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Abstract—In this paper, two high-order compact finite d-
ifference schemes are proposed and analyzed for solving the
extended Fisher-Kolmogorov equation. The first compact finite
difference scheme is two-level and nonlinear implicit. The sec-
ond scheme is three-level and linearized implicit. The existence,
uniqueness of difference solutions and priori estimates are
obtained. Furthermore, the present schemes are convergent,
unconditionally stable, and the numerical convergence orders in
l∞-norm are of O(τ2+h4). Numerical experiments demonstrate
that the present schemes are efficient and reliable.

Index Terms—Extended Fisher-Kolmogorov equation, Finite
difference scheme, Unconditional stability, High-order conver-
gence.

I. INTRODUCTION

IN this paper, we consider the following periodic initial
value problem of the extended Fisher-Kolmogorov (EFK)

equation

ut + γuxxxx − uxx − u+ u3 = 0, x ∈ R, t ∈ (0, T ], (1)

subject to the boundary conditions

u(x+ L, t) = u(x, t), x ∈ R, t ∈ (0, T ], (2)

and the initial condition

u(x, 0) = u0(x), x ∈ R, (3)

where u = u(x, t) is a real-valued function which defined
on R × [0, T ], T > 0, γ is a positive constant and u0 is
a given periodic-valued function regular enough. To solve
the periodic initial value problem (1)-(3), we can restrict it
on a bounded domain Ω = (0, L). When γ = 0, the above
extended Fisher-Kolmogorov equation (1) reduces into the
usual Fisher-Kolmogorov equation.

In recent years, there has been a growing interest in the
computation of the extended Fisher-Kolmogorov equation,
Danumjaya and Pani [1] have studied the convergence of
numerical solution by using the second-order splitting com-
bined with orthogonal cubic spline collocation method, and
they also developed a finite element Galerkin method for the
two-dimensional extended Fisher-Kolmogorov equation with
optimal error estimates [2]. Kadri and Omrani [3] developed
a second-order Crank-Nicolson scheme for the above 1D
extended Fisher-Kolmogorov equation (1), where the stability
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and convergence of the numerical solution are proved in
L∞-norm. Moreover, Khiari and Omrani [4] developed an
energy stable nonlinear scheme for the 2D extended Fisher-
Kolmogorov equation, where the stability and convergence
of the numerical solution are also proved in L∞-norm. He
[5] developed a second-order three-level linearly implicit
finite difference method for solving the extended Fisher-
Kolmogorov equation in both 1D and 2D, where the stability
and convergence of the numerical solution are also proved
in L∞-norm. Xu et al. [6] utilized a reduced high-order
compact finite difference scheme on POD technique for the
2D extended Fisher-Kolmogorov equation. Recently, Khiari
and Omrani [7] proposed a fourth-order nonlinear finite
difference scheme and their numerical analysis showed that
the method can be applied to study the periodic solution in
a long time. Ismail et al. [8] proposed a fourth-order linear
finite difference scheme and their numerical analysis also
showed that the method can be applied to study the periodic
solution in a long time. However, the above finite-difference
schemes in Refs. [7, 8], although they have the fourth-order
numerical precision, employ a seven-point discrete method.
Thus, the purpose of this paper is to establish two new high-
order compact finite-difference schemes for solving the EFK
equation. The coefficient matrices of these new schemes are
both five-point discrete method. And we rigorously prove that
the two schemes are unconditionally stable. More difference
schemes can be found for the KdV equation [9-11], the
Benjamin-Bona-Mahony equation or RLW equation [12-14],
the Rosenau equation [15], the Rosenau-RLW equation [16-
18], the Kawahara equation [19], the Rosenau-Kawahara
equation [20, 21], the Rosenau-Kawahara-RLW equation
[22-25], and many others [26-31].

The outline is as follows. In Sect. 2, a two-time-level
nonlinear finite difference scheme for the problem (1)-(3)
is described in detail, and the unique solvability, the prior
error estimates, and the unconditional convergence of the
difference scheme are proved. In Sect. 3, a three-time-level
linearized compact finite difference scheme is constructed.
The unique solvability, the prior error estimates, and the
unconditional convergence of the difference scheme are also
proved. In Sect. 4, we present some numerical examples
to show the performance of the schemes and confirm our
theoretical analysis. Finally, conclusions are drawn in the
last section.

II. NONLINEAR COMPACT DIFFERENCE SCHEME

In this section, we propose a two-time-level nonlinear
fourth-order compact finite difference scheme for the prob-
lem (1)-(3).
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We first describe our solution domain and its grid. The
computational domain is defined as {(x, t)|0 ≤ x ≤ L, 0 ≤
t ≤ T}, which is covered by a uniform grid {(xi, tn)|xi =
ih, tn = nτ, i = 0, 1, · · · , J, n = 0, 1, · · · , N}, with spacing
h = L

J , τ = T
N . We denote Un

i is the numerical approxima-
tion of u(xi, tn) and RJ

per = {U = (Ui)|Ui = Ui+J , i ∈ Z}.
Throughout this paper, we denote C as a general positive
constant, which may have different values independent of
h and τ , that varies in different occurrences in the context.
For convenience, the difference operators, inner product and
norms are defined as

Ūn
i =

Un+1
i + Un−1

i

2
, U

n+ 1
2

i =
Un+1
i + Un

i

2
,

(Un
i )t =

Un+1
i − Un

i

τ
, (Un

i )t̂ =
Un+1
i − Un−1

i

2τ
,

(Un
i )x =

Un
i+1 − Un

i

h
, (Un

i )x̄ =
Un
i − Un

i−1

h
,

(Un
i )x̂ =

Un
i+1 − Un

i−1

2h
, ⟨Un, V n⟩ = h

J∑
i=1

Un
i V

n
i ,

∥Un∥ =
√
⟨Un, Un⟩, ∥Un∥∞ = max

1≤i≤J
∥Un

i ∥,

∥Un∥H1 =
√

∥Un∥2 + ∥Un
x ∥2.

To get the high-order scheme, we use the following fourth-
order compact finite-difference operator [13, 25, 30]

LxU
n
i = Un

i +
h2

12
(Un

i )xx̄ =
1

12
(Un

i−1 + 10Un
i + Un

i+1).

