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Abstract—In this paper, we are concerned with oscillation
for a class of fractional differential equations with damping
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the equations are established. We also present one application
for the results established.
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I. Introduction

In the research of qualitative properties for differential
equations, research of existence, stability and oscillation has
gained much attention by many authors in the last few
decades [1-5]. Also some numerical methods have been
presented so far [6-10]. In [11-24], oscillation of solutions of
various differential equations and systems as well as dynamic
equations on time scales were researched, and a lot of new
oscillation criteria for these equations have been established
therein. In these investigations, we notice that relatively less
attention has been paid to the research of oscillation of
fractional differential equations.

In [25], Chen researched oscillation of the following
fractional differential equation:

[r(t)(Dαy(t))η]′−q(t)f(
∫∞
t

(v−t)−αy(v)dv) = 0, t > 0,

where r, q are positive-valued functions, η is the quotient
of two odd positive numbers, α ∈ (0, 1), Dαy(t) denotes
the Liouville right-sided fractional derivative of order α

of y, and Dαy(t) = − 1
Γ(1− α)

d
dt

∫∞
t

(ξ − t)−αy(ξ)dξ.
Then in [26], under similar conditions to [25], some
new oscillatory criteria are established for the following
fractional differential equation with damping term:

D1+αy(t)− p(t)Dαy(t) + q(t)f(
∫∞
t

(v− t)−αy(v)dv) =
0, t > 0,

In [27], Han et al. investigated oscillation of a class
of fractional differential equations as follows
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[r(t)g((Dαy)(t))]′−p(t)f(
∫∞
t

(s−t)−αy(s)ds) = 0, t >
0, α ∈ (0, 1).

For the research mentioned above, we note that the frac-
tional differential equations concerned are all defined in
Liouville right-sided fractional derivative.

In [28-30], the authors researched oscillation of several
classes of fractional differential equations as follows

Dα
ax+ f1(t, x) = v(t) + f2(t, x),

Dα
ax(t) + q(t)f(x(t)) = 0,

(D1+α
0+ y)t+ p(t)(Dα

0+y)t+ q(t)f(y(t)) = 0,

where the fractional derivative is defined by the Riemann-
Liouville derivative.

Recently, Khalil et al. proposed a new definition
for fractional derivative named conformable fractional
derivative [31]. The fractional derivative is defined as
follows

Dαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)
ε ,

and satisfies the following properties:

(i). Dα[af(t) + bg(t)] = aDαf(t) + bDαg(t).

(ii). Dα(tγ) = γtγ−α.

(iii). Dα[f(t)g(t)] = f(t)Dαg(t) + g(t)Dαf(t).

(iv). DαC = 0, where C is a constant.

(v). Dα
t f [g(t)] = f ′

g[g(t)]D
α
t g(t).

(vi). Dα
t (

f
g )(t) =

g(t)Dαf(t)− f(t)Dαg(t)
g2(t)

.

(vii). Dα
t f(t) = t1−αf ′(t).

Note that the properties above can be easily proved due
to the definition of the conformable fractional derivative.
Afterwards, many authors investigated various applications
of the conformable fractional derivative [32-37].

Motivated by the analysis above, in this paper, we are
concerned with oscillation of a class of fractional differential
equations with damping term as follows:
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Dα
t [r(t)(D

α
t x(t))

γ ] + p(t)(Dα
t x(t))

γ + q(t)x(t) = 0,

t ≥ t0 > 0, 0 < α < 1, (1)

where Dα
t (.) denotes the conformable fractional

derivative with respect to the variable t, the function
r ∈ Cα([t0,∞), R+), p, q ∈ C([t0,∞), R+), and Cα

denotes continuous derivative of order α, γ is the ratio of
two positive integers.

As usual, a solution x(t) of Eq. (1) is called oscillatory
if it has arbitrarily large zeros, otherwise it is called non-
oscillatory. Eq. (1) is called oscillatory if all its solutions are
oscillatory.

We organize the next of this paper as follows. In Section
2, we establish some new oscillatory criteria for Eq. (1).
In Section 3, we present some applications for them. Some
conclusions are presented at the end of this paper.

