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Abstract—In this paper, based on the operation matrix of
the fractional order Chebyshev cardinal function(FOCCF), the
accurate and effective method for solving two different forms
of fractional delay differential equations(FDDEs) is proposed.
Firstly, the new operational matrices(OMs) are presented for
the fractional integration of the FOCCFs. Secondly, based on
FOCCFs, a new direct method for is computing7 such problems
is proposed. By making use of these OMs, the problems of the
two different forms of FDDEs can be transformed to a set
of simpler algebraic equations(AEs), which can be resolved by
Newton’s iterative method. Illustrative examples are introduced
by data and tables, which can prove the effectiveness and
applicability of this new technology to two different FDDEs.

Index Terms—The fractional order Chebyshev cardinal func-
tion(FOCCF); delay differential equation(DDE); Caputo frac-
tional derivative, numerical method

I. INTRODUCTION

THE problems of fractional differential equations
(FDEs)[1] have been a hot topic for the past few

years, since which can be putted to use in a lot of different
areas, such as computer science and technology, management
science and engineering, etc. However, most FDEs do not
have analytical solutions, or analytical solutions are difficult
to derive. Therefore, the study of numerical methods are
significant because numerical methods can be used to solve
such equations without analytical solutions.

There several numerical methods were proposed for the
problems of FDEs, such as finite-difference method [2],
variational iteration method [3], Legendre wavelet method
[4], homotopy method [5], and so on. In these numerical
methods, a class of efficient numerical technique was pro-
posed to deal with various problems, which by expanding the
desired solution into elements of the interpolate approximate
basis functions. The main advantage of this method is that
these complicated problems can be reducced to a set of
simple AEs.
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However, the singular solutions appear in FDEs. The
FDEs have the following disadvantages. First of all, the
regularity of the solutions to related problems at the end point
is limited. Secondly, fractional derivative(FD) is non-local
operator. Thirdly, the kernel function of the FD is singular.
Therfore, numerical solution using classical basis functions
will result in slow convergence. In order to overcome
these problems, we apply fractional order functions into the
Chebyshev polynomials. Recently, there are some fractional
order functions put to use in the basic functions for solving
the FDEs. The fractional Riccati differential equation was
calculated by Rahimkhani, Ordokhani and Babolian using the
fractional order Bernoulli functions [6]. The fractional order
collocation method for solving rational Bessel functions of
Thomas-Fermi equation on semi-infinite field was proposed
[7]. In [8], the FDEs was worked out by the fractional Bern-
stein polynomial. The fractional variational problems and
fractional optimal control problems were figured out by the
fractional-order Gegenbauer functions [9]. Mohammadi and
Mohyud-Din [10] proposed an approach that the fractional
Bagley-Torvik equations figured out by the fractional-order
shifted Legendre polynomials. And some other academics
worked out problems using the different fractional-order
functions, such as fractional order Chebyshev orthogonal
functions [11], fractional order Taylor functions [12], frac-
tional Jacobi polynomials [13], Bloch equations [14] and so
on.

In recent years, Chebyshev cardinal functions(CCFs) were
constructed to solve various dynamic problems, and which
has achieved good results. Lakestani and Mehdi [15] pro-
posed a method for solving a parabolic partial differential
equation with time-varying coefficients with additional mea-
sures based on CCF. In [16], Heydari, Mahmoudi, Shakibac
and Avazzadeh studied a method to solve a class of non-
linear stochastic differential equations driven by fractional
Brownian motion based on Chebyshev cardinal wavelet. In
[17], the method of solving Duffing-harmonic oscillator was
illustrated by using the mixed function composed of block-
pulse and CCFs. Zahra, Saeed and Esmail [18] considered
the numerical method of solving the Foredoom integral
equations with CCFs. Using the CCFs, Heydari proposed a
numerical method to solve a class of variable-order fractional
optimal control problems. [19] In [20], Thanon, Sanoe, and
Khomsan studied solving differential static beam problems
based on Chebyshev polynomials. Other academics also
pouted forward some techniques based on CCFs to solve dif-
ferent equations, such as the fourth-order integro-differential
equations [21], second order one dimensional linear hyper-
bolic equation [22], singular boundary value problems [23],
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fractional nonlinear integro-differential equation [24], FDEs
[25], the nonlinear age-structured population models [26],
the Riccati differential equation [27] and weakly singular
fredholm integral equations [28].