For the discretization of the second-order derivative uxx of
the function u(x, t), we have the following formulas [25]

uxx(xi, t
n) = L−1

x (Un
i )xx̄ +O(h4).

Omitting the small terms O(h4), we obtain

uxx(xi, t
n) ≈ L−1

x (Un
i )xx̄.

We now introduce the vectors U = (U1, U2, · · · , UJ )
T,

Λhuxx = [uxx(x1), uxx(x2), · · · , uxx(xJ)]
T and the matrix

M =
1

12


10 1 0 · · · 1
1 10 1 · · · 0
...

...
...

. . .
...

0 · · · 1 10 1
1 · · · 0 1 10

 ,

where [ · ]T is the transpose of the vector [ · ]. Thus, the
corresponding matrix form is

ΛhUxx ≈ M−1Uxx̄.

Since M is a real symmetric positive definite matrix, there
exists a real symmetric positive definite matrix H , such that
H = M−1.

We first propose a nonlinear compact finite difference
scheme for the EFK equation as

(Un
i )t + γ(L−1

x )2(U
n+ 1

2
i )xx̄xx̄ − L−1

x (U
n+ 1

2
i )xx̄

− U
n+ 1

2
i + (U

n+ 1
2

i )3 = 0,
(4)

where n = 0, 1, · · · , N − 1, i = 1, 2, · · · , J . Thus, the
compact finite-difference scheme (4) can be rewritten in the

following matrix form

(Un)t + γH2(Un+ 1
2 )xx̄xx̄ −H(Un+ 1

2 )xx̄ − Un+ 1
2

+ (Un+ 1
2 )3 = 0, n = 0, 1, · · · , N − 1,

(5)

and the initial-boundary conditions are discretized as

Un
i+M = Un

i , i = 1, 2, · · · ,M, n = 0, 1, · · · , N, (6)

U0
i = u0(xi), i = 1, 2, · · · ,M. (7)

The following lemmas are some properties for our com-
pact scheme. They are essential for existence, uniqueness,
convergence, and stability of the numerical solution.
Lemma 1 (See [30]). For any two mesh functions U, V ∈
RJ

per , we have

⟨Ux, V ⟩ = −⟨U, Vx̄⟩, ⟨Uxx̄, V ⟩ = −⟨Ux, Vx⟩.

Furthermore, ⟨Uxx̄, U⟩ = −∥Ux∥2, ⟨Uxx̄xx̄, U⟩ = ∥Uxx̄∥2.
Lemma 2 For any mesh function U ∈ RJ

per , we have

J∑
i=1

LxUi =
J∑

i=1

Ui.

Similarly, L−1
x also has the above properties,

J∑
i=1

L−1
x Ui =

J∑
i=1

Ui.

Proof. Notice that Ui = Ui+J , i ∈ Z. We can find

J∑
i=1

LxUi =
1

12

J∑
i=1

Ui−1 +
10

12

J∑
i=1

Ui +
1

12

J∑
i=1

Ui+1 =
J∑

i=1

Ui.

Lemma 3 (See [25, 30]). For any mesh function U ∈ RJ
per

, we have

⟨HUxx̄, U⟩ = −⟨RUx, RUx⟩ = −∥RUx∥2,
⟨H2Uxx̄xx̄, U⟩ = ⟨HUxx̄, HUxx̄⟩ = ∥Uxx̄∥2,

where R is obtained by the Cholesky decomposition of H ,
denoted as H = RTR.
Lemma 4 (See [25, 30]). For any mesh function U ∈ RJ

per

, we have

∥U∥2 ≤ ⟨HU,U⟩ = ∥RU∥2 ≤ C∥U∥2,
∥U∥2 ≤ ⟨HU,HU⟩ = ∥HU∥2 ≤ C∥U∥2.

A. Existence and prior estimates

To show the existence of the approximations Un (n =
1, 2, · · · , N) for the scheme (5)-(7), we introduce the fol-
lowing Brouwer fixed point theorem [32].
Lemma 5. Let H be a finite-dimensional inner product
space, ∥ · ∥ be the associated norm, and g : H → H be
continuous. Assume, moreover, that ∃α > 0, ∀z ∈ H, ∥z∥ =
α, ⟨ω(z), z⟩ > 0. Then, there exists a z∗ ∈ H such that
g(z∗) = 0 and ∥z∗∥ ≤ α.
Theorem 1. There exists Un+1 ∈ RJ

per which satisfies the
scheme (5)-(7).
Proof. In order to prove the theorem by the mathemati-
cal induction. It follows from the original problem (1)-(3)
that U0 satisfies the scheme (5)-(7). Assume there exists
U1, U2, · · · , Un ∈ RJ

per which satisfy the scheme (5)-(7),
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as n ≤ N − 1, now we try to prove that Un+1 ∈ RJ
per,

satisfy the scheme (5)-(7).
We define ω on RJ

per as follows

ω(ν) = 2ν − 2Un + τγH2νxx̄xx̄

− τHνxx̄ − τν + τν3.
(8)

Computing the inner product of (8) with ν and using Lemma
3, we obtain

⟨ω(ν), ν⟩ = 2∥ν∥2 − 2⟨Un, ν⟩+ τγ∥Hνxx̄∥2

+ τ∥Rνx∥2 − τ∥ν∥2 + τ∥ν2∥2

≥ 2∥ν∥2 − ∥ν∥2 − ∥Un∥2 − τ∥ν∥2

= (1− τ)∥ν∥2 − ∥Un∥2.

Hence, when τ < 1, for ∀ν ∈ RJ
per, ∥ν∥2 = 1

1−τ ∥U
n∥2 +1,

there exists ⟨ω(ν), ν⟩ ≥ 0. It follows from Lemma 5 that
exists ν∗ ∈ RJ

per which satisfies ω(ν∗) = 0. Let Un+1 =
2ν − Un , then it can be proved that Un+1 ∈ RJ

per is the
solution of the scheme (5)-(7). This completes the proof of
Theorem 1.

Next we shall give some priori estimates of difference
solutions. First the following two Lemmas are introduced.
Lemma 6 (Discrete Sobolev’s Inequality [5, 33]). For any
mesh function U ∈ RJ

per , we have

∥U∥∞ ≤ C∥U∥H1 .