For the sake of convenience, in the next of this paper, we
denote ξ = 1

αtα, ξi = 1
αtαi , i = 0, 1, 2, 3, R+ = (0,∞),

r(t) = r̃(ξ), p(t) = p̃(ξ), q(t) = q̃(ξ), and A(ξ) =

exp(
∫ ξ

ξ0

p̃(τ)
r̃(τ)

dτ).

II. MAIN RESULTS

Lemma 1 [38, Theorem 41]. Assume that A and B are
nonnegative real numbers. Then

λXY λ−1 −Xλ ≤ (λ− 1)Y λ for all λ > 1.

Theorem 2. Let h1, h2, Ĥ ∈ C([ξ0,∞), R) satisfying
Ĥ(ξ, ξ) = 0, Ĥ(ξ, s) > 0, ξ > s ≥ ξ0, and H has
continuous partial derivatives Ĥ ′

ξ(ξ, s) and Ĥ ′
s(ξ, s) on

[ξ0,∞). Assume that∫ ∞

ξ0

1

[A(s)r̃(s)]
1
γ

ds = ∞, (2)

and for any sufficiently large T ≥ ξ0, there exist ϕ ∈
C1([t0,∞), R+) and φ ∈ C1([t0,∞), [0,∞)), and a, b, c
with T ≤ a < c < b satisfying

1

Ĥ(b, c)

∫ b

c

Ĥ(b, s){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

}ds

+
1

Ĥ(c, a)

∫ c

a

Ĥ(s, a){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

}ds

>
1

Ĥ(b, c)

∫ b

c

Ĥ(b, s){ 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

}

{(γ + 1)ϕ̃(s)φ̃
1
γ (s)

+ϕ̃′(s)[r̃(s)A(s)]
1
γ + ϕ̃(s)[r̃(s)A(s)]

1
γ Ĥ ′

s(b, s)}γ+1ds

+
1

Ĥ(c, a)

∫ c

a

Ĥ(s, a){ 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

}

{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

+ϕ̃(s)[r̃(s)A(s)]
1
γ Ĥ ′

s(s, a)}γ+1ds. (3)

where ϕ̃(ξ) = ϕ(t), φ̃(ξ) = φ(t). Then every solution of
Eq. (1) is oscillatory.

Proof . Assume (1) has a non-oscillatory solution x
on [t0,∞). Without loss of generality, we may assume
x(t) > 0 on [t1,∞), where t1 is sufficiently large. Let
x(t) = x̃(ξ). Then by use of the property (ii) we obtain
Dα

t ξ(t) = 1, and furthermore by use of the property (v), we
have

Dα
t r(t) = Dα

t r̃(ξ) = r̃′(ξ)Dα
t ξ(t) = r̃′(ξ), (4)

and

Dα
t x(t) = Dα

t x̃(ξ) = x̃′(ξ)Dα
t ξ(t) = x̃′(ξ). (5)

So Eq. (1) can be transformed into the following form:

[r̃(ξ)(x̃′(ξ))γ ]′+ p̃(ξ)(x̃′(ξ))γ+ q̃(ξ)x̃γ(ξ) = 0, ξ ≥ ξ0 > 0,
(6)

Since x(t) is a eventually positive solution of (1), then x̃(ξ)
is a eventually positive solution of Eq. (6), and there exists
ξ1 > ξ0 such that x̃(ξ) > 0 on [ξ1,∞). Furthermore, we
have

[A(ξ)r̃(ξ)(x̃′(ξ))γ ]′

= A(ξ)[r̃(ξ)(x̃′(ξ))γ ]′ +A(ξ)p̃(ξ)(x̃′(ξ))γ

≤ −KA(ξ)q̃(ξ)x̃γ(ξ) < 0, (7)

Then A(ξ)r̃(ξ)(x̃′(ξ))γ is strictly decreasing on [ξ1,∞), and
thus x̃′(ξ) is eventually of one sign. We claim x̃′(ξ) > 0
on [ξ2,∞), where ξ2 > ξ1 is sufficiently large. Otherwise,
assume there exists a sufficiently large ξ3 > ξ2 such that
x̃′(ξ) < 0 on [ξ3,∞). Then for ξ ∈ [ξ3,∞) we have

x̃(ξ)− x̃(ξ3) =

∫ ξ

ξ3

x̃′(s)ds

=

∫ ξ

ξ3

[A(s)r̃(s)]
1
γ x̃′(s)

[A(s)r̃(s)]
1
γ

ds

≤ [A(ξ3)r̃(ξ3)]
1
γ x̃′(ξ3)

∫ ξ

ξ3

1

[A(s)r̃(s)]
1
γ

ds.