The delay differential equation(DDE) is a difficult problem
to solve. This problem not only relate to the current state,
but also closely refer to the former state. In the past few
years, there are many different numerical methods to solve
the DDEs, especially the DDEs with integer order, such
as shifted Chebyshev polynomial [29], variational iteration
method [30], CCFs method [31] and so on. However, there
were few works about FDDEs. The calculation of FDDEs is
complicated than the integer order DDEs. It is very difficult
to get the accurate analytical solution of FDDEs. Several
numerical methods were presented to solve FDDEs, such as
Chelyshkov wavelet [32], Müntz-Legendre [33], Bernoulli
wavelet [34], shifted Jacobi polynomials [35], etc.

In this paper, the OMs of fractional integration based on
the FOCCFs are derived to solve FDDEs. On the basis of
the OMs of fractional integration, a direct numerical method
is presented. This method using OMs reduces the FDDE to
a group of AEs. To solve the unknown coefficients of the
FOCCF, we can get the numerical approximate solutions of
the FDDE. We think over the following two FDDEs:
Problem 1

Dαx(t) = f(t, x(t), x(t− τ)),
x(i)(0) = ζi,
x(t) = γ(t), t ≤ 0.

(1)

Problem 2 {
Dαx(t) = f(t, x(t), x(τt))
x(i)(0) = ηi .

(2)

where 1 ≥ t ≥ 0, n − 1 < α < n, 0 < τ < 1 and i =
0, 1, · · · , n− 1, n ∈ N .

In section 2, some basic definitions of fractional operators,
the FOCCFs and the CCFs and are proposed. We derive
some new results of the FOCCFs in section 3. In section
4, the direct numerical method is described specifically for
solving the two classes of FDDEs. The numerical results and
discussions are presented in the form of graphs in section 5.
Eventually, in section 6, the conclusion is drawn.

II. PRELIMINARIES

In this section, the definition of the fractional calculus and
the most details of CCFs are introduced systematically.

A. Basic definitions of fractional calculus

In this part, the important attributes of score calculations
that will be used in this article are introduced. At first give
the definition of FD, which detailed description as follows:
Definition 2.1([36]). The Riemann-Liouville(R-L) fractional
integral operator of order α ≥ 0 is defined as

Iαf(t) =

{
1

Γ(α)

∫ t
0

f(s)
(t−s)1−α ds = 1

Γ(α) t
α−1 ∗ f(t) α > 0

f(t) α = 0
,

where t > 0, tα−1 ∗f(t) is the convolution product of tα−1

and f(t).
Suppose that λ and µ are real constants, for the R-L

fractional integral(R-L FI), we have [36]

1.Iαtβ = Γ(β+1)
Γ(β+α+1) t

α+β , β > −1,

2.Iα(λf(t) + µg(t)) = λIαf(t) + µIαg(t).

Definition 2.2([1][36]). The FD Dα, in the Caputo sense
for n− 1 < α ≤ n, n ∈ N , is defined by

Dαf(x) =
1

Γ(n− α)

∫ x

0

(x− t)n−α−1f (n)(t)dt.

The Caputo derivative has the following properties [1]
1.DαIαx(t) = x(t),

2.IαDαx(t) = x(t)−
∑n−1
i=0 x

(i)(0) t
i

i! .

B. The fractional order Chebyshev functions

Thus, the singular Sturm-Liouville differential equation of
the classical Chebyshev polynomial is defined as [11] :
√
ηα − tα
t
α
2−1

d

dt
[

√
ηα − tα
t
α
2−1

d

dt
ηFT

α
n (t)]+n2α2

ηFT
α
n (t) = 0.

(3)
where t ∈ [0, η]. The ηFT

α
n (t) can be obtained using

recursive relation as follows:

ηFT
α
0 (t) = 1,

ηFT
α
1 (t) = 1− 2(

t

η
)α,

ηFT
α
n+1(t) = (2− 4(

t

η
)α) ηFT

α
n (t)− ηFT

α
n−1(t).

