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Worst-case Mean-VaR Portfolio Optimization
with Higher-Order Moments
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Abstract—Conservatism is a notorious shortcoming of the
worst-case robust portfolio selection model. Numerous studies
have been done to tackle this issue from the perspective of
theoretical and practical. Based on the existing literature,
this paper aims to develop less conservative portfolio models.
When the assumption of normality for returns is not valid,
higher-order moments have been demonstrated effective
in improving portfolio performance. Hence, the worst-case
mean-VaR optimization portfolio involving the higher-order
moments is developed in this work. Additionally, the machine
learning-based preselection is also designed and implemented
for selecting risky assets to further overcome the potential
conservatism. In the numerical experiments, the US 12
industry portfolio data set from Kenneth R. French is used
to test and compare the proposed portfolio models and
baseline strategies. The out-of-sample results show that the
proposed portfolios have better comprehensive performance
than benchmarks.

Index Terms—Portfolio selection, Machine learning, VaR,
Higher-order moments

I. INTRODUCTION

UANTITATIVE finance has gained impressive

ground since the mean-variance (MV) portfolio
model proposed by Markowitz [1]. On the basis of the
classical bi-criteria optimization model and the factor
model [2], [3], robust portfolio selection model [4] pro-
vides a feasible theoretical framework overcoming some
well-known shortcomings such as parameter sensitivity
of the traditional MV model. The main idea of robust
portfolio selection is to consider the worst-case scenario
for the feasible domain of model parameters. Goldfarb &
Iyengar [4] estimate the covariance matrix resort to Fama-
French factors and transform the primal optimization prob-
lem into a second-order cone programming, which can
be solved efficiently. However, although robust portfolio
models show relatively stable out-of-sample performance,
some scholars pointed out that the inherent conservatism
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of such worst-case optimization makes this type of model
not preferred by investors pursuing high returns [5], [6].
Existing literature reveals several feasible solutions to
build less conservative portfolio models while maintaining
the robust model structure. For example, [7] considered the
best-case counterpart and worst-case counterpart simulta-
neously and presented the corresponding modeling flow.
Value-at-risk (VaR) is the focused risk metric in their work,
which reflects the tail risk of an investment instead of the
symmetric risk shown by portfolio variance. The terrible
sub-prime crisis in 2008 reminds scholars and practitioners
of the importance of tail risk. As one of robust risk
measures, VaR has been written into the Basel II accords.
Following the precedent framework illustrated by Lotfi et
al, we construct the basic worst-case mean-VaR portfolio
constrained with the ellipsoidal uncertainty Us, whereas
some techniques are applied to overcome the conservatism
of the primal model. Based on [7], [8], [9] developed
the hybrid portfolio models constrained with different
ellipsoidal uncertainties, where some machine learning
algorithms are used to predict the trade-off parameter.
With the development of computer science, portfolio
models with higher-order moments are gradually adopted
by academia. [10] show better performance would be
obtained when the skewness is included in the op-
timization process. The superiority of mean-variance-
skewness model over mean-variance model has been
presented by [11]. Kurtosis is also noteworthy mo-
ment in portfolio formation. [12] compare the out-of-
sample performance of mean-variance-skewness-kurtosis,
mean-variance-skewness, mean-variance, where the mean-
variance-skewness-kurtosis model obtains the best per-
formance. A polynomial goal programming model for
portfolio optimization considering kurtosis is implemented
by [13], where a diversified portfolio with satisfactory per-
formance is presented. Inspired by the existing research,
higher-order moments shed light on a feasible approach to
construct less conservative portfolio models, and constitute
the indispensable parts of the proposed portfolio models.
Forecasting information could also be utilized reason-
ably to improve the performance of portfolio models.
Several artificial intelligence techniques including machine
learning and deep learning provide efficient and effective
approaches to generate convincing predictions, which have
been frequently used in financial modeling. [14] proposed
a neural-based mean-variance-skewness model involving
risk preferences, forecasts, and trading strategies, where
the trained radial basis function (RBF) neural network
is employed to solve the optimization problem. A hy-
brid approach based on two-stage clustering, RBF, and
genetic algorithm (GA) is developed to construct port-
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folio model with higher-order moments by [12], where
the two-stage clustering is used to preselect risky assets
and RBF is employed to provide forecasting informa-
tion. In their work, empirical evidence from Shanghai
Stock Exchange is presented to verify the feasibility of
the mean-variance-skewness-kurtosis portfolio model. Ma-
chine learning-based preselection is also used to improve
the performance of portfolio models in [15], [16], [17]. As
a result, we also design the process of preselection based
on two ensemble learning algorithms, Random forest and
LightGBM, to further overcome the conservatism of the
worst-case mean-VaR model.