By (2) we deduce that lim
ξ→∞

x̃(ξ) = −∞, which contradicts

to the fact that x̃(ξ) is a eventually positive solution of Eq.
(6). So it holds that x̃′(ξ) > 0 on [ξ2,∞).

Define the generalized Riccati transformation function:

ω(t) = ϕ̃(ξ){A(ξ)r̃(ξ)(x̃′(ξ))γ

x̃γ(ξ)
+ φ̃(ξ)}.

Let ω(t) = ω̃(ξ). Then Dα
t w(t) = w̃′(ξ), and Dα

t ϕ(t) =
ϕ̃′(ξ), Dα

t φ(t) = φ̃′(ξ). So for ξ ∈ [ξ2,∞), we have

ω̃′(ξ) = ϕ̃′(ξ)
A(ξ)r̃(ξ)(x̃′(ξ))γ

x̃γ(ξ)
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−ϕ̃(ξ)
γA(ξ)x̃γ−1(ξ)r̃(ξ)(x̃′(ξ))γ+1

x̃2γ(ξ)
+ ϕ̃(ξ)

[A(ξ)r̃(ξ)(x̃′(ξ))γ ]′

x̃γ(ξ)

+ϕ̃′(ξ)φ̃(ξ) + ϕ̃(ξ)φ̃′(ξ)

=
ϕ̃′(ξ)

ϕ̃(ξ)
ω(ξ)− γ

(ω(ξ)− ϕ̃(ξ)φ̃(ξ))
γ+1
γ

[A(ξ)ϕ̃(ξ)r̃(ξ)]
1
γ

+ϕ̃(ξ)
[A(ξ)[r̃(ξ)(x̃′(ξ))γ ]′ + r̃(ξ)(x̃′(ξ))γA′(ξ)]

x̃γ(ξ)
+ ϕ̃(ξ)φ̃′(ξ)

=
ϕ̃′(ξ)

ϕ̃(ξ)
ω(ξ)− γ

(ω(ξ)− ϕ̃(ξ)φ̃(ξ))
γ+1
γ

[A(ξ)ϕ̃(ξ)r̃(ξ)]
1
γ

+ϕ̃(ξ)
[A(ξ)[r̃(ξ)(x̃′(ξ))γ ]′ + r̃(ξ)(x̃′(ξ))γA′(ξ)Dα

t ξ]

x̃γ(ξ)

+ϕ̃(ξ)φ̃′(ξ)

=
ϕ̃′(ξ)

ϕ̃(ξ)
ω(ξ)− γ

(ω(ξ)− ϕ̃(ξ)φ̃(ξ))
γ+1
γ

[A(ξ)ϕ̃(ξ)r̃(ξ)]
1
γ

+ϕ̃(ξ)

[A(ξ)[r̃(ξ)(x̃′(ξ))γ ]′ + r̃(ξ)(x̃′(ξ))γA(ξ)
p̃(ξ)

r̃(ξ)
]

x̃γ(ξ)

+ϕ̃(ξ)φ̃′(ξ)

=
ϕ̃′(ξ)

ϕ̃(ξ)
ω(ξ)− γ

(ω(ξ)− ϕ̃(ξ)φ̃(ξ))
γ+1
γ

[A(ξ)ϕ̃(ξ)r̃(ξ)]
1
γ

+ϕ̃(ξ)
[A(ξ)[r̃(ξ)(x̃′(ξ))γ ]′ + p̃(ξ)(x̃′(ξ))γA(ξ)]

x̃γ(ξ)

+ϕ̃(ξ)φ̃′(ξ)

= −A(ξ)ϕ̃(ξ)q̃(ξ) + ϕ̃(ξ)φ̃′(ξ) +
ϕ̃′(ξ)

ϕ̃(ξ)
ω̃(ξ)

−γ
(ω̃(ξ)− ϕ̃(ξ)φ̃(ξ))

γ+1
γ

[A(ξ)ϕ̃(ξ)r̃(ξ)]
1
γ

, ξ ≥ ξ2. (8)