The analytical form of ηFTαn (t) of degree Nα given by

ηFT
α
n (t) =

n∑
j=0

(−1)j
n22j(n+ j − 1)!

(n− j)!(2j)!
(
t

η
)αj =

n∑
j=0

βn,j,η,α·tαj ,

(4)
where

βn,j,η,α = (−1)j
n22j(n+ j − 1)!

(n− j)!(2j)!ηαj
, t ∈ [0, η],

and
β0,j,η,α = 1.

Note that ηFTαn (0) = 1 and ηFT
α
n (η) = (−1)n.

The generalized fractional order of the Chebyshev orthog-
onal functions(GFCFs) are respect to the weight function
w(t) = t

α
2

−1
√
ηα−tα in the interval [0, η]:∫ η

0
ηFT

α
n (t) ηFT

α
n (t)w(t)dt =

π

2α
cnδmn,

where δmn is Kronecher delta, c0 = 2, and cn = 1 for n ≥ 1.
Theorem 2.1([11]). The GFCF ηFT

α
n (t), has precisely n

real zeros on interval (0, η) in the form

tj = η(
1− cos( (2j−1)π

2n )

2
)

1
α , j = 1, 2, . . . , n. (5)

Moreover, ddt ηFT
α
n (t) has precisely n − 1 real zeros on

interval (0, η) in the following points:

t′j = η(
1− cos( jπn )

2
)

1
α , j = 1, 2, . . . , n− 1.
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C. The FOCCF

We consider the CCFs and present some important prop-
erties which are used in the following sections.

The CCFs [37] of order N on the interval [0, η] are defined
as

φj =
ηFT

α
N+1(t)

(ηFTαN+1)′(tj)(t− tj)
, j = 1, 2, . . . , N + 1, (6)

where ηFT
α
N+1(t) can be obtained as follows,

ηFT
α
N+1(t) =

N+1∑
j=0

βN+1,j,η,α · tαj , t ∈ [0, η], (7)

and

βN+1,j,η,α = (−1)j
(N + 1)22j(N + j)!

(N + 1− j)!(2j)!ηαj
, β0,j,η,α = 1.

Now any functions on [0, η] can be similar to [19], [31]

f(t) =
N+1∑
j=1

f(tj)φj(t) = F>ΦN (t) (8)

where
F = [f(t1), f(t2), · · · , f(tN+1)]>, (9)

and
ΦN (t) = [φ1(t), φ2(t), · · · , φN+1(t)]>, (10)

then we choose tj , j = 1, 2, · · · , N+1 according to the prin-
ciple of t1 < t2 < · · · < tN+1. Then tj , j = 1, 2, · · · , N +1
can be written as follows

tj = η(
1− cos( (2j−1)π

2(N+1) )

2
)

1
α , j = 1, 2, . . . , N + 1. (11)

Note that

ηFT
α
N+1(t) = β ×

N+1∏
j=1

(t− tj), (12)

(ηFT
α
N+1)′(tj) = β ×

N+1∏
j=1,j 6=k

(tk − tj), (13)

where β = 22N+1

ηN+1 .

III. THE OPERATIONAL MATRIX OF THE FRACTIONAL
INTEGRATION

In this part, we briefly review the method of solving FDEs
with the CCFs.
Theorem 3.1. The integration of the vector ΦN (t) defined
in (10) can be similar to

IαΦN (t) ' PNΦN (t), (14)

where PN can be written as

PN =


α11 α12 · · · α1(N+1)

α21 α22 · · · α2(N+1)

...
...

...
...

α(N+1)1 α(N+1)2 · · · α(N+1)(N+1)

 , (15)

and αjk is as follows,

αjk =
β

(ηFTαN+1)′(tj)
· 1

Γ(α)

∫ tk

0

(tk − s)α−1 ×

N+1∏
i=1,i6=j

(s− ti)ds, j, k = 1, 2, · · · , N + 1.