Lemma 7 (Discrete Gronwall’s Inequality). Suppose that
ω(k) and ρ(k) are nonnegative functions while ρ(k) is a
non-decreasing function. If

ω(k) ≤ ρ(k) + Cτ
k−1∑
l=0

ω(l),

for any k, then ω(k) ≤ ρ(k)eCτk.
Theorem 2. Suppose u0 ∈ C8,3[0, L] , if τ is sufficiently
small, then the solution of finite difference scheme (5)-(7)
satisfies ∥Un∥∞ ≤ C for any n ≥ 1.
Proof. Taking the inner product of Un+ 1

2 for both sides of
(5), we obtain

∥Un+1∥2 − ∥Un∥2

2τ
+ γ∥HU

n+ 1
2

xx̄ ∥2 + ∥RU
n+ 1

2
x ∥2

− ∥Un+ 1
2 ∥2 +

⟨
(Un+ 1

2 )3, Un+ 1
2

⟩
= 0,

(9)

where

⟨Un
t , U

n+ 1
2 ⟩ = ∥Un+1∥2 − ∥Un∥2

2τ
,

⟨H2U
n+ 1

2
xx̄xx̄, U

n+ 1
2 ⟩ = ∥HU

n+ 1
2

xx̄ ∥2,

⟨HU
n+ 1

2
xx̄ , Un+ 1

2 ⟩ = −∥RU
n+ 1

2
x ∥2

are used. From (9), we get

∥Un+1∥2 − ∥Un∥2

2τ
= −γ∥HU

n+ 1
2

xx̄ ∥2 − ∥RU
n+ 1

2
x ∥2

+ ∥Un+ 1
2 ∥2 −

⟨
(Un+ 1

2 )3, Un+ 1
2

⟩
≤ ∥Un+ 1

2 ∥2 ≤ ∥Un+1∥2 + ∥Un∥2

2
,

(10)

where
⟨
(Un+ 1

2 )3, Un+ 1
2

⟩
= ∥(Un+ 1

2 )2∥2 ≥ 0 is used.
Thus,

∥Un+1∥2 − ∥Un∥2 ≤ 2τ

1− τ
∥Un∥2. (11)

If τ , which is sufficiently small, satisfies τ ≤ 1
2 , then 1−τ ≥

1
2 and (11) gives

∥Un+1∥2 − ∥Un∥2 ≤ 4τ∥Un∥2. (12)

Then, summing (12) from 0 to n− 1, we get

∥Un∥2 ≤ ∥U0∥2 + 4τ

n−1∑
k=0

∥Uk∥2,

for any 1 ≤ n ≤ N .
Through Lemma 7, we obtain that

∥Un∥2 ≤ ∥U0∥2e4nτ ≤ ∥U0∥2e4T .

Then,

∥Un∥ ≤ C. (13)

Now taking the inner product of Un
t for both sides of (5),

we obtain

∥Un
t ∥2 + γ

∥HUn+1
xx̄ ∥2 − ∥HUn

xx̄∥2

2τ

+
∥RUn+1

x ∥2 − ∥RUn
x ∥2

2τ
− ⟨Un+ 1

2 , Un
t ⟩

+
⟨
(Un+ 1

2 )3, Un
t

⟩
= 0,

(14)

where ⟨
H2U

n+ 1
2

xx̄xx̄, U
n
t

⟩
=

∥HUn+1
xx̄ ∥2 − ∥HUn

xx̄∥2

2τ
,⟨

HU
n+ 1

2
xx̄ , Un

t

⟩
= −∥RUn+1

x ∥2 − ∥RUn
x ∥2

2τ

are used. From (14), we can obtain that

γ
∥HUn+1

xx̄ ∥2 − ∥HUn
xx̄∥2

2τ
+

∥RUn+1
x ∥2 − ∥RUn

x ∥2

2τ

= −∥Un
t ∥2 + ⟨Un+ 1

2 , Un
t ⟩ −

⟨
(Un+ 1

2 )3, Un
t

⟩
≤ −∥Un

t ∥2 + ∥Un+ 1
2 ∥ · ∥Un

t ∥
+ ∥(Un+ 1

2 )3∥ · ∥Un
t ∥

≤ −∥Un
t ∥2 +

1

2
∥Un+ 1

2 ∥2 + 1

2
∥Un

t ∥2

+
1

2
∥(Un+ 1

2 )3∥2 + 1

2
∥Un

t ∥2

=
1

2
∥Un+ 1

2 ∥2 + 1

2
∥(Un+ 1

2 )3∥2 ≤ C,

where (13) is been used.
Let Dn = γ∥HUn

xx̄∥2 + ∥RUn
x ∥2, then,

Dn+1 −Dn ≤ 2τC, 0 ≤ n ≤ N − 1. (15)

Summing (15) from 0 to n− 1, we get

Dn ≤ D0 + 2τnC ≤ D0 + 2CT ≤ C, 1 ≤ n ≤ N.

Therefore, from Lemma 4, we obtain that

∥Un
x ∥ ≤ ∥RUn

x ∥ ≤ C, 1 ≤ n ≤ N. (16)

Combining (13) and (16), we obtain that

∥Un
x ∥H1 ≤ C, 1 ≤ n ≤ N.

By Lemma 6, we can get that

∥Un∥∞ ≤ C, 1 ≤ n ≤ N. (17)

This completes the proof.
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B. uniqueness and Convergence

In this section, the following theorems will show the
uniqueness and convergence of the finite difference approx-
imate solution (5)-(7).
Theorem 3. If τ is sufficiently small, then the finite differ-
ence scheme (5)-(7) has a unique solution.
Proof. To prove the theorem, we proceed by the mathemat-
ical induction. It is obvious that U0 is uniquely determined
by the initial condition in (7). Suppose U1, · · · , Un(1 ≤ n ≤
N − 1) are solved uniquely, we now consider (5) for Un+1.
Assume that Un+1,1, Un+1,2 are two solutions of (5) and
let Wn+1 = Un+1,1 − Un+1,2, then it is easy to verify that
Wn+1 satisfies the following equation