Using the inequality ([39, Eq. (2.17)]) we obtain that

[ω̃(ξ)− ϕ̃(ξ)φ̃(ξ)]1+
1
γ ≥

ω̃1+ 1
γ (ξ)+

1

γ
[ϕ̃(ξ)φ̃(ξ)]1+

1
γ −(1+

1

γ
)[ϕ̃(ξ)φ̃(ξ)]

1
γ ω̃(ξ). (9)

A combination of (8) and (9) yields:

ω̃′(ξ) ≤ −q̃(ξ)ϕ̃(ξ)A(ξ)

− γ

[ϕ̃(ξ)r̃(ξ)A(ξ)]
1
γ

{ω̃1+ 1
γ (ξ) +

1

γ
[ϕ̃(ξ)φ̃(ξ)]1+

1
γ

−(1 +
1

γ
)[ϕ̃(ξ)φ̃(ξ)]

1
γ ω̃(ξ)}+ ϕ̃′(ξ)

ϕ̃(ξ)
ω̃(ξ) + ϕ̃(ξ)φ̃(ξ)

= −q̃(ξ)ϕ̃(ξ)A(ξ) + ϕ̃(ξ)φ̃(ξ)− φ̃1+ 1
γ (ξ)ϕ̃(ξ)

[r̃(ξ)A(ξ)]
1
γ

− γ

[ϕ̃(ξ)r̃(ξ)A(ξ)]
1
γ

ω̃1+ 1
γ (ξ)+{ (γ + 1)φ̃

1
γ (ξ)

[r̃(ξ)A(ξ)]
1
γ

+
ϕ̃′(ξ)

ϕ̃(ξ)
}ω̃(ξ)

= −q̃(ξ)ϕ̃(ξ)A(ξ) + ϕ̃(ξ)φ̃(ξ)− φ̃1+ 1
γ (ξ)ϕ̃(ξ)

[r̃(ξ)A(ξ)]
1
γ

− γ

[ϕ̃(ξ)r̃(ξ)A(ξ)]
1
γ

ω̃1+ 1
γ (ξ)

+{ (γ + 1)ϕ̃(ξ)φ̃
1
γ (ξ) + ϕ̃′(ξ)[r̃(ξ)A(ξ)]

1
γ

ϕ̃(ξ)[r̃(ξ)A(ξ)]
1
γ

}ω̃(ξ). (10)

Select a, b, c arbitrarily in [ξ2,∞) with b > c > a.
Substituting ξ with s, multiplying both sides of (10) by
Ĥ(ξ, s) and integrating it with respect to s from c to ξ for
ξ ∈ [c, b), we get that∫ ξ

c

Ĥ(ξ, s){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

}ds

≤ −
∫ ξ

c

Ĥ(ξ, s)w̃′(s)ds

+

∫ ξ

c

Ĥ(ξ, s){− γ

[ϕ̃(s)r̃(s)A(s)]
1
γ

ω̃1+ 1
γ (s)

+{ (γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

ϕ̃(s)[r̃(s)A(s)]
1
γ

}ω̃(s)}ds

= Ĥ(ξ, c)w̃(c) +

∫ ξ

c

Ĥ(ξ, s){− γ

[ϕ̃(s)r̃(s)A(s)]
1
γ

ω̃1+ 1
γ (s)

+
1

ϕ̃(s)[r̃(s)A(s)]
1
γ

{(γ + 1)ϕ̃(s)φ̃
1
γ (s)

+ϕ̃′(s)[r̃(s)A(s)]
1
γ + ϕ̃(s)[r̃(s)A(s)]

1
γ Ĥ ′

s(ξ, s)}ω̃(s)}ds.
(11)

Setting

λ = 1 +
1

γ
, Xλ =

γ

[ϕ̃(s)r̃(s)A(s)]
1
γ

ω̃1+ 1
γ (s),

Y λ−1 =
γ

1
γ+1

(γ + 1)ϕ̃
γ

γ+1 (s)[r̃(s)A(s)]
1

γ(γ+1)

{(γ+1)ϕ̃(s)φ̃
1
γ (s)

+ϕ̃′(s)[r̃(s)A(s)]
1
γ + ϕ̃(s)[r̃(s)A(s)]