(16)

Proof. Let

IαΦN (t) = [Iαφ1(t), Iαφ2(t), · · · , IαφN+1(t)]T . (17)

Using (8), any function Iαφj(t) can be expended as

Iαφj(t) ≈
N+1∑
k=1

αjkφk(t), (18)

and according to Definition 2.1

αjk = Iαφj(t) =
β

(ηFTαN+1)′(tj)
· 1

Γ(α)

∫ tk

0

(tk − s)α−1 ×

N+1∏
i=1,i6=j

(s− ti)ds, j, k = 1, 2, · · · , N + 1.

Comparing (14) and (18), we get

PN =


α11 α12 · · · α1(N+1)

α21 α22 · · · α2(N+1)

...
...

...
...

α(N+1)1 α(N+1)2 · · · α(N+1)(N+1)

 .

IV. DESCRIPTION OF THE PROPOSED METHOD

In this part, the director method to solve the FDDEs
are presented. Some properties of the CCFs we used are
proposed in section 3.

A. Direct approach to Problem 1

Considering the FDDE in Problem 1,

Dαx(t) = f(t, x(t), x(t− τ)), t ∈ [0, 1], τ ∈ (0, 1), (19)

and the condition is{
x(i)(0) = ζi i = 0, 1, · · · , n− 1, n ∈ N
x(t) = γ(t) t < 0

. (20)

For the previous problem, let Dαx(t) be approximated by
the CCFs as

Dαx(t) ' C>ΦN (t), (21)

where C is vectors with N + 1 unknowns as follows

C = [c1, c2, · · · , cN+1]>. (22)

Using (14), we obtain

x(t) ' Iα(C>ΦN (t)) +
n−1∑
i=0

ζi
i!
ti

' C>PNΦN (t) +
n−1∑
i=0

ζi
i!
ti

' C>PNΦN (t) + e>1 ΦN (t), (23)

Engineering Letters, 30:1, EL_30_1_24

Volume 30, Issue 1: March 2022

 
______________________________________________________________________________________ 



where e>1 = [ζ1, ζ2, · · · , ζi], i = 1, 2, · · · , n− 1.

Moreover, according to (23), we can get

x(t− τ) ' (C>PN + e>1 )ΦN (t− τ). (24)

So, we obtain

x(t− τ) =

{
γ(t) 0 ≤ t ≤ τ ,
(C>PN + e>1 )ΦN (t− τ) τ < t ≤ 1.

(25)

B. Direct approach to Problem 2

Considering the FDDE in Problem 2,

Dαx(t) = f(t, x(t), x(τt)), t ∈ [0, 1], τ ∈ (0, 1), (26)

and the condition is

x(i)(0) = ηi i = 0, 1, · · · , n− 1, n ∈ N. (27)

For the previous problem, let Dαx(t) be approximated by
the CCFs as

Dαx(t) ' C>ΦN (t), (28)

where C is vectors with N + 1 unknowns as follows

C = [c1, c2, · · · , cN+1]>. (29)

Using (14), we obtain

x(t) ' Iα(C>ΦN (t)) +
n−1∑
i=0

ηi
i!
ti

' C>PNΦN (t) +

n−1∑
i=0

ηi
i!
ti

' C>PNΦN (t) + e>2 ΦN (t), (30)

where e>2 = [η1, η2, · · · , ηi], i = 1, 2, · · · , n− 1.
Moreover, for any 0 < τ < 1, according to (30), we can

get

x(τt) ' (C>PN + e>2 )ΦN (τt). (31)

Then, in conclusion, we obtain two sets of AEs for
Problem 1 and Problem 2, which can be written as
Problem 1

C>ΦN (t) =

 f(t, C>PNΦN (t) + e>1 ΦN (t), γ(t)), 0 ≤ t ≤ τ
f(t, C>PNΦN (t) + e>1 ΦN (t), (C>PN + e>1 )·
ΦN (t− τ)), τ < t ≤ 1

Problem 2

C>ΦN (t) = f(t, C>PNΦN (t) + e>1 ΦN (t), (C>PN + e>2 ) ·
ΦN (τt)), 0 ≤ t ≤ 1.

This is the systems of AEs with (N + 1) unknowns and
(N+1) equations, which can be solved by Newton’s iterative
method to get the unknown vector C. Then using (23) or
(30), we obtain the solutions x(t) of the FDDEs.

