

JF =

 pSβ′
1

N

pSβ′
2

N
(1− p)Sβ′

1

N

(1− p)Sβ′
2

N

.

For trivial equilibrium E0, we have S∗ = N∗. So,

JF =

(
pβ′

1 pβ′
2

(1− p)β′
1 (1− p)β′

2

)
JV =

(
δ1 0
0 δ2

)
⇒ J−1

v =

( 1
δ1

0

0 1
δ2

)
.

Thus,

Fig. 7: Evolution of the pandemic with a moderate control
of u1 and u2 (u1 = 0.55, u2 = 0.5, R0 = 0.99)

JFJ
−1
V =

 pβ′
1

δ1

pβ′
2

δ2
(1− p)β′

1

δ1

(1− p)β′
2

δ2


It follows that the basic reproduction, denoted by R0, is

given by:

R0 = ρ(JFJ
−1
V )

=
pβ′

1

δ1
+

(1− p)β′
2

δ2

=
pβ1(1− u1)

σ1 + u2 + µ+ α
+

(1− p)β2(1− u1)

σ2 + µ
= RI +RA

Where, RI =
pβ1(1− u1)

σ1 + u2 + µ+ α

and RA =
(1− p)β2(1− u1)

σ2 + µ
.

APPENDIX B

1. Proof of theorem 1

From
dN

dt
= Λ− µN − αI

dN

dt
= Λ− µN − αI

≥ −(µ+ α)N ( because I ≤ N and α ≥ 0).

Then using Gronwall’s inequality:

N(t) ≥ N(0)e(−
∫ T
0

(µ+α)dt) =⇒ N(t) > 0.

On the other hand, we have:

dI

dt
=

pS(t)(1− u1)(β1I(t) + β2A(t))

N(t)
− δ1I(t)

Assume that there exists some time t∗ > 0 such that
I(t∗) = 0 , other variables (S,N,A) are positive and
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I(t) > 0 for t ∈ [0, t∗[.

So, we have:

dI(t)eδ1t

dt
= δ1e

δ1tI(t) + eδ1t
[pS(t)(1− u1)(β1I(t) + β2A(t))

N(t)

−δ1I(t)
]

= eδ1t
[
pS(t)(1− u1)(β1I(t) + β2A(t))

N(t)

]
.

Integrating this Equation from 0 to t∗ we have:

∫ t∗

0

dI(t)eδ1t

dt
dt =

∫ t∗

0

[
pS(t)(1− u1)(β1I(t) + β2A(t))

N(t)

]
eδ1tdt,

then, I(t∗) = e−δ1t
∗
I(0) + e−δ1t

∗∫ t∗

0

[
pS(t)(1− u1)(β1I(t) + β2A(t))

N(t)

]
eδ1tdt > 0

which contradicts I(t∗) = 0.

Consequently, I(t) > 0 ∀t ∈ [0, T ].

In the same way:

dA

dt
=

(1− p)S(t)(1− u1)(β1I(t) + β2A(t))

N(t)
− δ2A(t)

Assume that there exists some time t∗ > 0 such that
A(t∗) = 0 , other variables (S,N, I) are positive and
A(t) > 0 for t ∈ [0, t∗[.

So, we have:

dA(t)eδ1t

dt
= δ1e

δ2tA(t) + eδ2t ×[
(1− p)S(t)(1− u1)(β1I(t) + β2A(t))

N(t)
− δ2A(t)

]
= eδ2t

[
(1− p)S(t)(1− u1)(β1I(t) + β2A(t))

N(t)

]
Integrating this Equation from 0 to t∗ we have∫ t∗

0

dA(t)eδ2t

dt
dt =

∫ t∗

0

[
(1− p)S(t)(1− u1)(β1I(t) + β2A(t))

N(t)

]
× eδ1tdt

then A(t∗) = e−δ2t
∗
I(0)+

e−δ2t
∗
∫ t∗

0

[
(1− p)S(t)(1− u1)(β1I(t) + β2A(t))

N(t)

]
eδ2tdt > 0

which contradicts A(t∗) = 0.

Consequently, A(t) > 0 ∀t ∈ [0, T ].

From:
dS

dt
= Λ− (1− u1)(β1I(t) + β2A(t))

N(t)
S(t)− µS(t)

≥ −
(
(1− u1)(β1I(t) + β2A(t))

N(t)
+ µ

)
S(t)

(because I(t) ≥ 0, A(t) ≥ 0 and N(t) ≥ 0).

Then using Gronwall’s inequality

S(t) ≥ S(0) exp

(
−
∫ t

0

(
(1− u1)(β1I(s) + β2A(s))

N(s)
+ µ

)
ds

)
=⇒ S(t) > 0.

On the other hand,
dN(t)
dt

= Λ− µN(t)− αI(t) ≤ Λ− µNh(t).

So, N(t) ≤ Λ
µ −

(
Λ
µ −N(0)

)
e−µt =⇒ N(t) ≤ Λ

µ

for initial value N(0) ≤ Λ
µ
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