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Abstract—The energy minimization had been wieldy applied 
to select two free parameters of the planar cubic geometric 
Hermite interpolation curve. However, the energy minimization 
of the spatial cubic geometric Hermite interpolation curve seems 
to have been neglected. Since the spatial geometric Hermite 
interpolation curve has both bending and twisting, the bending 
energy and twisting energy should be simultaneously considered 
when selecting the two free parameters by energy minimization. 
This paper introduces the bending energy and the twisting 
energy of the spatial cubic geometric Hermite interpolation 
curve, and then presents the bending and twisting energy 
minimization method for selecting the two free parameters. The 
proposed minimization is achieved by solving a bi-objective 
optimization problem, and the unique approximate solution of 
the bi-objective optimization problem is given. Some numerical 
examples show that the proposed method makes the spatial 
cubic geometric Hermite interpolation curve have the minimum 
bending energy as well as the minimum twisting energy.  

 
Index Terms—Hermite interpolation, spatial curve, bending 

energy, twisting energy, minimization 

 

I. INTRODUCTION 

he cubic geometric Hermite interpolation curve (CGHI- 
curve for short) can be described by the Bézier form as 

follows [1], 
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( 0,1,2,3)k , 0 1,p p  are two 

points, 0 1,d d  are unit tangent directions at the two points, and 

0 1,   are two positive numbers. The two points and the 

associated tangent directions are usually given in practical 
application, but the two positive numbers are often used as 
free parameters. 
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    Recently, curves with free parameters have been widely 
concerned  (see [2-7]). In like wise, the CGHI-curve has two 
free parameters when the two points and the associated unit 
tangent directions are fixed. Hence, many researchers 
selected the two free parameters of planar CGHI-curve by 
minimizing the bending energy (also known as strain energy) 
or the curvature variation energy (see [8-15]). However, how 
to use energy minimization to select the two free parameters 
of spatial CGHI-curve seems to have been neglected.  
    As we know, planar curves only need to consider bending, 
while spatial curves should consider not only bending but also 
twisting. Although the energy minimization for Hermite curve 
in Rd was presented in [16], they only used the bending of the 
curve. The bending and twisting minimization for 3D curves 
were addressed in [17], but the method is framed in terms of 
B-spline curves. A natural problem arises: how to select the 
two free parameters of the spatial CGHI-curve by minimizing 
both bending energy and twisting energy. This paper first 
proposes the bending energy and the twisting energy of the 
spatial CGHI-curve, and then presents the bending and 
twisting energy minimization for selecting the two free 
parameters of the curve. 
    The rest of this paper is organized as follows. In Section II 
the bending energy and the twisting energy of the spatial 
CGHI-curve are introduced. In Section III the bending and 
twisting energy minimization is described. In Section IV 
some numerical examples are shown. Finally, a short 
conclusion is given in Section V.  

II. ENERGY OF THE SPATIAL CGHI-CURVE 

    For the spatial CGHI-curve ( )b t (0 1)t  , the bending 

energy and the twisting energy of the curve can be described 
by (see [17]) 
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where ( )t  and ( )t  represent the curvature and the torsion 

of the curve respectively, and 
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    In order to facilitate the calculation, the bending energy (2) 
and the twisting energy (3) could be approximately described 
by (see [17]) 
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    Here, the approximate expressions (4) and (5) are adopted 
to describe the bending energy and the twisting energy of the 
spatial CGHI-curve.  
    It should be noted that (4) was regarded as an approximate 
bending energy of the planar CGHI-curve in [8, 9], and (5) 
was regarded as an approximate curvature variation energy of 
the planar CGHI-curve in [12].  

III. ENERGY MINIMIZATION OF THE SPATIAL CGHI-CURVE 

    By a deduction from (1), then 
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where 0 1 0:  p p p . Let 0 0 0: ( , )  d p , 1 1 0: ( , )  d p , 

2 0 1: ( , )  d d , where ( , ) a b  represents the angle between a  

and b . Here 0 ( , )  a b  .  

    By computing from (4) and (6), the approximate bending 
energy functional of ( )b t  becomes 

 

       




2 2
1 0 1 0 1 0 1 2 0 0 0

2

1 0 1 0

ˆ ( , ) 4 cos 3 cos

3 cos 3 .