1
γ Ĥ ′

s(ξ, s)},

by a combination of Lemma 1 and (11) we get that∫ ξ

c

Ĥ(ξ, s){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

}ds

≤ Ĥ(ξ, c)w̃(c) +

∫ ξ

c

Ĥ(ξ, s)
1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

+ϕ̃(s)[r̃(s)A(s)]
1
γ Ĥ ′

s(ξ, s)}γ+1}ds. (12)
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Dividing both sides of the inequality (12) by Ĥ(ξ, c) and let
ξ → b−, we obtain

1

Ĥ(b, c)

∫ b

c

Ĥ(b, s){A(s)ϕ̃(s)q̃(s)−ϕ̃(s)φ̃′(s)+
φ̃

1+ 1
γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

}ds

≤ w̃(c) +
1

Ĥ(b, c)

∫ b

c

Ĥ(b, s)
1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

+ϕ̃(s)[r̃(s)A(s)]
1
γ Ĥ ′

s(b, s)}γ+1}ds. (13)

On the other hand, substituting ξ with s, multiplying both
sides of (12) by Ĥ(s, ξ) and integrating it with respect to s
from ξ to c for ξ ∈ (a, c], similar to (11)-(12) we get that∫ c

ξ

Ĥ(s, ξ){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

}ds

≤ −Ĥ(c, ξ)w̃(c)+

∫ c

ξ

Ĥ(s, ξ)
1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

+ϕ̃(s)[r̃(s)A(s)]
1
γ Ĥ ′

s(s, ξ)}γ+1}ds. (14)

Dividing both sides of the inequality (14) by Ĥ(c, ξ) and
letting ξ → a+, we obtain

1

Ĥ(c, a)

∫ c

a

Ĥ(s, a){A(s)ϕ̃(s)q̃(s)−ϕ̃(s)φ̃′(s)+
φ̃

1+ 1
γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

}ds

≤ −w̃(c)+
1

Ĥ(c, a)

∫ c

a

Ĥ(s, a)
1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

+ϕ̃(s)[r̃(s)A(s)]
1
γ Ĥ ′

s(s, a)}γ+1}ds. (15)

A combination of (13) and (15) yields

1

Ĥ(b, c)

∫ b

c

Ĥ(b, s){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

}ds

+
1

Ĥ(c, a)

∫ c

a

Ĥ(s, a){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

}ds

≤ 1

Ĥ(b, c)

∫ b

c

Ĥ(b, s)
1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

+ϕ̃(s)[r̃(s)A(s)]
1
γ Ĥ ′

s(b, s)}γ+1}ds

+
1

Ĥ(c, a)

∫ c

a

Ĥ(s, a)
1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

+ϕ̃(s)[r̃(s)A(s)]
1
γ Ĥ ′

s(s, a)}γ+1}ds. (16)

which contradicts to (3). So the proof is complete.

Theorem 3. If (2) holds, and for any sufficiently large
l ≥ ξ0,

lim
ξ→∞

sup

∫ ξ

l

Ĥ(s, l){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
φ̃

1+ 1
γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

− 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{(γ + 1)ϕ̃(s)φ̃
1
γ (s)

+ϕ̃′(s)[r̃(s)A(s)]
1
γ + ϕ̃(s)[r̃(s)A(s)]

1
γ Ĥ ′

s(s, l)}γ+1}ds > 0,
(17)

and

lim
ξ→∞

sup

∫ ξ

l

Ĥ(ξ, s){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)+
φ̃

1+ 1
γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

− 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{(γ + 1)ϕ̃(s)φ̃
1
γ (s)

+ϕ̃′(s)[r̃(s)A(s)]
1
γ +ϕ̃(s)[r̃(s)A(s)]

1
γ Ĥ ′

s(ξ, s)}γ+1}ds > 0,
(18)

then Eq. (1) is oscillatory.

Proof: For any sufficiently large T ≥ ξ0, let a = T .
In (17) we choose l = a. Then there exists c > a such that∫ c

a

Ĥ(s, a){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

− 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

+ϕ̃(s)[r̃(s)A(s)]
1
γ Ĥ ′

s(s, a)}γ+1}ds > 0. (19)

In (18) we choose l = c > a. Then there exists b > c such
that∫ b

c

Ĥ(b, s){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

− 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{(γ + 1)ϕ̃(s)φ̃
1
γ (s)

+ϕ̃′(s)[r̃(s)A(s)]
1
γ +ϕ̃(s)[r̃(s)A(s)]

1
γ Ĥ ′

s(b, s)}γ+1}ds > 0.
(20)
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Combining (19) and (20) we obtain (3). So according to
Theorem 2, Eq. (1) is oscillatory.

