
 

  

Abstract—The behavior of warping torsion of thin-walled 

members of open and closed cross sections is studied using the 

classical theories presented by Timoshenko and Benscoter. 

Based on their studies, the axial shear displacement modes and 

torsional warping functions are determined. In addition, the 

warping behavior of thin-walled sections of a bar with a non-

uniform warping including the effects of torsion and shear 

forces using the governing equation for torsion are considered 

for different section types. Warping is extensively applied to 

different types of thin-walled steel cross section subjected to 

concentrated torsional loading, and to the most general 

torsional boundary conditions, by considering both torsional 

warping and shear deformation effects (primary shear 

deformation due to Saint-Venant torsion and secondary shear 

deformation due to restrained torsion). Warping functions 

indicate the non-plane warping deformations of thin-walled 

cross sections and sections with warping functions can warp, 

and normal stresses and strains from torsion (bi-moment) are 

proportional to the sectorial coordinate diagrams. Finally, the 

effects of warping on the open and closed thin-walled beams 

with restrained torsion are investigated, and it is shown that 

torsional warping is included as exceptional cases of 

deformations. 

 
Index Terms— thin-walled sections, warping, torsion 

restrained, open and closed section, resultant shear 

 

I. INTRODUCTION 

HIN -walled beams are structural elements with three 

characteristic dimensions of different orders of 

magnitude: the thickness is small when compared to the 

dimensions of the cross-section, which in turn are small 

when compared to the beam length[1]. Thin-walled member 

with open and closed cross sections have been extensively 

used in a variety of structures that require high strength-to-

weight, stiffness-to-weight ratios and as its one dimension 

much larger than the other two dimensions commonly 

referred to as cross-sectional dimensions. If a very thin 

column is designed then it will likely fail because of 

premature local buckling [2].   
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 The behavior of warping of open and closed thin-

walled cross-sections was reported in [2],[3] with the 

assumption that the in-plane deformations of the section are 

negligible, the shear strain of the middle surface was 

neglected, and the shear deformation cannot be considered. 

The analysis of shear stiffness, warping constant, shear 

center and restrained warping, must be considered 

separately for open and closed sections. In addition to obtain 

these expressions, we must consider the shear flow caused 

by the shear force [4].  The torsion of a bar leads to two 

types of shear stress. If the shear stresses are in equilibrium 

without axial stress, the torsion is called uniform (St. Venant 

torsion) which leads to axial displacements that are called 

warping of the section [5]. The normal stresses due to 

warping restraint are derived from the strains that are caused 

by the warping restraint [4]. The shear stresses due to 

warping restraint are determined with the equilibrium 

equations [6]. For arbitrary profiles, loading cases and 

boundary conditions, the De Saint Venant torsional theory is 

not acceptable since the axial stresses are neglected [7-9]. If 

the axial displacements are restrained, torsion leads to 

longitudinal stresses which vary over the length of the bar. 

Equilibrium in the bar under the longitudinal stresses 

requires additional shear stresses, which cause additional 

torsional moments of the axis of rotation. Torsion that 

causes significant longitudinal stresses is called nonuniform 

torsion [7][6][10]-[13]. In both cases, it will be shown that 

the support conditions, the shape of the section and the load 

distribution must be considered.  

Extensive research exists on the study of non-uniform 

torsion with or without consideration of warping effects for 

both open and closed thin-walled sections [13]-[19].  Most 

of the studies were performed with full consideration of 

open thin-walled beam sections. There are much more 

factors resisting torsion in closed thin-walled beam than in 

open thin-walled beam subjected to torsional load, and the 

torsion analysis of closed thin-walled beam become more 

elaborate, because the problem is statically indeterminate 

[20]. The analysis of uniform and nonuniform torsion shows 

that the warping behaviour of bars depends on the shape of 

their thin-walled sections. Due to numerical efficiency 

considerations, in many analyses, the  warping  components 

are  modelled  using  a complete  set  of  pre-defined 

warping shape functions [21]. Prismatic bars whose section 

is a full circle, a circular tube, a square tube, or a thin-walled 

section with a single interior vertex (for example an angle, a 

tee or a cross) do not warp. If the displacement of bars with 

such sections is restrained in the axial direction, their 

uniform torsional behaviour is not affected.  Methods for 

analysis of open and closed cross-sections are generalized to 

include distortional displacement modes [22]. 
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In this paper, the warping behavior of thin-walled sections 

of a bar with restrained torsion using the governing equation 

for homogeneous cross-section made of isotropic elastic 

material subjected to torsion is studied, and the examples are 

focused on open and closed sections of thin-walled 

structures. The study presented in this paper is extensively 

applied to different types of thin-walled steel cross section 

subjected to concentrated torsional loading and to the most 

general torsional boundary conditions. Warping functions 

indicate the non-plane warping deformations of thin-walled 

cross sections and sections with warping functions can warp, 

and normal stresses and strains from torsion (bimoment) are 

proportional to the sectorial coordinate diagrams.  

