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Abstract—At present, artificial bee colony algorithm (ABC)
is one of the hot issues in swarm intelligence algorithm. Since
it was proposed, people have done a lot of improvement work
for ABC algorithm. To address the shortcomings of ABC, an
improved ABC guided by experience (named as EABC) is
proposed in this paper. In EABC, it collects the experience
of individual improvement caused by dimension change in the
iterative process, and selects the dimensions to change according
to a ratio when a new position needs to be generated. In this
way, the individual can choose a good direction to improve its
quality. Numerical experiments show that EABC has a better
performance.

Index Terms—Artificial bee colony; Optimization; Swarm
intelligence; Direction information

I. INTRODUCTION

BY simulating animal behavior, many swarm intelligence
algorithms have been proposed, including Simulated

Annealing (SA) [1], Differential Evolution (DE) [2], Flower
Pollination Algorithm (FPA) [3], Genetic Algorithm (GA)
[4,5], Particle Swarm Optimization (PSO) [6], Firework
Algorithm (FA) [7], Ant Colony Optimization (ACO) [8],
and Artificial Bee Colony (ABC) [9] etc.

According to the real behavior of bees in nature, Karaboga
[9] presented ABC and used it to deal with numerical
optimization problems. To find nectar sources, in ABC, each
type of bee performs its own task, and different types of
bees work together through cooperation. After that, ABC has
been widely used in different fields, such as data clustering
[10], network planning [11], image segmentation [12], and
numerical optimization [13,14]. However, researches showed
ABC has powerful exploration ability, but its exploitation
capability is weak, thus many improved versions of ABC
have been proposed. For example, a modified version of ABC
was introduced by Akay and Karaboga in 2012 [15]. In this
algorithm, to improve the performance of ABC, two control
parameters SF and MR were proposed. For obtaining better
results for the optimization problem, Zhang et al. presented
three modified versions of ABC [16]. To avoid ABC getting
stuck local minimums, Alatas [17] proposed an ABC model
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based on chaotic map. By combining the information of
the global best solution, Zhu and Kwong [18] designed
an improved ABC algorithm (named GABC). By using
opposition-based learning and chaotic strategies, Gao and Liu
[19] proposed MABC by modifying search equation of the
basic ABC. Based on the best-so-far selection for onlooker
bees, Banharnsakun et al. [20] enhanced the convergence
speed of ABC and verified the performance of their method
on some benchmark problems. By using the Debs Rules,
Karaboga and Akay [21] adopted the basic ABC to address
constrained optimization problems. In onlooker bee phase,
Kiran and Gunduz [22] presented a crossover technique to
select neighbors. By using mutual learning, Liu et al. [23]
proposed a variant of ABC algorithm which improved the
performance of basic ABC. Based on two update techniques
adopted from DE, Gao et al. [24] designed two ABC-based
methods, which are named as ABC/best/1 and ABC/best/2.
Later, for ABC/best/1, to avoid premature and fall into
local optimal solution, Gao and Liu [25] suggested that the
update rule of ABC/best/1 and the update rule of basic ABC
should be used for employed and onlooker bees, respectively.
In addition, Gao et al. [26] developed a new update rule
for ABC, which looks like crossover operator in GA. By
selecting some top best solutions from the whole population,
Bajer and Zoric [27] designed a novel search technique. In
their method, some new candidates are generated in the scout
bee phase. Wang et al. [28] designed a new ABC on the basis
of knowledge fusion (KFABC).

In this paper, we develop a new ABC variant named EABC
with previous experience. As we know, experience is of great
help to guide our next work, so each bee is endowed with
the function of memory with search value dimension, which
can enhance the exploitation ability of EABC. To very its
performance, some numerical experiments are carried on.

The structure of this paper is designed as follows: Section
I briefly introduces the research status of ABC. The process
of basic ABC is explained in Section II, and the details of
EABC is given in Section III. Experiment and related results
are discussed in Section IV, and finally the conclusion and
the next work are given in Section V.

II. BASIC ABC ALGORITHM

In 2005, to find food sources, Karaboga [9] first proposed
ABC algorithm by simulating behavior of bees. In ABC,
three types of bees: employed bees, onlooker bees and scout
bees are included. Different kinds of bees carry out different
search tasks, and they share experience with each other.