The main contribution of this paper is two-fold. Firstly,
we present the worst-case mean-VaR optimization con-
strained with the ellipsoidal uncertainty Us with detailed
proofs. Then, higher-order moments including skewness
and kurtosis are integrated into the mean-VaR portfolio
model in a manner of polynomial goal programming.
Secondly, the preselection based on Random Forest and
LightGBM is developed for selecting risky assets. Ac-
cordingly, we compare the proposed portfolio models with
preselection and without preselection in the numerical
experiments. Also, some baseline models such as MV and
mean-VaR are evaluated in the empirical research to reveal
the comparative result.

The rest of this paper is organized as follows. The ellip-
soidal uncertainty set Us is introduced in Section II. Based
on Us, the worst-case mean-VaR portfolio model is pre-
sented in Section III. In Section IV, skewness and kurtosis
are considered, and the polynomial goal programming for
portfolio formation is proposed. The machine learning-
based preselection and the corresponding algorithms are
presented and explained in Section V. Section VI presents
the comparative result of the numerical experiments. Con-
clusions and related discussions are shown in Section VII.

II. ELLIPSOIDAL UNCERTAINTY SET

The ellipsoidal uncertainty set Uy is introduced in this
section. Suppose that risky assets returns follow a joint
normal distribution, and the mean estimate r can be
obtained based on a group of i.i.d samples of size S for
n assets. Then, given covariance matrix ¥, the following
relationship holds:

S(S —n)

S Dn (r—7)S"r —7)

~ X (1)
where X2 is the chi-square distribution with degree of
freedom n.

In this paper, we focus on the joint uncertainty set for
the pair (r,X) as [71, [8]. Assummg that the two sample

S

estimators, 7 = 3 Zt 1 Tis 3= F ZL Ly =) = 7)),
are independent, and the distributions are as follows:

by
7~ N(r, —)
2
E
~ ,9—-1
Wig—7 )
where N (u1,0%) represents the Gaussian distribution,
W(G,v) represents the Wishart distribution [18] with
scale matrix G and degree of freedom v. According to

the procedure of [19], the joint ellipsoidal uncertainty set
can be derived as follows:
Us ={(r, 2) ERXS" | S(r—#)S™ (r —#)+

S

TS - )RR < 0

where S™ is the set of the n X m symmetric matrices,
[Al7 = tr(AA").

III. WORST-CASE MEAN-VAR OPTIMIZATION

Constrained with the ellipsoidal uncertainty set Us men-
tioned above, the worst-case counterpart of the mean-VaR
portfolio optimization can be reformulated as follows:

min max —r'z + (1 — N F ()2 2z

zeX (r,X)eUs
R 3)
=min —*'x + < max gl(k‘)> |21/ 2||
zeX ke(0,1]

where X = {z | 2; > 0,>." | x; = 1} is the feasible

domain of portfolio weight vector =, gi(k) = § \/g +

(1-A\)F~(a )\/<1 +0

inverse cumulative distribution function, A € [0, 1] is the
trade-off parameter between risk and return. The proof
based on [19] and [7] is as follows. We first define the
two uncertainty set with an auxiliary parameter k € [0, 1]:

Us={reR"| S(r—f)f](rff) < ké%}

2(1 k))’F—l(a) is the normal

Uy = {2 8" s s o s
< (1-k)5%}
The inner maximization of (3) is equivalent to:
Qe opax | max —r'z (1 - NE a5 2|
4)

and the optimal objective value of the innermost of (4)
can be reached at the endpoint:

Wk Sa
& Va'Sz

Plugging r* into (4), the next innermost maximization
in (4) is as follows:

* ~

rt=17r—

max —#z+(1-NF 1 (a)Va'Sx+ k\/x’f)x ®)
Uyi=rs V'S

_In essence, the problem (5) is an optimization about
>, and we can obtain the X* by solving the following
simplified optimization problem:
max  u'Su
Zese (©)
st |23 <0
where u = 3122, = 2o (1 — k)62, % = -V2(%
3)%71/2, According to the cyclic property of trace and
the Cauchy-Schwarz inequality, we have the following
equation:
u'Su = tr(u'Su) = tr(v'ul)
< |l"ull |1l
< Vb||u'u]
= Vb|jul?