II. THEORETICAL BASIC CONCEPTS 

The torsion of bars with general sections, particularly 

thin-walled open sections, is associated with warping. As an 

example, as shown in Fig. 1, he displacements of an I-beam 

which is fork-supported and loaded with a twisting moment. 

The axis of the flanges displaces laterally because of the 

rotation of the sections about the axis of the bar. In addition, 

there is a warping displacement in the longitudinal direction 

that varies linearly over the width of the flanges. The 

warping is constant over the length of the beam. The upper 

and lower flanges displace in opposite directions. 

If the warping of a bar is restrained, the longitudinal 

displacement 1v is no longer independent of the axial 

coordinate 1y and the longitudinal strain is not null. The 

stresses 11 affect both the displacements of the bar and its 

general state of stress, as a result it belongs to nonuniform 

torsion. The difference between the displacements and 

stresses due to uniform and nonuniform torsion is most 

pronounced for thin-walled sections. The governing 

equation for nonuniform torsion is therefore derived for bars 

with thin-walled sections, whose description is treated in 

Fig. 1. The local coordinate systems 1 2 3, ,z z z that have been 

introduced for the walls in Fig. 2 are also used in this 

section. The displacement coordinates 1 2 3, ,w w w and all 

stress coordinates are referred to the local coordinate 

system. 

    Consider the wall in the section as depicted in Fig. 2 

whose axis 2z makes an angle  with axis 2y of the section. 

If section 1y a= of the bar is twisted about the centre of 

rotation R, the axis of the wall is rotated so that it makes 

angles 1 2 3, and   with axes 1 2,z z and 3.z  Let the angle 

of rotation of the section at 1y a= about the center of 

rotation R be M as shown in fig. 2  

The total displacement of the wall due to the twisting of 

the bar about the center of rotation R is decomposed into a 

rigid body motion and a twisting deformation. The rigid 

body motion rotates the axis of the wall from AM 

to ˆ ,AM but does not rotate the rectangle about axis 1.z The 

rigid body displacement of a point 1 2 3: ( , , )P z z z= in 

section 1z equals the rigid body displacement of the 

midpoint of the rectangle at the section: z 

The displacement of point P due to the twisting of the wall 

about axis ˆAM is given by the theory of uniform torsion:  
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Fig. 1.  Warping displacement and rotation displacement of an I-beam 
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Fig. 3.  The wall segment in a section with rigid body displacement  
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Fig. 2. local coordinate systems 1 2 3, ,z z z of wall segment in a 

section 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Engineering Letters, 30:1, EL_30_1_42

Volume 30, Issue 1: March 2022

 
______________________________________________________________________________________ 



 

V - warping function for uniform torsion of the wall (St. 

Venant). 

The warping function 2 3( , )V z z for uniform torsion of the 

wall is given by: 

2 3 2 3( , ) (5)V z z z z = −  

It can be shown that the warping of the wall due to 

twisting about axis 1z can be neglected relative to the 

warping due to rigid body motion. Consider the flange of an 

I-beam with height h, flange width b and flange thickness t. 

The maximum warping due to rotation about the midpoint of 

the flange follows from expressions  (2) and (5): 

1

1

14
V

dbt
w

dy


= −  

The warping due to the rigid body motion follows from 

expression (1): 

1 1

1 2 3 3 2

1 1

( )
2 2

R R R

d db h t
w z z z z

dy dy

 − 
= − + = −  

 
 

The ratio of the warping due to twisting and the total 

warping of the flange is thus: 

1

1 1

V

F

V R

w t
r

w w h
= =

+
 

For typical structural sections, the ratio Fr lies in the 

range from 0.02 to 0.05. The warping 1Vw  will therefore be 

neglected. It will be assumed that the total warping of the 

wall is caused by the rigid body motion of the wall. The 

warping displacement is determined from the condition that 

the rigid body motion does not cause shear strain: 

1 2

12
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The displacement 2w at section 1y defined as follow: 

2 3 1Rw z =  

The above expression is substituted into equation (6). The 

warping function of the section for twisting of the bar about 

axis 1y passing through the centre of rotation R is called 

R and is determined with the definition of equation (2): 
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The warping function R is set to null at an arbitrary 

vertex. Equation (7) is integrated for each wall of the bar 

as:  

0.5

( ) 3 ( ) 2

0.5

, (8)
i

i

b

R i R i

b

z dz
−

=   

where ( )R i  - contribution of wall I to the warping of the 

section 

3 ( )R iz  - coordinate 3z of the centre of rotation R in the 

coordinate system of wall i. 

