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Abstract—Nonlinear analysis has been applied to evaluate
passive safety systems. It is based on the mechanical responses
of the car structure and loads generated in the occupants as well
as pedestrians. These responses are evaluated to design the car
structure to manage and prevent the transmission of impact
energy and as a passive element to absorb it and dissipate
it. Human responses are evaluated through biomechanical
assessment to identify and reduce human injury. Small electric
cars have been introduced to reduce pollution, and although
they have an environmental advantage, the battery can explode
if the structure of the car body does not manage the deformation
energy well. Due to their maximum velocity, the small electric
cars can be introduced in some regions without analysing
their crashworthiness behaviour. In this work, it is proposed
to evaluate the nonlinear response of a mechanical bump shock
absorber using a neural network, to predict its behaviour as an
alternative tool to perform nonlinear initial evaluation, because
there is human injury at low velocities. A combination of
deceleration level and its time duration is necessary to evaluate
the injury at low velocities. A dynamic neural network has been
used to predict the deceleration, kinetic energy and deformation
responses of a mechanical bump shock absorber. The method-
ology can be used by original equipment manufacturers, start-
ups, suppliers and companies related to mobility and micro-
mobility to perform safety assessments.

Index Terms—Passive safety; crash; biomechanics; nonlinear
analysis.

I. INTRODUCTION

MOBILITY is designed to meet the requirements of
production, design and manufacturability, and its me-

chanical strength, durability and passive safety must be
analysed. The latter reduces the number of deaths and injuries
in drivers, pedestrians, and cyclists involved in accidents [1].
The safety system has an impact on society not only for
drivers and pedestrians [2] but also for some injuries requir-
ing rehabilitation to recover mobility; in other cases, per-
manent damage occurs, so safety analysis is also important
for the health sector, government and society. Evaluation can
be performed through computer simulation or experimental
tests. When improvements are developed with a simulation,
it has the advantages such as running multiple scenarios with
the same model or to obtain the dummy responses through
interior behaviour where high speed cameras cannot cover.
There are also some phenomena that cannot be modelled
such as toxicity in airbags or some assumptions such as the
crash test barrier being more rigid than real crash object.

The main component for passive safety is the car body. It
has to be attractive for users but also has to meet mechanical
requirements, such as strength, and contribute to weight
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reduction. This combines style development with the scien-
tific approach to develop a creative body. After freezing the
design, the mathematical model is generated with computer-
aided design software. Every part has its own function, and
loads are static and dynamically concentrated in door hinges
and latches, which are generated by braking, acceleration or
body torsion for lateral movements. Thin-walled structures
are used in automotive, marine, aircraft due to their capability
to absorb energy, minimizing the transmissions to occupants
[3], and dissipate kinetic energy through plastic deformation
[4], [5], [6], [7]. To define how to manage the energy, the
body car is split into walls: body side, roof, firewall, front
frame, rear frame and compartment floor [8].

The roof assembly main function is in the case of roll over
to prevent hard contact in passenger ejection. Rollover and
nearside impact collisions have the highest percentages of
partial ejection, which can result in soft tissue injuries [9].
The front frame is the assembly from the bumpers until the
firewall. This frame is the compartment of the powertrain,
suspension links, and steering box. To reach compliance, the
front-end structures have to reduce the acceleration (10-30g)
and minimize intrusion to the passenger compartment [10],
[11]. Together with the body side and floor, it minimizes
injury to pedestrians. The rear frame main loads are dynamic
seat and belt loads, and the main challenge in addition
to managing rear crashes is to prevent resonances with
the body frame [12]. High acceleration during the crash
leads to internal injuries (bone fractures and organ ruptures)
accompanied by severe bleeding. The human body collision
with interior parts of the vehicle, such as the steering
wheel, the results in external injuries, which can be fatal,
serious or non-incapacitating [13]. Occupant safety in a side-
impact crash is usually evaluated by measuring the peak
acceleration of a passenger’s pelvis and chest areas with
the aid of instrumented test dummies. Thoracic injury can
be attained due to the impact or result of the mechanism
of airbag inflation [14]. Thorax compression in combination
with hyperextension of the neck can result in laceration of
the aorta [15], [16]. Impact effects are also evaluated for
pedestrians because they are not protected by any structure
[17]. Possible fractures due to impact to the knee are fractures
(acetabular, patellar, femur), dislocation of knee muscles,
damage to tendons and femur injury [18]. The interlayer of
the windshield improves the crash protection of pedestrians
and passengers [19]. Restraint mechanisms play an important
role in paediatric users, such as Lower Anchors and Tethers
for Children (LATCH) [20], and anchor wheelchairs can
transmit forces to the floor of up to 30 kN [21], [22].