In Theorems 2-3, if we choose Ĥ(ξ, s) = (ξ − s)λ, ξ ≥
s ≥ ξ0, where λ > 1 is a constant, then we obtain the
following two corollaries.

Corollary 4. Under the conditions of Theorem 2, if
for any sufficiently large T ≥ ξ0, there exist a, b, c with
T ≤ a < c < b satisfying

1

(c− a)λ

∫ c

a

(s− a)λ{A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

}ds

+
1

(b− c)λ

∫ b

c

(b− s)λ{A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)

+
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

}ds

>
1

(c− a)λ

∫ c

a

(s− a)λ{ 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

}

{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

+λ(s− a)λ−1ϕ̃(s)[r̃(s)A(s)]
1
γ }γ+1ds

+
1

(b− c)λ

∫ b

c

(b− s)λ{ 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

}

{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

−λ(b− s)λ−1ϕ̃(s)[r̃(s)A(s)]
1
γ }γ+1ds, (21)

then Eq. (1) is oscillatory.

Corollary 5. Under the conditions of Theorem 3, if
for any any sufficiently large l ≥ ξ0,

lim
ξ→∞

sup

∫ ξ

l

(s− l)λ{A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)+
φ̃

1+ 1
γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

− 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{(γ + 1)ϕ̃(s)φ̃
1
γ (s)+

ϕ̃′(s)[r̃(s)A(s)]
1
γ +λ(s−l)λ−1ϕ̃(s)[r̃(s)A(s)]

1
γ }γ+1}ds > 0

(22)
and

lim
ξ→∞

sup

∫ ξ

l

(ξ−s)λ{A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)+
φ̃

1+ 1
γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

− 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{(γ + 1)ϕ̃(s)φ̃
1
γ (s)+

ϕ̃′(s)[r̃(s)A(s)]
1
γ − λ(ξ − s)λ−1ϕ̃(s)[r̃(s)A(s)]

1
γ }γ+1}ds > 0,

(23)

then Eq. (1) is oscillatory.

Theorem 6. Under the conditions of Theorem 2, furthermore,
suppose (2) does not hold. If for any T ≥ ξ0, there exist
a, b with b > a ≥ T such that for any u ∈ C[a, b],
u′(t) ∈ L2[a, b], u(a) = u(b) = 0, the following inequality
holds:∫ b

a

u2(s){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

− 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{(γ + 1)ϕ̃(s)φ̃
1
γ (s)+

ϕ̃′(s)[r̃(s)A(s)]
1
γ + 2u(s)u′(s)ϕ̃(s)[r̃(s)A(s)]

1
γ }γ+1}ds > 0,

(24)

where ϕ̃, φ̃ are defined as in Theorem 2, then Eq. (1) is
oscillatory.

Proof: Assume (1) has a non-oscillatory solution x on
[t0,∞). Without loss of generality, we may assume
x(t) > 0 on [t1,∞), where t1 is sufficiently large. Let
x(t) = x̃(ξ), and ω(t), ω̃(ξ) be defined as in Theorem
2. Then similar to the proof of Theorem 2, it holds that
x̃′(ξ) > 0 on [ξ2,∞), where ξ2 is sufficiently large, and
we can obtain (10). Select a, b arbitrarily in [ξ2,∞) with
b > a such that u(a) = u(b) = 0. Substituting ξ with s,
multiplying both sides of (10) by u2(s), integrating it with
respect to s from a to b, we get that∫ b

a

u2(s)[A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

]ds

≤ −
∫ b

a

u2(s)w̃′(s)ds+

∫ b

a

u2(s){− γ

[ϕ̃(s)r̃(s)A(s)]
1
γ

ω̃
1+ 1

γ (s)

+{ (γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

ϕ̃(s)[r̃(s)A(s)]
1
γ

}ω̃(s)}ds

=

∫ b

a

u2(s){− γ

[ϕ̃(s)r̃(s)A(s)]
1
γ

ω̃1+ 1
γ (s)