Initialization Assume that the number of employed bees
and onlooker bees is equal to the number of food sources.
At the beginning, each food source xi(i = 1, · · · , N) is
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randomly produced as follows:

xij = lj + r × (uj − lj), j = 1, . . . , D, (1)

where xij represents the jth dimension of xi, lj and uj

represent the lower and upper bounds of the jth dimension,
respectively, r ∈ [0, 1] is a random number, N is size of the
swarm, and D is the size of dimension. The quality of xi is
measured by using the following equation:

fiti =

{ 1
1+fi

if fi > 0

1 + |fi| else,
(2)

where fiti and fi are the fitness and the objective function
value of the ith food source xi, respectively.

Employed bees The task of the employed bees is to
search around the current solution and try to find a better
one. For ith employed bee, its new position vi around xi is
generated below:

vij = xij + ϕ× (xij − xkj),
j ∈ {1, · · · , D}, k ∈ {1, · · · , N}, (3)

where xk(xk ̸= xi) is selected randomly from the whole
population, j ∈ [1, D] is a random integer, and ϕ ∈ [−1, 1]
is a random number.

According to (2), compute fit(vi). If fit(vi) > fit(xi),
it implies that vi is better than the old one xi, then we set

xi = vi, and traili = 0;

else, set
traili = traili + 1,

where traili is a counter, which records the number of xi

that has not been improved, and its initial value is 0.
Onlooker bees When the employed bees go back to

the hive, the employed bees will share information with
the onlooker bees. A selection mechanism based on roulette
wheel is designed as follows:

pi =
fiti

N∑
j=1

fitj

, (4)

where pi denotes the probability that the ith food source is
selected by an onlooker bee. From (4), we can see that the
food source with good quality has higher probability of being
selected. Thereafter, by using (3), the onlooker bee searches
near the food source selected. Similarly, by comparing the
quality of the new position and the old one, the food source
and the counter traili will be updated.

Scout bees After onlookers search, for food source xi,
if traili > limit, where limit is a preset value, then, a
new position xi will be produced by using (1), and the trial
counter traili is set to 0. It should be pointed out that only
one scout bee occur at each iteration.

From the above introduction, the framework of the basic
ABC is described in Algorithm 1.

Algorithom 1. Basic ABC
01. Given the population size N , the maximum number

of iteration maxcycle, and limit.
02. Generate the initial population {xi|i = 1, · · · , N}.

Compute the function values of the population
{fi|i = 1, · · · , N}, the fitness of the population
{fiti|i = 1, · · · , N}, and determine the best

solution xbest.
03. When the stopping criterion is not met do
04. For i = 1 to N do
05. Employed bees use (3) to obtain the new

candidate vi.
06. If fit(vi) > fit(xi)
07. set xi = vi, fiti = fit(vi)
08. End if
09. End for
10. Calculate pi according to (4).
11. For i = 1 to N do
12. Select the food source by the probability pi,

and search the candidate near the food source
for each onlooker bee according to (3).

13. Identify new food sources in a greedy way.
14. End for
15. If traili > limit

Generate a new candidate according to (1).
16. End if
17. Set iter = iter + 1.
18. End when

III. IMPROVED ARTIFICIAL BEE COLONY ALGORITHM
WITH EXPERIENCE (EABC)

According to basic ABC, we can see that only one
dimension of xi changes, which will undoubtedly affect the
convergence rate of the algorithm. In addition, if a certain
dimension of food source changes and the new position is
improved, it is a good experience to guide individual evolu-
tion, but it is not well used in the basic ABC. Considering
these two points, we present a new strategy to improve the
basic ABC by using previous experience.

A. Improvement strategy based on experience

In the employed bee phase, for ith food source xi, jth
dimension is selected to generate a new candidate. Let vi be
the new candidate; T (i, j) is used to record the times of jth
dimension is selected, and t(i, j) is used to record the times
of the candidate solution becomes better after jth dimension
is selected. Initially, both T (i, j) and t(i, j) are set to 0. After
obtaining vi, set

T (i, j) = T (i, j) + 1, (5)

and if fit(vi) > fit(xi), then it implies that the change
of jth dimension is helpful for the improvement of the
individual, set

t(i, j) = t(i, j) + 1. (6)

Based on (5) and (6), we define a matrix M as follows:

M = (Mij)N×D, i = 1, · · · , N, j = 1, · · · , D, (7)

where

Mij =
t(i, j)

T (i, j)
.