1

τ
Wn+1

i +
γ

2
H2(Wn+1

i )xx̄xx̄ − 1

2
H(Wn+1

i )xx̄

− Wn+1
i

2
+

(
U

n+ 1
2 ,1

i

)3 − (
U

n+ 1
2 ,2

i

)3
= 0,

(18)

where U
n+ 1

2 ,1
i =

Un
i +Un+1,1

i

2 , Un+ 1
2 ,2

i =
Un

i +Un+1,2
i

2 . Taking
the inner product of (18) with Wn+1, we have(1

τ
− 1

2

)
∥Wn+1∥2 + γ

2
∥HWn+1

xx̄ ∥2 + 1

2
∥RWn+1

x ∥2

+
⟨(
Un+ 1

2 ,1
)3 − (

Un+ 1
2 ,2

)3
,Wn+1

⟩
= 0,

(19)

where

⟨HWn+1
xx̄ ,Wn+1⟩ = −∥RWn+1

x ∥2,
⟨H2Wn+1

xx̄xx̄,W
n+1⟩ = ∥HWn+1

xx̄ ∥2

are used from Lemmas 3. It will be easy to see that,⟨(
Un+ 1

2 ,1
)3 − (

Un+ 1
2 ,2

)3
,Wn+1

⟩
=⟨[(

Un+ 1
2 ,1

)2
+ Un+ 1

2 ,1 · Un+ 1
2 ,2 +

(
Un+ 1

2 ,2
)2]

· W
n+1

2
,Wn+1

⟩
≥ 0.

When τ < 2, then 1
τ − 1

2 > 0. That is, Eq. (19) only
admits a zero solution, implying there exists unique Un+1

that satisfies the scheme in Eqs. (5)-(7). This completes the
proof of the uniqueness of the new scheme.

Next, we define the grid function un
i = u(xi, t

n), un =
(un

1 , u
n
2 , · · · , un

J)
T. Then the truncation errors of compact

difference scheme (5)-(7) rn = (rn1 , r
n
2 , · · · , rnJ )T ∈ RJ

per

satisfy

(un)t + γH2(un+ 1
2 )xx̄xx̄ −H(un+ 1

2 )xx̄ − un+ 1
2

+ (un+ 1
2 )3 = rn, n = 0, 1, · · · , N − 1.

(20)

and

un
i+M = un

i , i = 1, 2, · · · ,M, n = 0, 1, · · · , N, (21)

u0
i = u0(xi), i = 1, 2, · · · ,M. (22)

According to the Taylor expansion, we have

|rni | ≤ C(τ2 + h4), i = 1, 2, · · · , J, n = 0, 1, · · · , N. (23)

Theorem 4. Assume that u0 is sufficiently smooth and
u(x, t) ∈ C8,3

x,t ([0, L]× [0, T ]), If τ is sufficiently small, then
the solution Un of the compact finite difference scheme (5)-
(7) converges to the solution of the problem (1)-(3) with the
convergence rate of O(τ2+h4) in the sense of ∥·∥∞ norms.

Proof. Subtracting (5)-(7) from (20) to (22) and letting
en = un − Un, we obtain

(en)t + γH2(en+
1
2 )xx̄xx̄ −H(en+

1
2 )xx̄ − en+

1
2

+ (un+ 1
2 )3 − (Un+ 1

2 )3 = rn, n = 0, 1, · · · , N − 1,
(24)

and

eni+M = eni , i = 1, 2, · · · ,M, n = 0, 1, · · · , N, (25)

e0i = 0, i = 1, 2, · · · ,M. (26)

Taking the inner product of (24) with en+
1
2 , we obtain

∥en+1∥2 − ∥en∥2

2τ
+ γ∥He

n+ 1
2

xx̄ ∥2 + ∥Re
n+ 1

2
x ∥2 =

⟨en+ 1
2 + (Un+ 1

2 )3 − (un+ 1
2 )3, en+

1
2 ⟩+ ⟨rn, en+ 1

2 ⟩.
(27)

where

⟨ent , en+
1
2 ⟩ = ∥en+1∥2 − ∥en∥2

2τ
,

⟨H2e
n+ 1

2
xx̄xx̄, e

n+ 1
2 ⟩ = ∥He

n+ 1
2

xx̄ ∥2,

⟨He
n+ 1

2
xx̄ , en+

1
2 ⟩ = −∥Re

n+ 1
2

x ∥2

are used. In addition,

⟨en+ 1
2 + (Un+ 1

2 )3 − (un+ 1
2 )3, en+

1
2 ⟩

≤ ∥en+ 1
2 + (Un+ 1

2 )3 − (un+ 1
2 )3∥ · ∥en+ 1

2 ∥,
(28)

and

⟨rn, en+ 1
2 ⟩ ≤ ∥rn∥ · ∥en+ 1

2 ∥ ≤ 1

2
∥rn∥2 + 1

2
∥en+ 1

2 ∥2

≤ 1

2
∥rn∥2 + 1

4
(∥en+1∥2 + ∥en∥2).

(29)

For the nonlinear term ∥en+ 1
2 + (Un+ 1

2 )3 − (un+ 1
2 )3∥, we

use the boundedness of ∥Un∥∞ to find that

∥en+ 1
2 + (Un+ 1

2 )3 − (un+ 1
2 )3∥ ≤ C∥en+ 1

2 ∥. (30)

Using (27)-(30), we can obtain that

∥en+1∥2 − ∥en∥2 ≤ τ∥rn∥2 + Cτ(∥en+1∥2 + ∥en∥2),

which is equivalent to

∥en+1∥2 − ∥en∥2 ≤ 2Cτ

1− Cτ
∥en∥2 + τ

1− Cτ
∥rn∥2. (31)

Summing (31) from 0 to n− 1, we get

∥en∥2 ≤ ∥e0∥2 + 2Cτ

1− Cτ

n−1∑
l=0

∥el∥2

+
τ

1− Cτ

n−1∑
l=0

∥rl∥2,
(32)

where 1 ≤ n ≤ N , and

τ
n−1∑
l=0

∥rl∥2 ≤ nτ max
1≤l≤n−1

∥rl∥2 ≤ T · C(τ2 + h4)2.

Since e0i = 0. If τ , which is sufficiently small, satisfies τ <
1
2C , then 1− Cτ > 0 and (32) gives

∥en∥2 ≤ C(τ2 + h4)2 + 4Cτ
n−1∑
l=0

∥el∥2, 1 ≤ n ≤ N.
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Using Lemma 7, we obtain

∥en∥2 ≤ C(τ2 + h4)2, 1 ≤ n ≤ N.