=<du,¥ >

)
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As aresult, we have the optimal X* at the boundary, that

is, XF =3 + \/Efll/zﬁﬁill/? Also, the optimization
problem (3) can be reformulated as follows:

min max —#'z + (1 — \)F ' (a)\/ (1 + Vb)z'Sa+
z€X ke[0,1]

SVE
ﬁ 'Y

=min max —# x+
zeX ke[0,1]

((1 —~NF Y a)V1+Vo+ ‘ig) |52

g1(k)

k) )[[%!?
(s 09 154241

=min —*z +
zeX

®)

IV. PORTFOLIO CONSIDERING HIGHER-ORDER
MOMENTS

A. Skewness & kurtosis

When the normality assumption of risky assets returns
is not valid, the efficiency of the Markowitz portfolio
model can still be sustained by adding some higher-
order moments. Existing literature shows that more and
more scholars consider portfolio models with higher-
order moments [20], [21], [22], [13], [23], [24], [25].
Mean-variance-skewness is one of the mainly focused
models, and skewness has been demonstrated to improve
the performance of a portfolio [10]. The effectiveness
of kurtosis in portfolio formation also be discussed by
some researchers [26], [27], [13], [28]. A portfolio with
excessive kurtosis indicates that the fatter tails than a
normal distribution the portfolio would have, that is, a
higher probability of extreme returns would be expected.
To overcome the notorious conservatism in robust opti-
mization, and obtain a stable financial model with satis-
factory performance, we design the portfolio model as a
non-linear, multi-functional approach to the issue of the
optimization comprised of multiple conflicting objectives.

The skewness and kurtosis of a portfolio can be calcu-
lated as follows:

Skew(x) = E(z' (7 — E(7))?) = 2/ M3(z @ 2)
Kurt(z) = E(z/(F — E(7F))?) = 2/ My(z @ 2 @ z)
where 7 represents the returns of risky assets, M3 is the
co-skewness matrix, M, is the co-kurtosis matrix, and ®

denotes the kronecker product. Accordingly, the designed
multi-objective portfolio optimization is as follows:

sl k 21/2
i T$+<k{2[%>§]g1( >) |

s

max x' M3(z @ z)
mina’ My(z @ © ® x)
reX

®)

B. Polynomial goal programming algorithm

Polynomial goal programming (PGP) is one of frequent-
used approaches to solve multi-objective models [29],
[28], [13], [25]. Hence, based on the current research

results, we develop the PGP algorithm to solve Eq. (9).
In the PGP process, we first solve each sub-problem to
achieve the aspired levels, R*, V*, K*. Each aspired level
means the ideal scenario for a single objective while
neglecting other goals. Then, we introduce the auxiliary
variables d..,d,,d; to minimize the deviations from the
aspired levels, respectively. The aspired levels can be
obtained by solving the following sub-problems SP(1) ~
SP(3) independently:

min  R* = —#'z + ( max gl(k)>||il/2x||

SP(1) ke[0,1]
st. rzeX
(10)
V* =a'Ms(z®
SP(2) { max ' Ms(z ® x) (1
st. xeX
SP(3) { min ' My(z @@ x) (12)
st. xeX

These sub-problems can be solved by some common
linear and non-linear programming methods, and the ob-
jective values can be integrated into the PGP framework
via Minkowski distance [27] defined as follows:

d. P 1/p
7))

%

m

Z:(Z

i=1

13)

where Z; is used to normalized the :th goal. Likewise,
the goal variables are normalized by the corresponding
aspired levels obtained from SP(1) ~SP(3). Also, in-
vestors’ preferences are prioritized by hyper-parameter \;.
Following the procedure of [30], [13], we add 1 to all
normalized goals to ensure that they are larger than 1, and
therefore the normalized deviation from the desired levels
would increase strictly with the exponent. As a result, all
objectives are considered simultaneously by solving the

following PGP problem:
A2
) (1

>A1+(1+

— k) ISV 22| — d, = R
'+ (krél[%ﬁ]gl( )) ||

L
V*

dy,
K*

dy
inZ =11 —
min ( + ‘ i

P Ms(z@z)+d,=V*
PMy(z@z®x)—dy = K"
reX

dr,dy,d, >0

s.t.