Safety assessment is also important in micro-mobility such
as electric bicycles (e-bikes); despite the use of helmets,
electric scooters have increased the probability of human
injury in crash events [23]. Brain injuries can incur from
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impact between the rider with the windshield or with the
ground [19]. The causes of crashes are loss of balance,
evasive action, railways track or slippery roads [24]. Small
and mini-electric cars are smaller than conventional cars .
The average range of mini-EVs is approximately 100 km,
with a maximum speed ranging from 40 to 60 km/h [25].
Electric vehicle deformation can be minimized when the
structural parts are strengthened to reach crashworthiness
requirements [26], [27], and battery cells can be subjected
to impact and vibrations [28], [29]. Rechargeable energy
storage systems such as lithium-ion batteries bring safety
risks in the event of a collision [30], [31]. While more energy
stored in the battery pack of an EV translates to a longer
range, the downside is that accidents are more violent due
to inevitable battery explosion [32]. The rear collision of
vehicle battery packs is more dangerous. The mechanical
properties and failure mechanisms of the battery separators
play a crucial role in the integrity of lithium-ion batteries
during an electric vehicle crash event [33]. To make the
electric car structure safer [34], it is proposed to place the
battery pack into the secondary safe zone of a unibody-type
vehicle instead of on the floor.

It is important to evaluate the nonlinear responses of
impacts in any vehicle because injuries can be permanent
or require rehabilitation, impacting society. In this work,
an analysis using a neural network is proposed to validate
this proposal. The response of the mechanical bump shock
absorber to three responses is analysed: deceleration, kinetic
energy and deformation energy, which has an average error of
less than 1%. In the case of deceleration and kinetic energy,
only the time was used as an input, and these signals were
the target. In the case of the deformation energy, the time,
deceleration and kinetic energy were used as inputs. The
evaluation of the prediction was only after the first contact,
before that point it has structural noise generated by the
movement in the simulation.

This paper is organized as follows. Section 2 describes
the importance of safety systems to reduce injuries and
reviews the main biomechanical responses to assess injuries.
Section 3 introduces the dynamic artificial neural network
used throughout this paper. Section 4 describes the nonlinear
finite element analysis performed to obtain the time series
responses. Section 5 then combines the time history results
from the finite element analysis with the ANN prediction.
Section 6 presents our conclusions.

II. SAFETY SYSTEMS.

Original equipment manufacturers have been developing
better structural designs to reduce injuries to occupants
and pedestrians in accidents. Crashworthiness combines the
structural response of the vehicle (car, trains, helicopters,
airplanes) and biomechanics of occupants as well as pedes-
trians [35], [36], [37]. Humans are exposed to mechanical
loads coming from physiological processes inside the body
for organs and tissues, not only from the impact of restraint
systems [38]. The vehicles developed have to meet the
requirements and regulations for the New Car Assessment
Program (NCAP). Depending on the type of impact, different
parts of the body are analysed. Figure 1 shows different
scenarios that are analysed to evaluate safety performance.

The values for which to perform some impact simulation
tests are defined based on time windows known as corridors,
as shown in Figure 3 [39], which are obtained based on
experimental crash measurements. The main scope is to
evaluate the probability of injury.

Injury criteria are an important tool to evaluate the severity
developed in an accident, and they correlate the physical pa-
rameters (force, acceleration, moments) with the probability
of injuring a specific body region. The most common code
used to evaluate crash response is the Abbreviated Injury
Scale (AIS), which is based on injuries from traffic accidents
[40], [41]. Human variables such as age and psychological
and physical features change injury severity [42], [43]. Mod-
els used in trauma biomechanics include anthropomorphic
test devices and physical and mathematical models. The kind
of dummy also depends on the crash type; it can be full-scale
testing (rollover test, frontal and lateral impact), sled testing
and different impactors used in pedestrian safety testing of
the front of a car. The roof is related to the head impact
protection for interiors. Free motion headform FMH is used
to evaluate the compliance and the energy dissipation in
the vehicle interior. To evaluate its response, a headform is
impacted to specific targets as pillars, and the side rail and the
front header reach velocities 23.6 km/h, measuring the head
injury criterion HIC, which is also evaluated in motorcycle
collision [3]. It is described as