Thus,

∥en∥ ≤ C(τ2 + h4), 1 ≤ n ≤ N. (33)

Now taking the inner product of (24) with ent , we obtain

∥ent ∥2 + γ
∥Hen+1

xx̄ ∥2 − ∥Henxx̄∥2

2τ

+
∥Ren+1

x ∥2 − ∥Renx∥2

2τ

= ⟨en+ 1
2 + (Un+ 1

2 )3 − (un+ 1
2 )3, ent ⟩+ ⟨rn, ent ⟩,

(34)

where

⟨H2e
n+ 1

2
xx̄xx̄, e

n
t ⟩ =

∥Hen+1
xx̄ ∥2 − ∥Henxx̄∥2

2τ
,

⟨He
n+ 1

2
xx̄ , ent ⟩ = −∥Ren+1

x ∥2 − ∥Renx∥2

2τ

are used. In addition,

⟨en+ 1
2 + (Un+ 1

2 )3 − (un+ 1
2 )3, ent ⟩

≤ ∥en+ 1
2 + (Un+ 1

2 )3 − (un+ 1
2 )3∥ · ∥ent ∥

≤ C∥en+ 1
2 ∥2 + 1

2
∥ent ∥2,

(35)

and

⟨rn, ent ⟩ ≤ ∥rn∥ · ∥ent ∥ ≤ 1

2
∥rn∥2 + 1

2
∥ent ∥2. (36)

Using (34)-(36), we can obtain that

γ
∥Hen+1

xx̄ ∥2 − ∥Henxx̄∥2

2τ
+

∥Ren+1
x ∥2 − ∥Renx∥2

2τ

≤ C∥en+ 1
2 ∥2 + 1

2
∥rn∥2

≤ C

2
(∥en+1∥2 + ∥en∥2) + 1

2
∥rn∥2.

From (33) and |rni | ≤ C(τ2 + h4), we obtain that

γ(∥Hen+1
xx̄ ∥2 − ∥Henxx̄∥2) + (∥Ren+1

x ∥2 − ∥Renx∥2)
≤ C(τ2 + h4)2.

(37)

Let En = γ∥Henxx̄∥2 + ∥Renx∥2, then,

En+1 − En ≤ C(τ2 + h4)2, 0 ≤ n ≤ N − 1. (38)

Summing (38) from 0 to n− 1, we get

En ≤ E0 + C(τ2 + h4)2.

For e0i = 0, we have

En ≤ C(τ2 + h4)2, 1 ≤ n ≤ N.

Using Lemma 4, we obtain

∥enx∥ ≤ ∥Renx∥ ≤ C(τ2 + h4), 1 ≤ n ≤ N. (39)

Combining (33) and (39), we obtain that

∥en∥H1 ≤ C(τ2 + h4), 1 ≤ n ≤ N.

By Lemma 6, we obtain

∥en∥∞ ≤ C(τ2 + h4), 1 ≤ n ≤ N. (40)

This completes the proof.

III. LINEARIZED COMPACT DIFFERENCE SCHEME

Compared with the nonlinear scheme, the linearized
scheme is the most effective in terms of accuracy and
computational cost. Then in this section, we propose a three-
level linearized compact finite difference scheme for the EFK
problem (1)-(3)

(Un
i )t̂ + γ(L−1

x )2(Ūn
i )xx̄xx̄ − L−1

x (Ūn
i )xx̄

− Ūn
i + (Un

i )
2Ūn

i = 0,
(41)

where n = 1, 2, · · · , N − 1, j = 1, 2, · · · , J . Since the
scheme (41) is a three-time-level method, to start the com-
putation, we may get U1 by the following two levels in time
method (4) as

(U0
i )t + γ(L−1

x )2(U
1
2
i )xx̄xx̄ − L−1

x (U
1
2
i )xx̄

− U
1
2
i + (U

1
2
i )3 = 0, i = 1, 2, · · · , J.

(42)

Thus, the compact linearized finite-difference scheme (41)
and (42) can be rewritten in the following matrix form

(Un)t̂ + γH2(Ūn)xx̄xx̄ −H(Ūn)xx̄

− Ūn + (Un)2Ūn = 0, n = 1, 2, · · · , N − 1,
(43)

(U0)t + γH2(U
1
2 )xx̄xx̄ −H(U

1
2 )xx̄

− U
1
2 + (U

1
2 )3 = 0,

(44)

and the initial-boundary conditions are discretized as

Un
i+M = Un

i , i = 1, 2, · · · ,M, n = 0, 1, · · · , N, (45)

U0
i = u0(xi), i = 1, 2, · · · ,M. (46)

A. Existence and prior estimates

Theorem 5. There exists Un+1 ∈ RJ
per which satisfies the

scheme (43)-(46).
Proof. In order to prove the theorem by the mathemati-
cal induction. It is obvious that U0 and U1 are uniquely
solvable by (46) and (44), respectively. Assume there exist
U1, U2, · · · , Un ∈ RJ

per which satisfy the scheme (43)-(46),
as n ≤ N − 1, now we try to prove that Un+1 ∈ RJ

per,
satisfies the scheme (43)-(46).

We define ω on RJ
per as follows

ω(ν) = ν − Un−1 + τγH2νxx̄xx̄

− τHνxx̄ − τν + τ(Un)2ν.
(47)

Computing the inner product of (47) with ν and using
Lemma 3, we obtain

⟨ω(ν), ν⟩ = ∥ν∥2 − ⟨Un−1, ν⟩+ τγ∥Hνxx̄∥2

+ τ∥Rνx∥2 − τ∥ν∥2 + τ⟨(Un)2ν, ν⟩

≥ ∥ν∥2 − 1

2
∥ν∥2 − 1

2
∥Un−1∥2 − τ∥ν∥2

= (
1

2
− τ)∥ν∥2 − 1

2
∥Un−1∥2.

Hence, when τ < 1
2 , for ∀ν ∈ RJ

per, ∥ν∥2 =
1

1−2τ ∥U
n−1∥2+1, there exists ⟨ω(ν), ν⟩ ≥ 0. It follows from

Lemma 5 that exists ν∗ ∈ RJ
per which satisfies ω(ν∗) = 0.