(14)
where the value of )\; is dependent on the preference of the
investor. Accordingly, we can obtain the solution of Eq.
(14) for the different scenarios. Algorithm 1 illustrates the
flowchart of the proposed PGP approach.

V. PRESELECTION USING MACHINE LEARNING-BASED
ALGORITHMS

The effectiveness and efficiency of machine learning
algorithms in financial modeling has been demonstrated
by lots of scholars [15], [16], [31], [32]. Also, the perfor-
mance of portfolio models could be significantly improved
by the rational preselection based on machine learning
algorithms. To pick out high-quality risky assets from the
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Algorithm 1 PGP approach.
Input: Sample data D.
Output: Optimized portfolio weight z,p.

1: Estimate the sample mean vector 7, co-variance matrix
f], co-skewness matrix M3, and co-kurtosis matrix My
from D.

2: Solve the sub optimization problems SP(1) ~SP(3)
independently, and obtain the respective desired ob-
jective value, R*, V* K*.

3: Introduce the auxiliary variables d,,d,, di, and con-
struct the PGP problem (14) based on the Minkowski
distance (13).

4: Solve the PGP problem (14), and obtain the optimized
portfolio weight ;.

5. return x,p;.

asset pool, we implement the preselection synthesizing
the forecasting results retrieved from machine learning
algorithms. In this section, two ensemble learning models
within the scope of this work are introduced. Then, the
preselection based on the chosen machine learning algo-
rithms is proposed and explained.

A. Random Forest

The main idea of ensemble learning models is combin-
ing several base estimators into a strong one to improve
forecasting accuracy [33], [34], [35]. Bagging and boost-
ing are two widely-used strategies in modeling. Random
Forest (RF) is one of the ensemble learning models taking
the bagging strategy, where the predictions gained from the
individual base estimators independently are averaged in
RF. Suppose that there are M features in the data set, and
at most k ~ \/M features would be randomly selected
by the base estimator for making decision. Generally,
information gain [36], [37] is the criterion when splitting
a node. The final result F'(z) of RF would be achieved
according to the voting equation as follows:

F(z) = arg maxz I(r;(xz) = R(x)) (15)

where 7;(x) is the forecasting result of the ith base
estimator, I(-) is the indicator function. More details about
RF can be referred to [38].

B. LightGBM

LightGBM is a boosting ensemble learning model pro-
posed by [39]. Essentially, LightGBM is a kind of gradient
boosting decision tree (GBDT) algorithm [40], [41], but
two novel techniques, gradient-based one-side sampling
(GOSS) and exclusive feature bundling (EFB), are devel-
oped for this improved GBDT algorithm. Additionally,
unlike the traditional GBDT-based algorithms such as
XGBoost [42], [43], the trees in LightGBM would grow
vertically, whereas horizontally in other algorithms [44],
making LightGBM an effective and efficient approach in
processing large-scale data sets.

Given the supervised training sample set X =
{(zi,y:)}, the goal of LightGBM is to find an approx-
imation f (z) to a certain optimal function that minimizes

the expected value of the loss function L(y, f(x)) as
follows:

f = arg min E[L(y, f(x))]

where the boosting strategy is employed in LightGBM,
that is, a number of T regression trees f;(X) are built to
approximate the final model in an additive form as follows:

(16)

fr(X) =" fi(X) (17)

Accordingly, at step ¢, the objective function of Light-
GBM can be expressed as follows:

Dy =Y Ly, fi-1(xs) + fi(@:)

i=1

(18)

and the loss function can be rapidly approximated by
Taylor expansions, hence Gamma,; can be reformulated
as follows:

n

o Y (i) + ghaf2e)

i=1

19)

where g; and h; represent the first-order and the second-
order gradient statistics of loss function L(-), respectively.

Defining I; as the sample set of leaf node j, I'; can
further be reformulated as follows:

! 1
Ti=3 ((Z giJws + 5 (> (hi + A)wﬁ)) (20)

j=1 " i€l i€l

where w; represents the sample weight vector of leaves.
Actually, The hyper-parameters in LightGBM have signifi-
cant effect on forecasting accuracy, Table I summarizes the
main hyper-parameters of LightGBM used in this work.