The integral in expression (10) equals the area of rectangle 

ABCD in Fig. 4. Its value is determined with the cross 

product of vectors AB and AR: 

2 2 2 2

3 3 3 3

2 2 3 3 2 2 3 3( ) ( ) ( ) ( )

B A R A

B A R A

Ri

B A R A R A B A

y y y y
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The section is traversed in the direction of the walls, 

starting at vertex 0. When vertex k is reached, the 

value ( )R k of the warping function at vertex k is already 

known. The value of the warping function at the end 

vertex of each wall i leaving node k is determined by 

adding ( )R i to ( ) .R k  

Once the value of the warping function R is known at the 

vertices of the section, the warping displacement of the 

vertices can be computed with:  

1

1( ) ( )

1

, (9)k R k

d
w

dy


= −  

where 1( )  -kw warping displacement at node k, 

R(k) - warping function at node k.  

It follows from equation (7) that the warping varies 

linearly between the vertices of the section. For uniform 

torsion, the twisting rate 1 1/d dy is constant over the length 
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Fig. 4.  The contribution of a wall AB to the warping function ( R ) 
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of the bar. The warping displacement in equation (9) is 

therefore constant over the length of a bar that is subject to 

uniform torsion. 

III. LONGITUDINAL STRESS, SHEAR STRESS AND SHEAR 

FLOW 

It is assumed that the distribution of the warping 

displacement 1w for nonuniform torsion over the section is 

the same as that for uniform torsion in expression:  

1 1

1 1 2 3 2 3

1

( )
( , , ) ( , ) , (10)

d z
w z z z z z

dz


= −

where 2 3( , )z z - warping function for uniformed torsion. 

The longitudinal stress 11( ) due the displacement of 

equation (10) is derived from the strain and is the 

longitudinal stress due to nonuniform torsion is given as: 
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11( ) 11 ( ) 2

1 1

,
w d

E E E
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 
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
= = = −


 

Generally,  it is assumed that the shear stress 13 is 

negligible compared to the shear stress 12 . The shear 

stress 12( ) that is associated with the longitudinal stress 

11( ) is determined with the equilibrium equation for 

direction 1 :z  

11( ) 12( )

1 2

0 (11)
z z

   
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Substitution of (14) into (15) yields the derivative of the 

shear flow as: 
3
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The increment
2( )zF of the shear flow from the start vertex 

of wall i to point 2z on the axis of wall i is determined by 

integration of (12): 
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The following Expression shows that the warping 

function  is a linear function of 2 :z  
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This expression (14) is substituted into (13). The integration 

yields: 

2
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The increment of the static moment of the warping 

function is obtained for 2 0.5 :iz b=  

( ) ( , ) ( , )

1
( ),

2
i i i i e i sS b t= +    

where 
( )  iS

- increment of static moment of the warping 

function in wall i. 

The increments of the static moment of warping function 

in the wall are computed for all walls of the section. The 

shear flows in the walls will be determined so that the shear 

flows at each vertex are in equilibrium. Since the factor 

relating the shear flow to the static moment is the same for 

all walls of the section, the computations depend only on the 

properties of the section and not on the loading or supports 

of the bar. Open thin-walled beams are much used in civil, 

mechanical, and aerospace engineering and their cross-

sections may be an open plane arc (middle line) with 

regularly varying thickness, ‘small’ with respect to its length 

[23]. Therefore, the warping function is qualitatively 

described by a function given beforehand, and the most 

frequently used is Saint-Venant’s function of free-warping 

for beams with closed cross- sections [8].  

IV. NUMERICAL EXAMPLES FOR DIFFERENT OPEN AND 

CLOSED SECTION TYPES 

In this section, examples are given to illustrate the 

warping behaviour of open and closed thin-walled sections. 

The first examples illustrate open sections and the second is 

about closed section. Considering an open thin-walled 

section, the torsion constant, and the warping function of the 

I-beam are given in Fig. 5. 