Let Un+1 = 2ν − Un−1 , then it can be proved that
Un+1 ∈ RJ

per is the solution of the scheme (43)-(46). This
completes the proof of Theorem 5.
Theorem 6. Suppose u0 ∈ C8,3[0, L] , if τ is sufficiently
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small, then the solution of finite difference scheme (43)-(46)
satisfies ∥Un∥∞ ≤ C for any n ≥ 2.
Proof. Taking the inner product of Ūn for both sides of (43),
we obtain

∥Un+1∥2 − ∥Un−1∥2

4τ
+ γ∥HŪn

xx̄∥2 + ∥RŪn
x ∥2

− ∥Ūn∥2 +
⟨
(Un)2Ū , Ūn

⟩
= 0,

(48)

where

⟨Un
t̂
, Ūn⟩ = ∥Un+1∥2 − ∥Un−1∥2

4τ
,

⟨H2Ūn
xx̄xx̄, Ū

n⟩ = ∥HŪn
xx̄∥2,

⟨HŪn
xx̄, Ū

n⟩ = −∥RŪn
x ∥2

are used. From (48), we get

∥Un+1∥2 − ∥Un−1∥2

4τ
= −γ∥HŪn

xx̄∥2 − ∥RŪn
x ∥2

+ ∥Ūn∥2 −
⟨
(Un)2Ū , Ūn

⟩
≤ ∥Ūn∥2

≤ 1

2
(∥Un+1∥2 + ∥Un−1∥2),

(49)

where
⟨
(Un)2Ū , Ūn

⟩
≥ 0 is used.

Thus,

∥Un+1∥2 − ∥Un−1∥2 ≤ 2τ(∥Un+1∥2 + ∥Un−1∥2)
≤ 2τ(∥Un+1∥2 + 2∥Un∥2 + ∥Un−1∥2).

(50)

Let Fn = ∥Un∥2 + ∥Un−1∥2, then

Fn+1 − Fn ≤ 2τ(Fn+1 + Fn),

which is equivalent to

(1− 2τ)(Fn+1 − Fn) ≤ 4τFn. (51)

If τ , which is sufficiently small, satisfies τ ≤ 1
3 then 1−2τ ≥

1
3 and (51) gives

Fn+1 − Fn ≤ 4

1− 2τ
τFn ≤ 12τFn. (52)

Then, summing (52) from 1 to n− 1, we get

Fn ≤ F 1 + 12τ

n−1∑
l=1

Dl,

for any 2 ≤ n ≤ N .
Through Lemma 7, we obtain that

Fn ≤ F 1e12nτ ≤ F 1e12T .

Then,

∥Un∥ ≤ C. (53)

Now taking the inner product of Un
t̂

for both sides of (43),
we obtain the following identity

∥Un
t̂
∥2 + γ

∥HUn+1
xx̄ ∥2 − ∥HUn−1

xx̄ ∥2

4τ

+
∥RUn+1

x ∥2 − ∥RUn−1
x ∥2

4τ
− ⟨Ūn, Un

t̂
⟩

+
⟨
(Un)2Ūn, Un

t̂

⟩
= 0,

(54)

where ⟨
H2Ūn

xx̄xx̄, U
n
t̂

⟩
=

∥HUn+1
xx̄ ∥2 − ∥HUn−1

xx̄ ∥2

4τ
,⟨

HŪn
xx̄, U

n
t̂

⟩
= −∥RUn+1

x ∥2 − ∥RUn−1
x ∥2

4τ

are used. From (54), we can obtain that

γ
∥HUn+1

xx̄ ∥2 − ∥HUn−1
xx̄ ∥2

4τ
+

∥RUn+1
x ∥2 − ∥RUn−1

x ∥2

4τ
= −∥Un

t̂
∥2 + ⟨Ūn, Un

t̂
⟩ −

⟨
(Un)2Ūn, Un

t̂

⟩
≤ −∥Un

t̂
∥2 + ∥Ūn∥ · ∥Un

t̂
∥+ ∥(Un)2Ūn∥ · ∥Un

t̂
∥

≤ −∥Un
t̂
∥2 + 1

2
∥Ūn∥2 + 1

2
∥Un

t̂
∥2

+
1

2
∥(Un)2Ūn∥2 + 1

2
∥Un

t̂
∥2

≤ 1

2
∥Ūn∥2 + 1

2
∥(Un)2∥2 · ∥Ūn∥2 ≤ C,

where (53) is been used.
Let Gn = γ(∥HUn

xx̄∥2 + ∥HUn−1
xx̄ ∥2) + (∥RUn

x ∥2 +
∥RUn−1

x ∥2), then,

Gn+1 −Gn ≤ 4τC, 1 ≤ n ≤ N − 1. (55)

Summing (55) from 1 to n− 1, we get

Gn ≤ G1 + 4τ(n− 1)C ≤ G1 + 4CT ≤ C,

2 ≤ n ≤ N − 1.

Thus, from Lemma 4, we obtain that

∥Un
x ∥ ≤ ∥RUn

x ∥ ≤ C, 2 ≤ n ≤ N. (56)

Combining (53) and (56), we obtain that

∥Un∥H1 ≤ C, 2 ≤ n ≤ N.

By Lemma 6, we can get that

∥Un∥∞ ≤ C, 2 ≤ n ≤ N. (57)

This completes the proof.

B. uniqueness and Convergence

Theorem 7. If τ is sufficiently small, then the finite
difference scheme (43)-(46) has a unique solution.
Proof. To prove the theorem, we proceed by the math-
ematical induction. It is obvious that U0 and U1 are u-
niquely solvable by (46) and (44), respectively. Suppose
U0, U1, · · · , Un(1 ≤ n ≤ N − 1) are solved uniquely, we
now consider (43) for Un+1. Assume that Un+1,1, Un+1,2

are two solutions of (43) and let W̃n+1 = Un+1,1−Un+1,2,
then it is easy to verify that W̃n+1 satisfies the following
equation

1

2τ
W̃n+1

i +
γ

2
H2(W̃n+1

i )xx̄xx̄ − 1

2
H(W̃n+1

i )xx̄

− 1

2
W̃n+1

i +
1

2
(Un)2W̃n+1

i = 0,
(58)

Taking the inner product of (58) with W̃n+1, we have( 1

2τ
− 1

2

)
∥W̃n+1∥2 + γ

2
∥HW̃n+1

xx̄ ∥2

+
1

2
∥RW̃n+1

x ∥2 + 1

2

⟨
(Un)2W̃n+1

i , W̃n+1
⟩
= 0,

(59)

where

⟨H2W̃n+1
xx̄xx̄, W̃

n+1⟩ = ∥HW̃n+1
xx̄ ∥2,

⟨HW̃n+1
xx̄ , W̃n+1⟩ = −∥RW̃n+1

x ∥2

are used from Lemmas 3. It will be easy to see that⟨
(Un)2W̃n+1

i , W̃n+1
⟩
≥ 0.
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When τ < 1, then 1
2τ − 1

2 > 0. That is, (59) only
admits a zero solution, implying there exists unique Un+1

that satisfies the scheme in (43)-(46). This completes the
proof of the existence and uniqueness of the new scheme.