V. NUMERICAL EXAMPLES

In this part, the approximate solution of the FDDE by
using operating matrices of FOCCF is calculated. We can
compare the exact and approximate solution by charts and
graphics. These equations are calculated by maple in Win-
dows 7(64bit).
Example 1 Consider the following DDE

Dαx(t) = x(t− τ)− x(t) +
2

Γ(3− α)
t2−α − 1

Γ(2− α)
t1−α

+2τt− τ2 − τ,

where 0 ≤ t ≤ 1, 0 < α ≤ 1, and the condition is

x(t) = 0, t ≤ 0,

The exact solution is x(t) = t2 − t for α = 1. The
approximate solutions are calculated by (21), and compared
with the exact solution.

In the Tab. I, we present the absolute errors for different
values of N, t,τ by fractional order of the CCF to solve
FDDE when α = 1. We can find the relation between τ, t and
the approximate solutions. Also, in the Tab. II, the values of
the approximate solutions and the residual error RN (t) are
presented. The residual error can be calculated as follows,

RN (t) = |Dαx(t)− f(t, x(t), x(t− τ))|
RN (t) = |Dαx(t)− f(t, x(t), x(tτ))|. (32)

As is shown in Tab. I, we conclude that the larger the
values of t, the lower the absolute error. Under the same
N, t condition, we can see that the smaller the value of τ , the
lower the absolute errors. The other case is that the closer t is
to 1, the lower the absolute error under the same conditions
of N, τ . In general, we find the absolute error for the different
values of τ, t and N between approximate and exact solution
are in the acceptable ranges. From Tab. II, this method has
the residual errors.

TABLE I
THE ABSOLUTE ERRORS OF DIFFERENT τ VALUES WHEN α = 1

N t τ = 0.0001 τ = 0.001 τ = 0.01

2

0.2 1.600× 10−5 1.601× 10−4 1.607× 10−3

0.4 2.400× 10−5 2.403× 10−4 2.430× 10−3

0.6 2.401× 10−5 2.407× 10−4 2.468× 10−3

0.8 1.601× 10−5 1.613× 10−4 1.722× 10−3

1 1.940× 10−8 1.991× 10−6 1.922× 10−4

5

0.2 1.599× 10−5 1.601× 10−4 1.607× 10−3

0.4 2.400× 10−5 2.403× 10−4 2.430× 10−3

0.6 2.400× 10−5 2.407× 10−4 2.468× 10−3

0.8 1.601× 10−5 1.613× 10−4 1.722× 10−3

1 4.010× 10−8 2.002× 10−6 1.922× 10−4
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TABLE II
THE VALUES OF DIFFERENT α ON THE RN (t) WHEN N = 5 AND

τ = 0.01

t
α = 0.50 α = 0.90

xN (t) RN (t) xN (t) RN (t)

0.2 -0.14818 1.163× 10−3 -0.16167 1.092× 10−3

0.4 -0.24253 1.246× 10−4 -0.24028 1.117× 10−4

0.6 -0.27022 2.550× 10−5 -0.24042 2.234× 10−5

0.8 -0.12496 2.637× 10−4 -0.16141 2.280× 10−4

1.0 -0.07486 4.002× 10−3 -0.00321 3.429× 10−3

Example 2 Consider the following DDE

 Dαx(t) = −x(t)− x(t− 0.3) + e−t+0.3 0 ≤ t ≤ 1
x(0) = 1, x′(0) = −1, x′′(0) = 1
x(t) = e−t, t ≤ 0, 2 < α ≤ 3.

The exact solution is x(t) = e−t for α = 3. The approximate
solutions are calculated by (21), and compared with the exact
solution by charts and graphics.

In the Tab. III, we illustrate the absolute errors for different
values of N, t by the CCF to solve FDDE when α = 3. We
can find the relation between t and the approximate solutions.