Example 1:  For uniform and nonuniform torsion of an I-

beam about its centroid 

 

The walls and vertices of the section are numbered as 

depicted in Fig.5. The torsion constant is given below: 

3 3 3 3 31 1
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J t ht t f t h t= + + = +  

 

The contributions of the walls to the warping function are 

given as follow: 
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Fig. 5.  The walls, vertices, and warping behavior of an I-beam 
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3
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3 : 0 0 0
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The warping function is set to null at vertex 1. Since the 

direction from vertex 1 to vertex 0 is opposite to that of wall 

1, the value of the warping function at vertex 0 is:   

0 ( 0.25 ) 0.25 .f h f h− − = similarly,  

The value at vertex 2 is:      0 ( 0.25 ) 0.25 .f h f h+ − = −  

The value at vertex 3 is:     0 0 0.+ =  

The value at vertex 4 is:     0 ( 0.25 ) 0.25 .f h f h+ − = −  

The value at vertex 5 is:     0 0.25 0.25 .f h f h+ =  

For the above expressions, the warping function 

distribution within the section is shown in Fig. 5 and it is 

checked using Shape-thin software for all parameters, which 

are, warping function, static moments, and warping omega 

as it is shown in the figure below. The warping functions 

about the shear center M are geometrical quantities and they 

are required to determine the longitudinal stress and shear 

stress stresses caused by warping restraint, and the warping 

statical moment is determined from the normalized warping 

functions.It is commonly known that the statical moments 

(1st moments of area) are registered with reference to the 

global axes or the principal axes of the section. The statical 

moment is defined as the product of dA and the distance 

from its centroid to a reference axis that lies in the plane of 

the section. 

 

                
          along y2 axis                                      along y3 axis 

 
Fig. 6.  The static moments along y2 and y3 axes of an I section. 

Example 2:  For uniform and nonuniform torsion of sections 

with one interior vertex. 

Referring Fig. 7, it shows thin-walled sections with 

different numbers of walls that have only one interior 

vertex, where the walls meet. The interior vertex is the shear 

centre of the section. The shear centre is also the centre of 

rotation R. The warping functions for sections with a single 

internal vertex define as the plane is not warping cross 

section deformations. Thin-walled beams, which are formed 

by sections with exactly one interior vertex as shown in 

Fig.6, remain plane, do not warp,  and do not have normal 

stresses under torsion[2]. The contributions of the walls to 

the warping functions of the sections are given by as 

follows: 
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Fig. 7.  Thin-walled Sections with a single interior vertex 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 

 

TABLE I 
THE WARPING FUNCTION DISTRIBUTION OF AN I-SECTION 

ALONG Y2 AND Y3 AXES 

            I-SECTION DIMENSIONS 

 

 

   
h(mm) 400 

f(mm) 180 

tf(mm) 11 

tw(mm) 8 

 

 
  

      ALONG Y2 AXIS                                        ALONG Y3 AXIS 
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In closed single or multi-celled closed cross-sections to 

attain the characteristic distribution of the warping 

displacement, it is needed to introduce circulation shear 

force flows around the cells. In closed sections the 

longitudinal deformations are depends on both normal, shear 

stresses and warping function.  Fig. 8 shows the dimensions 

of the section of a thin-walled rectangular tube. The 

value 1C of the stress function on the boundary of the cell, 

the shear stresses, the torsion constant, and the warping of 

the section are to be determined. The local coordinate 

systems of the walls are shown in Fig. 8: 

Example 3:  Single Cell Thin-Walled Rectangular Section. 

The walls of the cell are numbered in the sequence AB, 

BC, CD, DA. The integral is evaluated as follows:  

1 1 1 1
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The contributions of the four walls of the section to the 

torsion constant for the torsion constant are: 
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Substitution of these contributions and (16) into the torsion 

constant yields: 
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The shear stress in the walls is determined as follows:  

12 1

12 1

1 3 :
2

2 4 :
2

T T

C

f f

T T

C

w w

M M
walls and

J t f h t

M M
walls and

J t f h t

 

 

= =

= =

 

The contributions of the walls to the warping function are 

given with the following expressions: 
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The warping function is set to 0− at vertex A in Fig. 8. 

The warping function at the other vertices is computed by 

means of the increments: 
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The results show that the closed line integral of the warping 

function over the cell boundary is null, so that the warping is 

single valued. The variation of the warping function over the 

section is shown in Fig. 9.  
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Fig. 9.   Warping function for a single cell of rectangular section. 
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Fig.8.  Local walls coordinate systems for a rectangular cell 

 

 

Fig. 9.   Warping function for the section in Fig. 7 
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Similarly, for closed sections (rectangular hollow section), 

the warping function distribution within the section is shown 

in Fig. 9, and it checked using Shape-thin software for all 

parameters which are: warping function, static moments, 

and warping omega, as it is shown in the tables II and fig. 

10. 