    

   

p

p p

E         

 
           (8) 

 
    By computing from (5) and (7), the approximate twisting 
energy functional of ( )b t  becomes 
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    Here, since both the bending energy and the twisting energy 
need be minimized and a feasible region 

 2
0 1 0 1: ( , ) R 0, 0   D      

should be applied, then the following bi-objective problem 
would need to be solved, 
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The bi-objective problem (10) could be transformed into 
 

      
0 1

0 1 1 0 1 2 0 1
( , )

ˆ ˆ ˆmin ( , , ) ( , ) (1 ) ( , )


  
D

E E E
 

         ,          (11) 

 
where  (0 1)   is the weight. 

    Before solving problem (11), the value of the weight   

needs to be selected. For this purpose, the bending energy 
minimization and the twisting energy minimization of the 
spatial CGHI-curve are first introduced.  

    In [8, 9], (4) was regarded as an approximate bending 
energy of the planar CGHI-curve and the corresponding 
bending energy minimization was addressed. Since we use (4) 
as an approximate bending energy of the spatial CGHI-curve, 
the corresponding bending energy minimization could be 
described by the following theorem with reference to the 
experience in [8, 9]. 

    Theorem 1. The approximate bending energy functional 
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set as (1) (1)
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    Furthermore, the minimum lies in D if and only if 
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    Proof. By computing from (8), the gradients of 1 0 1
ˆ ( , )E    

can be calculated by 
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    The Hessian matrix of 1 0 1
ˆ ( , )E    is given by 
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    It is easy to see that the matrix 1H  is symmetric positive 

definite. That means 1 0 1
ˆ ( , )E    is strictly convex, and it has a 

unique global minimum. Then the unique minimum of 

1 0 1
ˆ ( , )E    expressed in (12) and (13) can be obtained by 

solving 1 0
ˆ 0E     and 1 1

ˆ 0E    . If and only if (14) is 

satisfied, (1)
0 0  and (1)

1 0  are true. Thus the theorem has 

been proved. 
    In [12], (5) was regarded as an approximate curvature 
variation energy of the planar CGHI-curve and the 
corresponding curvature variation energy minimization had 
been addressed. Here, we use (5) as an approximate twisting 
energy of the spatial CGHI-curve. Drawing on the experience 
from [12], the twisting energy minimization of the spatial 
CGHI-curve could be described by the following theorem. 

    Theorem 2. The approximate twisting energy functional 

2 0 1
ˆ ( , )E    has a unique global minimum as long as 20    . 

And the minimum, set as (2) (2)
0 1( , )  , is expressed as 
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    Furthermore, the minimum lies in D if and only if 
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    Proof. By computing from (9), the gradients of 2 0 1
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can be calculated by 
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    The Hessian matrix of 2 0 1
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    It is easy to see that the matrix 2H  is symmetric positive 

definite as long as 20    . That means 2 0 1
ˆ ( , )E    is strictly 

convex, and it has a unique global minimum. Then the unique 

minimum of 2 0 1
ˆ ( , )E    expressed in (15) and (16) can be 

obtained by solving 2 0
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ˆ 0E    . If and only 

if (17) is satisfied, (2)
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1 0  are true. Thus the 

theorem has been proved. 

    To make sure that both  (1) (1)
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0 1,   are 

available and that they lies in D, assume that 
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    Then the value of the weight   could be selected by using 

the ranking algorithm (see [18]) described as follows, 
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    The Hessian matrix of 0 1
ˆ ( , )E    is given by 
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    Thus the matrix H  is symmetric positive definite. That 

means 0 1
ˆ ( , )E    is strictly convex, and it has a unique global 

minimum which can be solved by 0
ˆ 0E     and 1Ê   . 

Then the global minimum of 0 1
ˆ ( , )E    can be obtained as 

follows,  
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    That means 0  expressed in (19) is positive. Similarly, 1  

expressed in (20) can also be verified to be positive. Thus the 
following theorem has been proved. 

    Theorem 3. When (18) is satisfied, problem (11) has a 
unique approximate solution which reaches at (19) and (20). 