HIC = max

{[
1

t2 − t1

∫ t1

t2

a(t)dt)

]2.5
(t2 − t1)

}
(1)

Improvements to vehicle frontal crashworthiness have led
to reductions in toe pan and instrument panel intrusions
[44], [14]. Hollow abdominal organ injury is a universal
problem in frontal collisions, and the initial lap belt position
may play a greater role in the occurrence of these injuries.
Pretensioners, which apply a force to the lap belt early in
the collision event to remove initial slack, are only capable
of pulling the belt along a fixed angle. They are not yet
capable of dynamically changing the angle of the belt or
the position of the belt relative to the pelvis. To prevent
it, anti-submarining technologies have been proposed [45].
Transfer functions can be evaluated to reduce the human
injuries, it can be attained using active systems to improve
the vehicle performance. While it can be used to tuned
the suspension displacement using weighting matrices [46],
nonlinearity can lead to system instability [47], [48]. Dummy
chest acceleration can be reduced by decreasing door velocity
during impact and employing a side airbag, while pelvic ac-
celeration can be reduced by reducing door crush, decreasing
wheelbase, and having a soft or breakaway centre console. A
rigid centre console traps the pelvis, loading the side opposite
the intruding door and increasing the frequency of pelvic
fractures for a given amount of door crush. Stiffening doors
does reduce door intrusion and door velocity but at a penalty
of greater vehicle weight and side acceleration. Padding, such
as a thoracic airbag, reduces chest accelerations but only by
a relatively small amount [49].

III. CRASHWORTHINESS ASSESSMENT.
While structural damage is managed based on strength-

ened designs, lightweight design is desired. Thin-walled
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Fig. 1: General overview for crash analysis.

Fig. 2: Schematic Force-time crash corridors.

components have been used to dissipate energy by progres-
sive folding. It is using different materials or design topolo-
gies, some proposals are reproducing cells as honeycomb
structures. It can do it only using the deformation energy
of the component or using a sacrificial extrusion by axial
cutting to reduce load fluctuations, its mean crush force can
be expressed as:

Pm =
2σo
√
(πt)

3
rm

4
√
3
(
0.86− 0.37

√
t/rm

) (2)

Where σo is the Flow stress of extrusion material [50].
Honeycomb structures are used in various industrial ap-

plications as shock absorbers in airplanes and high-speed
trains for energy absorption during crush transforming the

impact energy into plastic strain its capability to absorb
energy is influenced by the material, thickness, and geometric
parameters of a honeycomb cell [51]. The buckling load is
evaluated as a function of the wall and cell size:

Pcrit =
KEst

3

(1− ν2s ) l
(3)

For the honeycomb an important parameter is the foil
thickness (t) as is expressed by crush strength:

σm = 6.63σo

(
t

D

)5/3

(4)

Normal collapse stress of the honeycomb in the out-of-
plane direction σ is expressed by:
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TABLE I: Crashworthiness parameters.

Parameter Model

Total energy absorption TEA =
∫
PidS

Specific Energy Absorption SEA =

∫
PidS

m

Crush Force Efficiency CFE = Pav
Pm

Energy absorbing effectiveness factor ψ =
3GV 2

o
8σoAδf εr

σ = 4.26cos2 (α− π/2) (1 + sin (α− π/2))2Es

(
ρ

ρs

)3

(5)
where ρs is the density of the solid cell wall material [52].
The design topology energy absorption is evaluated with

the parameters of Total energy absorption TEA, that is
the area under the load-displacement curve; Specific Energy
Absorption SEA, that is is the energy absorbed per unit
mass; Crush Force Efficiency CFE, Is the relationship
between the crushing load Pav and its maximum value Pmax;
Energy absorbing effectiveness factor, that Is the relation of
the total energy that can be absorbed in a system to the
maximum energy up to failure in a traction test; as are shown
in Table I.