Next, we define the grid function un
i = u(xi, t

n), un =
(un

1 , u
n
2 , · · · , un

J)
T. Then the truncation errors of compact

difference scheme (43)-(46) rn = (rn1 , r
n
2 , · · · , rnJ )T ∈ RJ

per

satisfy

(un)t̂ + γH2(ūn)xx̄xx̄ −H(ūn)xx̄ − ūn

+ (un)2ūn = rn, n = 1, 2, · · · , N − 1,
(60)

(u0)t + γH2(u
1
2 )xx̄xx̄ −H(u

1
2 )xx̄ − u

1
2

+ (u
1
2 )3 = r0,

(61)

and

un
i+M = un

i , i = 1, 2, · · · ,M, n = 0, 1, · · · , N, (62)

u0
i = u0(xi), i = 1, 2, · · · ,M. (63)

According to the Taylor expansion, we have

|rni | ≤ C(τ2 + h4), i = 1, 2, · · · , J, n = 0, 1, · · · , N. (64)

Theorem 8. Assume that u0 is sufficiently smooth and
u(x, t) ∈ C8,3

x,t ([0, L]× [0, T ]), If τ is sufficiently small, then
the solution Un of the compact finite difference scheme (43)-
(46) converges to the solution of the problem (1)-(3) with
the convergence rate of O(τ2 + h4) in the sense of ∥ · ∥∞
norms.
Proof. Subtracting (43)-(46) from (60) to (63) and letting
en = un − Un, we obtain

(en)t̂ + γH2(ēn)xx̄xx̄ −H(ēn)xx̄ − ēn + (un)2ūn

− (Un)2Ūn = rn, n = 1, 2, · · · , N − 1,
(65)

(e0)t + γH2(e
1
2 )xx̄xx̄ −H(e

1
2 )xx̄ − e

1
2

+ (u
1
2 )3 − (U

1
2 )3 = r0,

(66)

and

eni+M = eni , i = 1, 2, · · · ,M, n = 0, 1, · · · , N, (67)

e0i = 0, i = 1, 2, · · · ,M. (68)

From Theorem 4, we obtain

∥e1∥∞ ≤ C(τ2 + h4). (69)

Taking the inner product of (65) with ēn, we obtain

∥en+1∥2 − ∥en−1∥2

4τ
+ γ∥Hēnxx̄∥2 + ∥Rēnx∥2 =

∥ēn∥2 − ⟨(un)2ūn − (Un)2Ūn, ēn⟩+ ⟨rn, ēn⟩.
(70)

where

⟨en
t̂
, ēn⟩ = ∥en+1∥2 − ∥en−1∥2

4τ
,

⟨H2ēnxx̄xx̄, ē
n⟩ = ∥Hēnxx̄∥2,

⟨Hēnxx̄, ē
n⟩ = −∥Rēnx∥2

are used. In addition,

∥ēn∥2 ≤ 1

2
(∥en+1∥2 + ∥en−1∥2), (71)

⟨(un)2ūn − (Un)2Ūn, ēn⟩ =
⟨(un)2ēn, ēn⟩+ ⟨(un + Un)Ūnen, ēn⟩
≤ C[⟨ēn, ēn⟩+ ⟨en, ēn⟩]
≤ C(∥en+1∥2 + ∥en∥2 + ∥en−1∥2),

(72)

and

⟨rn, ēn⟩ ≤ ∥rn∥ · ∥ēn∥ ≤ 1

2
∥rn∥2 + 1

2
∥ēn∥2

≤ 1

2
∥rn∥2 + 1

4
(∥en+1∥2 + ∥en−1∥2).

(73)

Using (70)-(73), we can obtain that

∥en+1∥2 − ∥en−1∥2 ≤
Cτ(∥en+1∥2 + ∥en∥2 + ∥en−1∥2) + 2τ∥rn∥2.

Let Pn = ∥en∥2 + ∥en−1∥2, then

Pn+1 − Pn ≤ 2τ∥rn∥2 + Cτ(Pn+1 + Pn),

which is equivalent to

Pn+1 − Pn ≤ 2Cτ

1− Cτ
Pn +

2τ

1− Cτ
∥rn∥2. (74)

Summing (74) from 1 to n− 1, we get

Pn ≤ P 1 +
2Cτ

1− Cτ

n−1∑
l=1

P l +
2τ

1− Cτ

n−1∑
l=1

∥rl∥2, (75)

where 2 ≤ n ≤ N . If τ , which is sufficiently small, satisfies
τ ≤ 1

2C , then 1− Cτ ≥ 1
2 and (75) gives

Pn ≤ P 1 + 4Cτ
n−1∑
l=1

P l + 4τ
n−1∑
l=1

∥rl∥2, (76)

where 2 ≤ n ≤ N , and

τ

n−1∑
l=0

∥rl∥2 ≤ nτ max
1≤l≤n−1

∥rl∥2 ≤ T · C(τ2 + h4)2.

Since e0i = 0, and the scheme (44) is used to compute U1,
we have P 1 ≤ C(τ2 + h4)2 followed by a simple analysis
for the scheme (44). Therefore

Pn ≤ C(τ2 + h4)2 + 4Cτ
n−1∑
l=1

∥P l∥2, 2 ≤ n ≤ N.

Using Lemma 3, we obtain

Pn ≤ C(τ2 + h4)2, 2 ≤ n ≤ N.