TABLE III
THE ABSOLUTE ERRORS OF DIFFERENT N VALUES WHEN

α = 3, τ = 0.3

t N = 2 N = 5

0 3.943× 10−3 3.655× 10−5

0.2 4.130× 10−3 3.778× 10−4

0.4 1.812× 10−3 2.457× 10−4

0.6 2.000× 10−3 6.635× 10−4

0.8 3.315× 10−3 1.297× 10−3

As is shown in Tab. III, we see that the larger the values
of N , the lower the absolute error at the same condition of
α, t. In general, the absolute error is in acceptable ranges
for the different values of t and N between approximate and
exact solution.
Example 3 Consider the following DDE

{
Dαx(t) = −x(t) + τ

2x(τt)− τ
2 e
−τt 0 ≤ t ≤ 1,

x(0) = 1, 0 < α ≤ 1.

The exact solution is x(t) = e−t for τ = 0.2 when
α = 1. The approximate solutions are calculated by (28),
and compared with the exact solution by graphics and tables.

In the Tab. IV, we give the absolute errors of different
N and t values by the CCF when α = 1, τ = 0.2 to
solve FDDE. We find the relation between N, t and the
approximate solutions. The values of approximate solutions
and RN (t) are presented in the Tab. V. RN (t) can be
obtained by (32).

TABLE IV
THE ABSOLUTE ERRORS OF DIFFERENT N VALUES WHEN

α = 1, τ = 0.2

t N = 2 N = 5

2−2 3.810× 10−3 8.524× 10−4

2−3 2.341× 10−3 4.859× 10−4

2−4 1.751× 10−4 2.591× 10−4

2−5 1.361× 10−3 1.337× 10−4

2−6 2.254× 10−3 6.776× 10−5

TABLE V
THE VALUES OF DIFFERENT α ON THE RN (t) WHEN N = 5 AND

τ = 0.1

t
α = 0.70 α = 0.80

xN (t) RN (t) xN (t) RN (t)

0.1 0.80277 6.40× 10−9 0.84531 1.91× 10−9

0.3 0.65283 1.35× 10−8 0.67706 1.83× 10−9

0.5 0.54701 1.00× 10−8 0.56472 1.12× 10−9

0.7 0.46654 2.36× 10−8 0.47758 2.85× 10−8

0.9 0.43739 1.68× 10−7 0.41877 4.51× 10−9

Example 4 Consider the following FDDE [32], [33], [34]{
Dαx(t) = µ sin(x(t− τ))− λx(t) 0 < t < T,
x(t) = σ0, −τ ≤ t ≤ 0.

where 0 < α(t) ≤ 1, µ > 0 and λ > 0 are the parameters.
The approximate solutions are calculated by (21).

In the Tab. VI, we present the approximate solutions of
different t, α and τ values by the CCF to solve FDDE when
λ = 0.4, µ = 0.4, N = 2 and T = 1. We can find the relation
between α, τ and the approximate solutions.

TABLE VI
THE APPROXIMATE SOLUTIONS OF DIFFERENT α AND τ VALUES WHEN

λ = 0.4, µ = 0.4, N = 2(τ1 = 0.01, τ2 = 0.001)

t α = 0.35, τ1 α = 0.5, τ1 α = 0.95, τ2 α = 1, τ2

0.1 1.48495 1.51293 1.54577 1.54850

0.2 1.42919 1.47590 1.52338 1.52708

0.3 1.38763 1.44518 1.50196 1.50636

0.4 1.36028 1.42079 1.48151 1.48631

0.5 1.34712 1.40272 1.46203 1.46696

0.6 1.34815 1.39098 1.44352 1.44829

0.7 1.36339 1.38556 1.42597 1.43030

0.8 1.39283 1.38646 1.40940 1.41300

0.9 1.43646 1.39368 1.39379 1.39638

1.0 1.49430 1.40722 1.37915 1.38045

VI. CONCLUSIONS

In this paper, we discuss the approximate solutions of
two classes of FEEDs by using OMs based on the CCFs.
The OMes of fractional integration are derived. Using this
method, the FDDEs are transformed into a set of AEs by
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OMs. The solutions are presented in the form of data and
tables. Results show that the approximate solution got by this
direct method is close to the exact solution.In conclusion,
this direct method is an available and convenient method of
solving FDDEs approximate solution.
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