+
1

ϕ̃(s)[r̃(s)A(s)]
1
γ

{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

+2u(s)u′(s)ϕ̃(s)[r̃(s)A(s)]
1
γ }ω̃(s)}ds. (25)

Setting

λ = 1 +
1

γ
, Xλ =

γ

[ϕ̃(s)r̃(s)A(s)]
1
γ

ω̃1+ 1
γ (s),

Y λ−1 =
γ

1
γ+1

(γ + 1)ϕ̃
γ

γ+1 (s)[r̃(s)A(s)]
1

γ(γ+1)

{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

+2u(s)u′(s)ϕ̃(s)[r̃(s)A(s)]
1
γ },
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by a combination of Lemma 1 and (25) we get that∫ b

a

u2(s){A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s) +
φ̃1+ 1

γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

}ds

≤
∫ ξ

c

u2(s){ 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

}

{(γ + 1)ϕ̃(s)φ̃
1
γ (s) + ϕ̃′(s)[r̃(s)A(s)]

1
γ

+2u(s)u′(s)ϕ̃(s)[r̃(s)A(s)]
1
γ }γ+1ds. (26)

which contradicts to (24). So every solution of Eq. (1) is
oscillatory, and the proof is complete.

III. APPLICATIONS

Consider the following fractional differential equation with
damping term:

Dα
t [(D

α
t x(t))

1
3 ] + t

2
3Dα

t x(t) +
t2α

α2 x
1
3 (t) = 0,

t ≥ 5, 0 < α < 1. (27)

In Eq. (1), if we set t0 = 5, γ = 1
3 , r(t) ≡

1, p(t) = t
2
3 , q(t) = t2α

α2 , then we obtain (27). So

r̃(ξ) ≡ 1, q̃(ξ) = q(t) = t2α

α2 = ξ2. Furthermore, since

A(ξ) = exp(
∫ ξ

ξ0

p̃(τ)
r̃(τ)

dτ) ≥ 1, so in (22)-(23), after letting

ϕ̃(ξ) ≡ 1, φ̃(ξ) = 0, λ = 2, considering q̃(s) ≡ 1, for any
sufficiently large l we obtain

lim
ξ→∞

sup

∫ ξ

l

(s− l)λ{A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)+
φ̃

1+ 1
γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

− 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{(γ + 1)ϕ̃(s)φ̃
1
γ (s)

+ϕ̃′(s)[r̃(s)A(s)]
1
γ + λ(s− l)λ−1ϕ̃(s)[r̃(s)A(s)]

1
γ }γ+1}ds

= lim
ξ→∞

sup

∫ ξ

l

A(s)(s− l)2
[
s2 − (

3

2
)

4
3 (s− l)

4
3

]
ds

≥ lim
ξ→∞

sup

∫ ξ

l

(s− l)2
[
s2 − (

3

2
)

4
3 (s− l)

4
3

]
ds = ∞

and

lim
ξ→∞

sup

∫ ξ

l

(ξ−s)λ{A(s)ϕ̃(s)q̃(s)− ϕ̃(s)φ̃′(s)+
φ̃

1+ 1
γ (s)ϕ̃(s)

[r̃(s)A(s)]
1
γ

− 1

(γ + 1)γ+1ϕ̃γ(s)[r̃(s)A(s)]
1
γ

{(γ + 1)ϕ̃(s)φ̃
1
γ (s)

+ϕ̃′(s)[r̃(s)A(s)]
1
γ − λ(ξ − s)λ−1ϕ̃(s)[r̃(s)A(s)]

1
γ }γ+1}ds

= lim
ξ→∞

sup

∫ ξ

l

A(s)(ξ − s)2
[
s2 − (

3

2
)

4
3 (ξ − s)

4
3

]
ds

≥ lim
ξ→∞

sup

∫ ξ

l

(ξ − s)2
[
s2 − (

3

2
)

4
3 (ξ − s)

4
3

]
ds = ∞.

So according to Corollary 5 we deduce that Eq. (27) is
oscillatory.

IV. CONCLUSIONS

We have investigated oscillation for a class of fractional
differential equations with damping term, where the frac-
tional derivative is defined in the sense of the conformable
fractional derivative derivative. Some new oscillatory criteria
were presented. The validation of the main results have been
verified by one application.
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