Thus,

∥en∥ ≤ C(τ2 + h4), 2 ≤ n ≤ N. (77)

Now taking the inner product of (65) with en
t̂

, we obtain

∥en
t̂
∥2 + γ

∥Hen+1
xx̄ ∥2 − ∥Hen−1

xx̄ ∥2

4τ

+
∥Ren+1

x ∥2 − ∥Ren−1
x ∥2

4τ
= ⟨ēn + (Un)2Ūn − (un)2ūn, en

t̂
⟩+ ⟨rn, en

t̂
⟩,

(78)

where

⟨H2ēnxx̄xx̄, e
n
t̂
⟩ = ∥Hen+1

xx̄ ∥2 − ∥Hen−1
xx̄ ∥2

4τ
,

⟨Hēnxx̄, e
n
t̂
⟩ = −∥Ren+1

x ∥2 − ∥Ren−1
x ∥2

4τ
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are used. In addition,

γ
∥Hen+1

xx̄ ∥2 − ∥Hen−1
xx̄ ∥2

4τ
+

∥Ren+1
x ∥2 − ∥Ren−1

x ∥2

4τ
= −∥en

t̂
∥2 + ⟨ēn + (Un)2Ūn − (un)2ūn, en

t̂
⟩+ ⟨rn, en

t̂
⟩

≤ −∥en
t̂
∥2 + 1

2
∥ēn + (Un)2Ūn − (un)2ūn∥2 + 1

2
∥en

t̂
∥2

+
1

2
∥rn∥2 + 1

2
∥en

t̂
∥2

=
1

2
∥ēn + (Un)2Ūn − (un)2ūn∥2 + 1

2
∥rn∥2

=
1

2
∥((un)2 − 1)ēn + (un + Un)Ūnen∥2 + 1

2
∥rn∥2

≤ C(∥ēn∥2 + ∥en∥2) + 1

2
∥rn∥2

≤ C

2
(∥en+1∥2 + 2∥en∥2 + (∥en−1∥2) + 1

2
∥rn∥2,

where Cauchy-Schwarz inequality and Theorem 6 are used.
Thus,

γ(∥Hen+1
xx̄ ∥2 − ∥Hen−1

xx̄ ∥2)
+ (∥Ren+1

x ∥2 − ∥Ren−1
x ∥2)

≤ 2Cτ(∥en+1∥2 + 2∥en∥2 + (∥en−1∥2) + 2τ∥rn∥2.
(79)

From (79) and |rni | ≤ C(τ2 + h4), we obtain that

γ(∥Hen+1
xx̄ ∥2 − ∥Hen−1

xx̄ ∥2) + ∥Ren+1
x ∥2

− ∥Ren−1
x ∥2 ≤ C(τ2 + h4)2.

Let Qn = γ(∥Henxx̄∥2 + ∥Hen−1
xx̄ ∥2) + ∥Renx∥2 +

∥Ren−1
x ∥2, then,

Qn+1 −Qn ≤ C(τ2 + h4)2, 1 ≤ n ≤ N − 1. (80)

Summing (80) from 1 to n− 1, we get

Qn ≤ Q1 + C(τ2 + h4)2.

Since e0i = 0, and the scheme (44) is used to compute U1,
we have Q1 ≤ C(τ2 + h4)2 followed by a simple analysis
for the scheme (44). Therefore

Qn ≤ C(τ2 + h4)2, 2 ≤ n ≤ N.

Using Lemma 3, we obtain that

∥enx∥ ≤ ∥Renx∥ ≤ C(τ2 + h4), 2 ≤ n ≤ N. (81)

Combining (77) and (81), we obtain that

∥en∥H1 ≤ C(τ2 + h4), 2 ≤ n ≤ N.

By Lemma 6, we can get that

∥en∥∞ ≤ C(τ2 + h4), 2 ≤ n ≤ N. (82)

This completes the proof.

IV. NUMERICAL EXPERIMENTS

In this section, we present some numerical experiments to
validate our theoretical results. For convenience, we denote
the nonlinear compact difference scheme (5)-(7) as Scheme
A and the linearized compact difference scheme (43)-(46) as
Scheme B. We consider the following periodic initial value
problem of the inhomogeneous EFK equation [7, 8]

ut + γuxxxx − uxx − u+ u3 = f(x, t),

x ∈ Ω = (0, 1), 0 < t ≤ T,
(83)

u(x, 0) = u0(x), x ∈ Ω, (84)

u(x+ 1, t) = u(x, t), x ∈ Ω, 0 < t ≤ T, (85)

where f(x, t) = e−t sin(2πx)[−2 + 4π2 + 16γπ4 +
sin2(2πx)e−2t]. The problem (83)-(85) has the following
exact solution

u(x, t) = e−t sin(2πx). (86)

In this case, we choose the parameter γ = 0.01. To
investigate the accuracy of the present schemes, we computed
the ∥ · ∥∞ norm error of the numerical solutions (83)-
(85). if τ is sufficiently small, then e(h, τ) = O(hq1 +
τ q1) ≈ O(hq1). Consequently, e(2h, τ)/e(h, τ) ≈ 2q1 ,
hence, q1 ≈ log2[e(h, 2τ)/e(h, τ)] is the convergence order
with respect to h. Likewise, if h is sufficiently small, q2 ≈
log2[e(h, 2τ)/e(h, τ)] is the convergence rate with respect to
τ . In our computation, we calculated the convergence orders
based on the following formula as [25, 31]

Rateh = log2

(e(2h, τ)
e(h, τ)

)
, Rateτ = log2

(e(h, 2τ)
e(h, τ)

)
.

Tables 1 and 2 give the comparison of error results and
CPU times between the present schemes and the methods
proposed in [7, 8]. From Tables 1 and 2, we can see that
the convergence orders of the present schemes are equal
to O(τ2 + h4) , which confirms the theoretical order of
convergence obtained in Theorems 4 and 8. Furthermore, we
observe that the errors from the present schemes are much
smaller than that obtained based on the methods in [7, 8].
Also, the present schemes have relatively less computational
cost than the methods in [7, 8]. Thus, we can conclude that
the present two compact schemes are more effective than the
schemes in [7, 8].

V. CONCLUSIONS

We have developed two conservative and fourth-order
compact finite-difference schemes for the initial value prob-
lem of the EFK equation. Both schemes have been shown to
be second-order convergent in time and fourth-order conver-
gent in space. The existence, uniqueness, and unconditional
stability of the numerical solutions are proved. Numerical
experiments show that the present schemes provide accurate
numerical solutions which coincide with the theoretical re-
sults.
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