C. Proposed preselection algorithm

To pick out high-quality risky assets as well as utilize
the forecasting results of RF and LightGBM comprehen-
sively, we develop the preselection algorithm based on
Fama-French fundamental factors. Some related empirical
researches have verified the effectiveness of Fama-French
fundamental factors in machine learning algorithms [45],
[46]. Hence, we select Fama-French five factors as the ba-
sic features fed into machine learning algorithms. Sharpe
ratio (SR) is the risk-adjusted criterion for selecting risky
assets in the proposed preselection algorithm, which can
be calculated as follows:

Sp="2""f

Op

2L

where 7, is the return of a portfolio, 7y is the risk-free
rate, o, is the standard deviation of a portfolio. [47]
further considered the circumstance of the negative value
of r,, and provided the modified version of SR (MSR) as

follows:
Tp — ’r‘f

MSE = (o) =7 1)/ lrp=rs]

(22)

In both in-sample and out-of-sample analyses, SR pro-
vides an intuitive comparison of portfolio performance
[48], which constitutes the reason for using this measure
in our preselection algorithm. The details of the proposed
preselection algorithm are revealed in Algorithm 2.
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TABLE I
MAIN HYPER-PARAMETERS IN LIGHTGBM.

Hyper-parameter  Interpretation

n_estimators
num_leaves

learning_rate

The speed of iteration.

The maximal number of base estimators

The number of leaves per tree.

Describing the maximum depth of the tree, and is capable of

The minimum number of the records a leaf may have. It is also

max_depth
handling overfitting.
min_data
used to deal with overfitting.
n_jobs The number of threads used in LightGBM.

feature_fraction
building trees.

bagging_fraction

The fraction of features selected randomly in each iteration for

Specifying the fraction of data to be used for each iteration, also

used to speed up the training and avoid overfitting.

reg_alpha
reg_lambda

Coefficient of Ly penalty.
Coefficient of Lo penalty.

Algorithm 2 Preselection.

Input: Data set containing Fama-French five factors and
returns D, Risky assets set A, Risk-free rate ry,
Random Forest, LightGBM.

Output: Selected risky assets Ag.;.

1: Extract D, for training and D), for prediction from D.

2: Train RF and LightGBM based on D, then use the
two ensemble learning models to obtain the predictive
returns series Y, and Y; based on D,,.

3: Calculate the standard deviation of the obtained re-
turns series, o, and oy, respectively.

4: According to Egs. (21) and (22), calculate SR or
MSR of the forecasting returns series, S, and .S,
respectively.

5: Sort S, and P, with a heap @ of size M. The
sorted results are (s and @.., respectively. Record the
indexes of the selected risky assets in a set I.

6: Calculate the intersection of Qs and Q,., Qs of size
m.

7: Obtain the risky assets Age; from Qg based on the
indexes set [.

8: return A,.;

VI. NUMERICAL EXPERIMENTS

In this section, we implement the following numerical
experiments to demonstrate the effectiveness of the pro-
posed worst-case mean-VaR-Skewness-Kurtosis (wVSK)
portfolio model with preselection (WVSK-p). As a compar-
ison, out-of-sample performances of some baseline models
such as mean-variance (MV) and mean-VaR (MVaR) are
also provided. Fig. 1 shows the flowchart of the designed
numerical experiments. The optimization tools used in
empirical researches are YALMIP [49] and CVX [50] in
MATLAB R2019b, and the machine learning algorithms
within the scope of this work are programmed in Python
platform.

A. Data set

Considering the efficiency of market [51], we select
relatively stable and efficient financial data set for the
numerical experiments. To this end, the US 12 industry

portfolio daily data set from Kenneth R. French is used
in the numerical experiments, where the data from Jan.
2, 2019, to Mar. 11, 2020, constitutes the training set
(total 300 observations), while the data from Oct. 1, 2020,
to May 28, 2021, constitutes the testing set (total 166
observations). Additionally, the data from Mar. 12, 2020,
to Sep. 30, 2020, is used in the proposed preselection
phase. Table II presents the descriptive statistics of the
training samples. From the statistical results of the Jarque-
Bera test (JB) [52], we can observe that there is no
normality in the samples. Therefore, the rationality of
considering higher-order moments in portfolio formation
holds.