To avoid the situation that (7) is meaningless when the
denominator is zero, Mij can be modified as

Mij =
t(i, j)

T (i, j) + 0.01
, i = 1, · · · , N, j = 1, · · · , D. (8)
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The larger the Mij value is, the more likely it is to choose
the jth dimension to improve the quality of the solution. So,
we have reason to believe that after selecting a food source
xi, we can select the corresponding dimensions to change
according to the value Mij .

According to the above analysis, once xi is selected, we
will generate a new position vi according to the following
formula:

vij =

{
xij + r1 × (xkj − xij), if rand < Mij ,
xij , else, (9)

where r1 ∈ [−1, 1] and r1 ∈ [0, 1] are two random numbers.
In order to make better use of the existing information,

we modify (9) and add the direction guidance information
as follows: if fit(xk) > fit(xi), then vi is generated by (10)
below,

vij =

{
xij + r2 × (xkj − xij), if rand < Mij ,
xij , else, (10)

else vi is generated by (9). Here, r2 ∈ [0, 1] is a random
number.

From (9) and (10), it is not difficult to see that our method
can not only make full use of historical information to guide
individual evolution, but also overcome the problem of slow
convergence speed caused by only one-dimensional change
in basic ABC.

The pseudo-code of the proposed algorithm EABC is
shown as follows:

Algorithom 2. EABC
01. Given the population size N , the maximum number

of iteration maxcycle, and limit.
02. Generate the initial population {xi|i = 1, · · · , N}.

Compute the function value of the population {fi|
i = 1, · · · , N}, the fitness of the population
{fiti|i = 1, · · · , N}, and determine the best
solution xbest.

03. When the stopping criterion is not met do
04. For i = 1 to N do
05. Employed bees use (3) to obtain the new

candidate vi.
06. If fit(vi) > fit(xi)

07. set xi = vi, fiti = fit(vi)

08. End if
09. End for
10. Calculate pi according to (4).
11. For i = 1 to N do
12. Select the food source by the probability pi,

and search the candidate near the food source
for each onlooker bee according to (9) and (10).

13. Identify new food sources in a greedy way.
14. End for
15. If traili > limit

Generate a new candidate according to (1).
16. End if
17. Set iter = iter + 1.
18. End when

IV. NUMERICAL EXPERIMENTS

To invest the performance of EABC, EABC and three
ABC variants: ABC [9], COABC [29], and GABC [18]
are tested on 12 benchmark functions. The experiments are
executed on a computer with an Intel (R) Core (TM) i7-
6500U CPU @ 2.50 GHz, 8 GB memory, Windows 10
system, and the experiments are written in Matlab 2017a.

A. Benchmark functions

Table I shows the 12 benchmark functions. In Table I, D,
Range and f(x∗) are used to represent dimensions, bounds
of the search space and global minimum values of these
functions, respectively. Among these benchmark functions,
f1-f7 are continuous unimodal functions, f8 is discontinuous
step function, f9-f12 are multi-modal functions.

For fair comparison, each algorithm runs independently
30 times on each problem, and population size is set to
100. The maximum number of iterations is set to 2000,
which is also used as the termination condition. The other
parameters are used as the comparison algorithms suggested.
The comparison results are summarized in Table II.

B. Comparison results

From Table II, we can see that EABC is superior to three
ABCs on most of 12 test benchmark functions, except for f9
and f11. For f9 and f11, the performance of EABC is slight
worse than that of GABC. For f8, all of these algorithms have
the same minimum value. For functions f3-f7, the accuracy
of EABC is much higher than those of the other algorithms,
especially in function f7.

To intuitively compare the convergence rate of EABC and
the other three ABCs, the convergence curves (benchmark
functions f2-f7) of these algorithms are displayed in Fig 1.
From Fig 1, it is easy to see that EABC can find a better
solution when the algorithm terminates. For functions f5
and f6, EABC converges to the optimal solution at a faster
speed. For functions f2-f4 and f7, although the convergence
rate of EABC was not dominant in the early stage, its
performance in the later stage was better than other methods
with the accumulation of experience. This also implies that
the experience guidance mechanism introduced is effective.