IV. ARTIFICIAL NEURAL NETWORK

By its nature, an artificial neural network has been imple-
mented to solve nonlinear phenomena and to predict their
behaviour. NNs can be used to forecast traffic flow and
analyse highway safety [53] or in complex problems such as
hot stamping [54], [55]. Before, during and after the impact
event, there are factors related to the car, driver, pedestrian,
traffic flows, and highway variables [56]. Using long short-
term memory (LSTM) recurrent neural networks, individual
drivers are identified based on their pattern of acceleration-
deceleration and exceeding the speed limit [57], and the re-
sults can be used to improve the mechanical behaviour of the
car structure or to generate predictive models using machine
learning [58]. The lateral load transfer to roll stability control
is estimated using a neural network [59]. [60] includes the
evaluation of eye and environment data in addition to the
vehicle information. This is also important because previous
accident generates speed reduction and rubbernecking, which
increases the probability of secondary crashes [61]. A real-
time crash prediction model using a deep learning method
called a deep convolutional generative adversarial network
(DCGAN) is used to analyse traffic safety proactively to
reduce crash risk [62]. A fusion convolutional neural net-
work with random term (FCNN-R) model is proposed for
driver injury severity analysis [63]. [64] proposed a neural
network to reproduce car kinematics during a collision using
a nonlinear autoregressive model to predict the kinematic
responses (acceleration, velocity, and displacement) during a
collision. An ANN can be used to analyse the specific energy
absorption [65]. Accident modelling requires the modelling
of the impact, which in turn requires the estimation of the
deformation energy [66]. A feed forward neural network has
been implemented to predict the fracture of the car body
and to predict crash-injury outcomes [67]. [68] introduces

an approach to pre-crash velocity determination based on
artificial neural networks taking into account the displace-
ments on the front end. The initial velocity and structural
characteristics of any vehicle are the main factors affecting
the vehicle response in the case of frontal impact. Recurrent
NN can be used to predict the nonlinear relationships in
crash responses [69]. The crashworthiness performances of
square thin-walled tubes are investigated under axial impact
loading by using an artificial neural network [70].

The series–parallel structure of nonlinear autoregressive
exogenous (NARX) models is used for dynamic systems
for fault detection, forecasting wind speed and power in
wind turbine blades, failures in gearboxes, bearings [71],
and a functionally graded thickness pillar characterized by
a thicker wall thickness to absorb energy [72]. The RBF-
NARX neural network has neurons based on radial functions.
In the process of identifying this network, the neuron’s
number in the hidden layers is increased, and the parameters
are adjusted to minimize the output error of the model. The
generalized regression neural network GRNN-NARX model
consists of neurons with radial functions and has a feed-
forward structure that uses a relatively non-repetitive and
straightforward algorithm for training [73]. Since most of the
systems around us exhibit some form of nonlinear behaviour,
nonlinear system identification techniques are tools that help
us gain a better understanding of our surroundings and
potentially let us improve their performance.

Fig. 3: Schematic diagram of an NARX neural network.

A NARX −NN approach is described conceptually by:

y(t) = f [y(t− 1), ..., y(t− ny), u(t− 1), ...u(t− nu) + e(t)]
(6)

where f is an unknown static nonlinear mapping; t is
the discrete-time index; u(t), y(t) and e(t) are the input,
output and equation error, respectively; and un and ny are
the number of past input and output terms, respectively,
[74]. Noise is assumed to be distributed as random variable
with a normal distribution. Figure 3 shows a schematic
representation of the NARX −NN architecture [75]. This
architecture has input, hidden and output layers. The input
layer is denoted by the time delay units (z−1), which are the
past samples required by the model to predict the response.
The hidden layer is composed of a finite number of neurons
to map the relationship between the set of input data and the
corresponding output data, expressed as

yp(t) = f1

 K∑
i=1

IWiui +

K∑
j=1

IWoyj + bi

 (7)

where f1 is the bipolar sigmoid function, IWi and IWo are
the connection weights for u and y, respectively; K is the
number of neurons in the hidden layer; and bi is the bias.
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The bipolar sigmoid function (f1) improves the convergence
of the training algorithm and is defined as

f1 =
2

1 + e−2k
− 1 (8)

where k is the value of the inside of the parenthesis in Eq.
5. f1 is used to compute the model output, ŷ(t) as

ŷ(t) =
K∑
i=1

OWi
f1 + b2 (9)

OWi
represents the connection weights of links connecting

the nodes in the hidden layer to the output node, and b2 is
the bias term. Note that a training algorithm must be used to
find the values of IWi

, IWo
, OWi

, b1 and b2. All the weights
used by the network are placed in a weight vector w, defined
as

w = [IWiIWoOWi ] (10)

In this work, Bayesian regularization (BR) is proposed for
the training algorithm in the NARX model. The topology of
the dynamic neural network includes 44 hidden neurons and
2 delays. Seventy percent of the samples were organized for
training, and 15% were organized for validation and testing.