B. Results of preselection

Accuracy is a crucial indicator for evaluating machine
learning algorithms. Hence, based on the existing litera-
ture, the criteria of mean square error (MSE) and mean
absolute error (MAE) are defined as follows:

1 n o
MSE = - Z(yi —Ui)
X o (23)
MAE = n ;va yz‘
where y; indicates the true value while ¢; represents the
estimated value.

Fig. 2 reveals the MSE and MAE of RF and LightGBM,
respectively. The X-axis indicates the industries, the left
Y-axis represents the value of MSE while the right Y-
axis represents the value of MAE. In the legend, LGB is
short for LightGBM and is marked with triangle symbols,
whereas RF is marked with star symbols. It can be
observed that RF has lower MSE than LightGBM, while
LightGBM shows slightly better performance of MAE
than RF.

Applying the developed Algorithm 2 to the US 12
industry data set, seven industries (Durbl, Manuf, BusEq,
Telcm, Shops, Hlth, Other) are selected to construct port-
folio model wVSK-p. According to the conclusion of
[53], holding about seven risky assets at the same time
is appropriate for individual investors, which is consistent
with the result of preselection.
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Fig. 1. Flowchart of the numerical experiments.
TABLE II

DESCRIPTIVE STATISTICS OF THE TRAINING SAMPLES.

Industry Min(x1072)  25% Quantile(x1072) Median(x1072?) Mean(x1072?) 75% Quantile(x10~2?) Max(x1072) JB P

NoDur —5.9600 —0.2900 0.0800 0.0316 0.5150 4.5000 1054.20 0.00
Durbl —10.2400 —0.6850 0.2300 0.0601 0.8300 6.7100 614.39 0.00
Manuf —9.1600 —0.4900 0.0600 0.0101 0.7150 4.5200 1240.80 0.00
Enrgy —19.7300 —0.8650 —0.0200 —0.1587 0.8250 5.4200 17074.14  0.00
Chems —7.0300 —0.4450 0.1300 0.0117 0.5850 4.8700 1169.87 0.00
BusEq —7.3300 —0.4250 0.2200 0.0944 0.8700 5.7900 349.55 0.00
Telcm —6.5700 —0.4300 0.0900 0.0429 0.5800 3.9300 800.81 0.00
Utils —7.1600 —0.3050 0.1500 0.0414 0.5250 5.4600 3013.40 0.00
Shops —5.0300 —0.3550 0.1350 0.0503 0.5900 4.4500 399.28 0.00
Hith —5.6700 —0.4200 0.1000 0.0307 0.6150 4.8300 346.95 0.00
Money —10.3500 —0.3900 0.1100 0.0185 0.6700 5.8800 2541.09 0.00
Other —8.3300 —0.4500 0.1250 0.0159 0.6850 4.9400 1479.79 0.00

* Acronyms of the industries can be referred to the homepage of Kenneth R. French.

C. Out-of-sample performance

For the purpose of evaluating the proposed portfolio
models comprehensively, some performance measures are
defined as follows. ROI represents the return of invest-
ment, which measures the cumulative return of a certain
portfolio. APY is short for the annualized percentage yield,
which reflects the profitability of an investment intuitively.
STD represents the standard deviation of a portfolio, which
is a widely used indicator measuring the symmetric risk
of an investment. Maximum drawdown (MDD) is the
observed peak-to-trough decline during a specific period
for a portfolio, which evaluating the robustness of an
investment.

In the numerical experiments, we set \; = 1,y =

2,X3 = 1 for Eq. (14) and ry = 3% per year, the out-
of-performances of different portfolio models are shown
in Table III. With regard to return, wVSK-p outperforms
other models with ROI 0.2978 and APY 0.4512. wVSK
ranks second with ROI 0.2696 and APY 0.4063. MV
obtains the best STD of 0.1261, as compared 0.1274 for
MVaR, 0.1433 for wVSK, 0.1520 for wVSK-p. Obviously,
the conservatism of the conventional worst-case mean-
VaR model can be overcome by considering higher-order
moments in our numerical experiments. In terms of SR,
wVSK-p has the highest level of 2.7711, wVSK follows
with 2.6261. However, wVSK reaches the best MDD of
0.0504, followed by MVaR, with 0.0548. For the tail
risk, MVaR has the lowest VaR(%5) of 0.0119, then MV,
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Fig. 2. Flowchart of the numerical experiments.
TABLE III
OUT-OF-SAMPLE PERFORMANCE OF PORTFOLIO MODELS.
MV MVaR wVSK wVSK-p