IV. NUMERICAL EXAMPLES 

    In this section, the bi-objective energy minimization (i.e. 
the bending and twisting energy minimization) is compared 
with the bending energy minimization and the twisting energy 
minimization through some numerical examples.  
    Assume that  

0 (0,0,0)p , 1 (1,0,0)p , 

 0 0 0 0cos ,sin cos ,sin sind      , 

 1 1 1 1cos ,sin cos ,sin sind      , 

and 0 , 1 ,  ,   are appropriately set so that (18) can be 

satisfied. It implies  

0 1 1 d d , 0 0 0( , )  d p  , 1 0 1( , )  d p  . 

    The spatial CGHI-curves generated by three minimizations 
of four examples are illustrated in Fig. 1, where the viewing 
angle of the curves in (a) and (b) is azimuth=120o, 
elevation=60o, the viewing angle of the Hermite curves in (c) 
and (d) is azimuth=80o, elevation=20o.  
    The computational results of the four examples could be 
seen in Table I. 
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(a) 0 3  , 1 6  , 6  , 2 3   

 
(b) 0 6  , 1 4  , 3 4  , 6   

  
(c) 0 12  , 1 2 5  , 4 3  , 5 6   

 
(d) 0 4  , 1 3  , 2 3  , 7 4   

Fig. 1. Comparison of the bending energy minimization (thick 
dotted lines), the twisting energy minimization (thin dotted lines) 
and the bi-objective energy minimization (solid lines). 

     
TABLE I.  

THE COMPUTATIONAL RESULTS 

Bending energy 
minimization 

Twisting energy 
minimization 

Bi-objective energy 
minimization Fig.1 

1Ê  2Ê  1Ê  2Ê  1Ê  2Ê  

(a) 4.3 38.1 5.0 33.2 4.5 34.4 
(b) 3.0 25.1 3.3 23.0 3.1 23.6 
(c) 3.4 18.1 4.4 9.6 3.6 11.7 
(d) 4.4 20.9 6.6 3.8 4.9 8.1 

 
    Table I shows that the bending energy and the twisting of 
the spatial CGHI-curve obtained by the bi-objective energy 
minimization are between those obtained by the other two 
energy minimizations. This means the spatial CGHI-curve  

generated by the bi-objective energy minimization has the 
minimum bending energy and the minimum twisting energy at 
the same time as far as possible, which is in line with the 
characteristic that both bending and twisting should be 
considered in spatial CGHI-curve. 
    The corresponding curvature plots and torsion plots of four 
examples are illustrated in Fig. 2 and Fig. 3 respectively. 
 

  
(a) 0 3  , 1 6  , 6  , 2 3   

  
(b) 0 6  , 1 4  , 3 4  , 6   

  
(c) 0 12  , 1 2 5  , 4 3  , 5 6   

  
(d) 0 4  , 1 3  , 2 3  , 7 4   

Fig. 2. Comparison of the curvature plots of the bending energy 
minimization (thick dotted lines), the twisting energy minimization 
(thin dotted lines) and the bi-objective energy minimization (solid 
lines).  
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(a) 0 3  , 1 6  , 6  , 2 3   

 
(b) 0 6  , 1 4  , 3 4  , 6   

 
(c) 0 12  , 1 2 5  , 4 3  , 5 6   

 
(d) 0 4  , 1 3  , 2 3  , 7 4   

Fig. 3. Comparison of the torsion plots of the bending energy 
minimization (thick dotted lines), the twisting energy minimization 
(thin dotted lines) and the bi-objective energy minimization (solid 
lines). 

 
    Fig. 2 and Fig. 3 show that the curvature and the torsion of 
the spatial CGHI-curve obtained by the bi-objective energy 
minimization are between those obtained by the other two 
energy minimizations. This also verifies that the bi-objective 
energy minimization considers both bending and twisting of 

the spatial CGHI-curve, which is incomparable to the other 
two energy minimizations. 

V. CONCLUSION 

In this paper, how to select the two free parameters of the 
spatial CGHI-curve by minimizing both the bending energy 
and the twisting energy is presented. The curve obtained by 
the bi-objective energy minimization has less bending energy 
in the case of less twisting energy, which is verified through 
some numerical examples. The proposed method accords 
with the characteristic that both bending and twisting should 
be considered in spatial CGHI-curve. It is easy to find that the 
proposed method can be applied to select the free parameters 
of other spatial curves. 
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