The warping functions about the shear center M are 

geometrical quantities, and they are required to determine 

the longitudinal stress and shear stress stresses caused by 

warping restraint, and the warping statical moment is 

determined from the normalized warping functions. It is 

commonly known that the statical moments (1st moments of 

area) are registered with reference to the global axes or the 

principal axes of the section. The statical moment is defined 

as the product of dA and the distance from its centroid to a 

reference axis that lies in the plane of the section. The static 

moments along y2 and y3 are shown below. 

 

Example 4:  Thin-Walled Rectangular Section with Three 

Cells 

Fig. 11 shows the dimensions of the section of a thin-

walled rectangular bar with 3 cells. The 

values 1 2 3,C C Cand   of the stress function on the 

boundaries of the cells and the torsion constant are to be 

determined. The local coordinate systems for the walls of 

each of the three cells are defined as shown in Fig. 11. 

 

Using the contribution of the wall of the cell and applying it 

for the evaluation of each of the three cells, a system of 

three linear equations for the unknown cell stress 

functions C i can be written in matrix form as: 
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Generally, these equations are solved numerically. Consider 

the special case of a section with 

dimensions h f= and .f wt t t= = The solution of equation 

(17) becomes 1 3 5 / 7t f = = and 2 6 / 7.t f =  

The torsion constant J is determined based on the 

contribution of cells of the thin-walled section. The walls of 

the cells make the following contributions to this 

expression: 

1 1

2 2

3 3

3
1: ( ) 2
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The contributions of the cells are added to provide the 

torsion constant of the section: 

1 2 32 ( )C C CJ f h   = + +  

For the special case of a section with 

dimensions h f= and ,f wt t t= = the vales of the stress 

function are substituted as: 

35 6 5 32
2 ( )

7 7 7 7

t f t f t f
J f h t f= + + =  

The values of the stress function on the cell boundaries and 

of the torsion constant can also be compared to the 

corresponding values 1C  and J for a rectangular tube with 

dimensions 3 f f and wall thickness t, but without the 

inner walls (single cell). The stress function and the torsion 

constant are computed as follows: 

TABLE II 
THE WARPING FUNCTION DISTRIBUTION OF A RECTANGULAR SECTION 

ALONG Y2 AND Y3 AXES 

        I-SECTION DIMENSIONS 

 

                  
ALONG Y2 AXIS                                       

 

h(mm) 400 

f(mm) 180 

tf(mm) 11 

tw(mm) 8 

 

 

        ALONG Y3 AXIS 

 

 

 

       
 

 
Fig. 10.   The static moments along y2 and y3 axes of a rectangular 

section 
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The ratio of the torsion constants for sections with and 

without inner walls is 64/63 = 1.0159. The influence of the 

inner walls on the torsional rigidity of the bar is negligible. 

The shear stress in the outer wall of the middle cell in Fig. 

10 is determined with the following expression: 

12 3 2

7 6 3
( )

7 1632

T T T

i i

i

M M M
t f

J t t f t f t
  + −= − = =  

The corresponding value for the bar without walls is: 

12 3 2

2 3 1
( )

4 69

T T T

i i

i

M M M
t f

J t t f t f t
  + −= − = =  

The ratio of the maximum shear stresses in the sections with 

and without inner walls is 18/16 =1.125.  The section with 

the inner walls has higher shear stresses in the outer walls of 

the middle cell compared to the section without inner walls.    

V. CONCLUSION 

The behavior of warping torsion of thin-walled members 

with open and closed cross sections were considered using 

the first-order torsion theory, as the difference between the 

displacements and stresses due to uniform and nonuniform 

torsion is most pronounced for thin-walled sections. 

Numerical examples were shown to demonstrate the 

behaviour of the warping torsion of the open and closed 

thin-walled sections. The analysis of uniform and 

nonuniform torsion showed that the warping behaviour of 

bars depends on the shape of their thin-walled sections. 

Prismatic bars whose section is a full circle, a circular tube, 

a square tube, or a thin-walled section with a single interior 

vertex (for example an angle, a tee or a cross) do not warp. 

For the use of single- or multi-celled closed cross-sections to 

attain the characteristic distribution of the warping 

displacement, it is needed to introduce circulation shear 

force flows around the cells, and the longitudinal 

deformations are dependent on both normal, shear stresses 

and warping functions. The warping function distribution 

within the section for open and closed sections were 

checked using Shape-thin software for all parameters, which 

are: warping function, static moments and warping omega, 

and the results were similar. The warping function about the 

shear centre M are geometrical quantities and they are 

required to determine the longitudinal stress and shear 

stresses caused by warping restraint, and the warping statical 

moment is determined from the normalized warping 

functions. 
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