V. FINITE ELEMENT ANALYSIS

To obtain the energy absorption time history, the nonlinear
response of the mechanical bump shock absorber is simu-
lated, as shown in Figure 4. An aluminium honeycomb panel
is used as the deformable body. A nonlinear finite element
simulation using Abaqus Explicit V6.8-2 was performed to
simulate the bump shock absorber. Normal contacts are de-
fined between the rod and the front plate; the front plate and
the honeycomb panel; and the back plate and the honeycomb
panel. Normal and tangential contacts are defined between
the guides and the plates using a friction coefficient of 0.09.

Fig. 4: Mechanical bump shock absorber.

Figure 5 shows the model used. The finite element model
has a mesh size of 5 mm.

The rod cannot rotate in any direction, and the translations
are restricted in the y and z directions. A velocity of 15,555.5
mm/s is applied to the bump shock absorber in the x
direction, as shown in Figure 6.

The finite element simulation of the bump shock absorber
at different times is shown in Figure 7. The bump shock
absorber approaches the decelerator rod (Figure 7a). At 9
ms, the bump shock absorber is almost in contact with
the decelerator rod (Figure 7b). Then, the yielding of the
aluminium honeycomb panel is reached, thus starting plastic
deformation (Figures 7c-7d).

Fig. 5: Model used in finite element simulation.

Fig. 6: Velocity of the Finite element model.

VI. RESULTS AND DISCUSSION

Figure 8 shows the filtered and unfiltered acceleration data,
which were analysed and edited using a CFC60 100 Hz low-
pass filter. The filtered response shown in Figure 8 is used
as input for the ANN, and the results are shown in Figure 9.

To evaluate the feasibility of predicting nonlinearity, the
analysis was split into three evaluations: the first evaluation
was deceleration, and the second evaluation was kinetic en-
ergy, as shown in Figures 9a and 9b. The average errors were
0.67% and 0.0002%, respectively. For deformation energy,
two topologies were evaluated: ANN1 has the response by
itself, while in ANN2, the deceleration and kinetic energy
were also included; both predictions are shown in Figure 9c.

Although ANN2 shows some peaks at approximately
0.0147, 0.0163, 0.0171 and 0.0181 s, the prediction is better
than that of ANN1. This slope increases with a delay of
0.0001 s, and at 0.0103, the delay is not only in time but
also in amplitude. Including the deceleration and kinetic
energy helps to predict the deformation energy, reaching a
prediction error average of 0.612%. This result proved that
the dynamic neural network can be used to predict nonlinear
behaviour. This analysis was based on the structural response
of the mechanical bump shock absorber. It can be extended
to analyse biomechanical responses because it includes mea-
surements of acceleration, force, and moments at different
body positions.

VII. CONCLUSION

In this study, the mechanical bump shock absorber was
analysed to predict its energy absorption. Normally evaluated
with experimental tests or with finite element analysis, this
proposal uses an ANN. A nonlinear analysis using finite
element analysis has high computational requirements, and
the aim of this work is to develop an alternative way to
analyse the structural response and biomechanical behaviour
in different crash scenarios to reduce the social health
impact with permanent lesions or extensive and expensive
rehabilitation. Based on a literature review, crashworthiness
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(a)

(b)

(c)

(d)

Fig. 7: Simulation results of the bump shock absorber. (a) 0
ms, (b) 10 ms, (c) 15 ms and (d) 20 ms

analysis is necessary to develop regulations at low velocities
to include micro-mobility to reduce injuries. ANN can be
used to predict the most critical crash scenario for a specific
vehicle and can then be evaluated by FEA and experimental
tests. There are two ways to obtain the information to
train and validate the networks, from experimental tests or
from numerical simulations. Integrating an ANN to predict
nonlinear responses can be used to analyse different scenarios
one at the time. It reduces the time of analysis and can
improve the assessment. It is important to validate the results;
based on this fact, the prediction cannot be extrapolated
to other velocities or other component characteristics with
different stiffnesses. There are some factors that are not
included in the finite element analysis, such as toxicity in the
airbag. Therefore, it is necessary to develop mathematical
models that predict different scenarios to include external
factors in the ANN, such as age or some other specific
human characteristics. It is also necessary to establish not
only the signals as output but also generate directly the
injury assessment. Extensive network training is required to
accomplish this.
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