V. CONCLUSION

In this paper, to provide a more favorable direction, we
introduce empirical knowledge into ABC algorithm, which
help each bee choose dimensions to change. Numerical
experiments show the mechanism is very useful. In the
next step, this method will be used to solve some practical
problems.
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TABLE I: Benchmark test functions

Functions Range D Optimal value

f1 = 4x2
1 − 2.1x4

1 +
x6
1
3 + x1x2 − 4x2

2 + 4x4
2 [-5,5] 2 -1.0316

f2 =
n∑

i=1

x2
i [-100,100] 30 0

f3 =
D∑

i=1

| xi | +
D∏

i=1

| xi | [-10,10] 30 0

f4 =
D∑

i=1
ix2

i [-10,10] 30 0

f5 =
D∑

i=1
ix4

i [-1.28,1.28] 30 0

f6 =
D∑

i=1
| xi |(i+1) [-1,1] 30 0

f7 =
D∑

i=1
10

6 i−1
D−1 xi [-100,100] 30 0

f8 =
D∑

i=1

(⌊xi + 0.5⌋)2 [-1.28,1.28] 30 0

f9 =
D∑

i=1

ix4
i + random[0, 1) [-1.28,1.28] 30 0

f10 = 1
D

D∑
i=1

(x4
i − 16x2

i + 5xi) [-5,5] 30 -78.332

f11 =
D∑

i=1

| xisin(xi) + 0.1xi | [-10,10] 30 0

f12 =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10) [-5.12,5.12] 30 0

TABLE II: The comparison results for different algorithms

Functions ABC COABC GABC EABC

Min Mean SD Min Mean SD Min Mean SD Min Mean SD

f1 -1.0316 -1.0315 8.88e-05 -1.0316 -1.0316 1.86e-05 -1.0316 -1.0316 4.24e-14 -1.0316 -1.0316 2.27e-16

f2 1.36e-15 1.79e-15 2.68e-16 1.14e-15 1.45e-15 2.05e-16 8.43e-16 9.08e-16 6.25e-17 1.27e-20 4.12e-19 1.97e-20

f3 2.63e-15 3.04e-15 2.48e-16 1.41e-15 1.60e-15 1.28e-16 7.07e-16 8.94e-16 1.179e-16 4.29e-26 1.24e-26 8.14e-26

f4 4.71e-16 7.93e-16 1.96e-16 4.97e-16 5.15e-16 1.60e-17 1.29e-16 2.066e-16 7.63e-17 1.99e-37 9.83e-36 8.53e-36

f5 1.94e-16 2.36e-16 4.53e-17 9.45e-17 1.75e-16 5.15e-17 1.69e-17 2.88e-17 1.50e-17 1.20e-50 2.73e-48 2.60e-48

f6 4.31e-15 1.31e-14 7.82e-15 7.08e-17 1.77e-16 1.07e-16 7.66e-19 3.63e-18 4.39e-18 6.22e-108 6.24e-105 1.39e-105

f7 5.28e-16 6.67e-16 8.42e-17 4.90e-16 6.06e-16 8.82e-17 2.01e-16 2.85e-16 9.29e-17 1.15e-27 3.21e-26 2.78e-26

f8 0 0 0 0 0 0 0 0 0 0 0 0

f9 1.97e-01 2.54e-01 4.24e-02 9.69e-02 1.56e-01 3.67e-02 4.87e-02 1.06e-01 1.82e-02 5.77e-02 1.00e-01 4.76e-02

f10 -78.3 -78.3 1.42e-14 -78.3 -78.3 7.10e-15 -78.3 -78.3 2.75e-14 -78.3 -78.3 3.01e-14

f11 6.19e-08 1.10e-07 4.18e-08 6.21e-08 1.81e-06 2.12e-06 7.09e-16 1.00e-15 3.59e-16 2.08e-12 6.51e-10 3.62e-10

f12 0 1.06e-15 1.67e-15 0 1.77e-16 7.94e-06 0 0 0 0 0 0
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