ROI 0.1947 0.1897 0.2696 0.2978
APY 0.2893 0.2817 0.4063 0.4512
STD 0.1261 0.1274 0.1433 0.1520
SR 2.0560 1.9752 2.6261 27711
MDD 0.0557 0.0548 0.0504 0.0720
VaR (5%) 0.0124 0.0119 0.0152 0.0154
Skewness —0.4572 —0.4718 -0.1418 —0.4483
Kurtosis 4.0010 3.9669 4.1068 3.7874

0.0124. The values of skewness and kurtosis verify the
actual effectiveness of higher-order moments in portfolio
formation, where wVSK obtains the highest skewness of
—0.1418 and wVSK-p has the lowest kurtosis of 3.7874.

Fig. 3 is visualizes the result of Table III and fur-
ther demonstrate the superiority of the proposed portfo-
lio models. During the whole test period, wVSK shows
superior performance than the baseline portfolio models,
but wVSK-p performs unsatisfactorily at the beginning
of the test period. Considering less risky assets could
be selected after preselection, wVSK-p has more difficult
in diversifying risk. Thus, wVSK-p shows higher STD,
MDD, VaR(%5) than wVSK model, which means assum-
ing more risk to pursue higher return. Although more
robust out-of-sample performance wVSK has, preselection
is still a process that deserves serious consideration in
the circumstance of a large number of risky assets to
be managed. In a nutshell, higher-order moments play a
key role in overcoming the conservatism of the worst-case
mean-VaR portfolio optimization, and more analysis is to
be implemented in the next section.

D. Sensitivity analysis

In this section, more combinations of the preference
tuple (A1, A2, A3) are carried out to further investigate the
effectiveness of skewness and kurtosis of the proposed
portfolio models. Fig. 4 presents the VaR(%5) and SR
of wVSK and wVSK-p portfolio models, where \; =
1,A3 = 1 are fixed while Ao varies within a range of
[1,3]. With the increase of Ag, the VaR(%5) of wVSK
shows a gradual downward trend, whereas the SR of
wVSK inclines to rise. However, similar trends do not
obviously show in the wVSK-p model. Both VaR(%5) and
SR presents a state of oscillation in wVSK-p because of
the existence of preselection. Fig. 5 shows the VaR(%5)
and SR of wVSK and wVSK-p, where A\ = 1, Ay = 2
are fixed while A3 varies within a range of [0.5,2.5]. It
can be observed that the values of VaR(%5) for wVSK
and wVSK-p decrease with the increasing value of As.
The financial models are paying more attention to curbing
kurtosis incline to obtain portfolios with thinner tails,
which is beneficial to the performance of VaR. Addition-
ally, all combinations of the preference parameters result
in wVSK and wVSK-p portfolio models with higher SR
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Fig. 4. VaR(%5) and SR of portfolios with different As.

than MV and MVaR in the numerical experiments, which
verifies that the proposed portfolio models can overcome
the conservatism of the conventional worst-case robust
portfolio models while maintaining the robustness of the
primal optimization models to some extent.

VII. CONCLUSIONS & DISCUSSIONS

Conservatism is one of the main issues in robust port-
folio optimization, limiting the large-scale use of this
type of model by financial practitioners. Without the as-
sumption of normality, higher-order moments encompass
intuitive approaches to obtain less conservative portfolios.
Forecasting information also provides feasible methods
to overcome the conservatism, which could be achieved
and utilized by modern artificial intelligence techniques.
This paper aims to develop the worst-case mean-VaR
portfolio models considering higher-order moments, where
the preselection involving Random Forest and LightGBM

algorithms is designed and implemented. Some attributes
concerning mean, VaR, variance, skewness, and kurtosis
are integrated into the proposed portfolio models in the
form of PGP.

The comparative result of the numerical experiments
demonstrates the effectiveness of the proposed models.
It can be seen from the out-of-sample performance of
wVSK that higher ROI and APY does wVSK has, while
not increasing the level of risk significantly compared
to MV and MVaR models. Due to the criterion for
selecting risky assets, preselection further improves the
model performance in terms of return while reducing the
robustness of the primal proposed model. Constrained with
the number of risky assets that could be selected, some
risk indicators such as STD, MDD, and VaR(%5) are
exacerbated on adaptation with preselection. However, it
is still a necessary process when individual investors face
lots of risky assets to manage. In future research, we
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