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Abstract—This paper is concerned with the absolute stability
of a class of singularly perturbed Lur’e systems with an
interval time-varying delay and sector-bounded nonlinearity.
By constructing a Lyapunov-Krasovskii functional (LKF), the
absolute stability criteria are proposed in terms of linear matrix
inequalities (LMIs). One numerical example is presented to
show the effectiveness of the result.

Index Terms—singularly perturbed Lur’e systems, absolute
stability, time-varying delay, sector-bounded nonlinearity.

I. INTRODUCTION

In many engineering systems, state variables of two differ-
ent time scales exist in the meantime, which leads to the curse
of dimensionality, computational complexity and stiffness[1].
One common method to deal with the two-time-scale char-
acteristic is modeling these systems as singularly perturbed
forms, which are called singularly perturbed systems (SPSs)
[2], [3]. The original singularly perturbed systems can be
analyzed and controlled based on the decomposition of the
original system into slow and fast subsystems, such that the
computational complexities for the analysis and design of
singularly perturbed systems are reduced. The wind energy
conversion systems are modeled as singularly perturbed
systems and robust control algorithms are proposed in [4].
Singular perturbation method is applied to analyze the fully-
constrained parallel cable robots with elastic cables in [5] and
a composite controller consisting of two main components
is developed. Singular perturbation formulation of quad rotor
unmanned aerial vehicles is developed in [6] and a dual-loop
control system scheme has been proposed in the presence of
wind disturbances. During the past several decades singularly
perturbed systems have been a popular research topic due
to its comprehensive applications in electrical and electronic
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systems, economic models, flexible robot systems, unmanned
aerial vehicles, etc. [7], [8].

On another research front line, many nonlinear physical
systems can be represented as Lur’e systems which consist
of a feedback connection of a linear dynamical system and
a nonlinearity satisfying the sector condition [9], [10], [11].
The absolute stability of Lur’e systems has been widely stud-
ied. Reference [12] deals with a robust stability problem for
uncertain Lur’e systems with time-varying delays and sector-
bounded nonlinearities. An improved delay-dependent robust
stability criterion is proposed via a modified Lyapunov-
Krasovskii functional (LKF) approach. And, a state feedback
sampled-data control for continuous-time Lur’e systems is
studied preserving global asymptotic stability and minimiz-
ing a guaranteed quadratic cost in [13]. In the last few years,
synchronization of Lur’e systems has drawn much attention.
Finite-time H∞ synchronization of semi-Markov jump Lur’e
systems [14], chaos synchronization of fractional-order Lur’e
systems [15], cluster synchronization of heterogeneous Lure
networks [16] and synchronization conditions for chaotic
fractional-order Lur’e systems [17] are all studied in succes-
sion. In addition, the control problems of Markovian Lur’e
systems have obtained progress to a certain extent [14], [18],
[19], [20], [21], and more related work need to be done.

If the Lur’e systems have two time scale property, then
these systems can be modeled as Lur’e Singularly Perturbed
Systems (Lur’e SPSs), such as an inverted pendulum con-
trolled by a DC motor via a gear [9]. In [8] a general class
of Lur’e SPSs whose nonlinear terms depend on both the
fast and slow dynamics are studied, and absolute stability
criteria for the slow and fast subsystems are proposed.
Reference [9] investigates the absolute stability problem
for Lur’e SPSs with multiple nonlinearities, and a stability
criterion expressed in terms of LMIs is derived. Saksena in
[22] considers the absolute stability of single-input-single-
output Lur’e SPSs whose nonlinear terms only depend on
the slow dynamics. Saksena [22] proves that the original
system is absolutely stable for all sufficiently small singular
perturbation parameter if the reduced-order slow subsystem
is absolutely stable. Wang [23] investigates the integral
sliding mode control problem for Lur’e SPSs with sector-
constrained nonlinearities. In [24] the absolute stability and
feedback control problems of Lur’e singularly perturbed
uncertain systems are investigated.

As known to all, time-delays are commonly encountered
in the control loops and are often attributed as a source
of poor performance and instability of systems [25], [26],
[27]. Therefore, this paper is concerned with the absolute
stability of Lur’e SPSs with time delay. This research topic
has drawn some attention, but is not studied extensively yet.
In [28] absolutely stable and passive performance problem
for Lur’e SPSs with time-delay based on state feedback
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control is considered. Liu [29] considers Lur’e SPSs with
time-delay, and designs a robust observer-based feedback
control law such that the resulting closed-loop system is
absolutely stable.

In the existing references [28], [29], the time delays are
assumed to be constants. However, in practice, the time delay
probably changes with time or some varying elements. Mo-
tivated by the above consideration, we assume that the time
delay of the Lur’e SPSs is a function of time in this paper,
and the absolute stability criteria are derived by constructing
a novel time-varying delay dependent Lyapunov-Krasovskii
functional. One numerical example is carried out to verify
the effectiveness of the results obtained. Compared to the
existing results, the main contributions of this paper are
outlined as below:

The time-varying delay is put into consideration, for the
first time, of the absolute stability problem of Lur’e SPSs,
and this gives rise to a more complicated analysis process
to obtain the absolute stability conditions in LMIs form.
We have proposed theoretical conditions to guarantee the
absolute stability based on Lyapunov stability theory and
intricate mathematical derivation.

II. PROBLEM STATEMENT

Consider the following singularly perturbed Lur’e systems
with time-varying delays and sector bounded nonlinearity as
below:

ẋ1(t) = A11x1(t) +A12x2(t) +B11x1(t− h(t))
+B12x2(t− h(t)) + C1f(δ(t))

εẋ2(t) = A21x1(t) +A22x2(t) +B21x1(t− h(t))
+B22x2(t− h(t)) + C2f(δ(t))

δ(t) = HTx(t) = [h1 . . . hl]
Tx(t), ∀t ≥ 0

(1)

where x1(t) ∈ Rn and x2(t) ∈ Rm are the slow and
fast variables respectively, x(t) = [xT1 (t) xT2 (t)]T ∈ Rn+m,
δ(t) ∈ Rl is the output, 0 < ε � 1 is the singular
perturbation parameter. The time-varying delay h(t) is a
continuous-time function which is assumed to satisfy the
following conditions

0 ≤ h(t) ≤ h, ḣ(t) ≤ hd (2)

and x1(s) = ϕ1(s), ẋ1(s) = ϕ̇1(s), x2(s) = ϕ2(s), ẋ2(s) =
ϕ̇2(s), s ∈ [−h, 0], where ϕ1(s) ∈ Rn and ϕ2(s) ∈ Rm are
continuous initial functions specified on [−h, 0]. f(δ(t)) is
the nonlinear function in the feedback path, which is given
by f(δ(t)) = [f1(δ1(t)) . . . fl(δl(t))]

T , wherein, each term
fi(δi(t)), (i = 1, . . . , l) satisfies the finite sector condition:

fi(δi(t)) ∈ K[0,ki] = {fi(δi(t))|fi(0) = 0,

0 < δi(t)fi(δi(t)) ≤ kiδi(t)2, δi(t) 6= 0} (3)

or the the infinite sector condition:

fi(δi(t)) ∈ K[0,ki] = {fi(δi(t))|fi(0) = 0,

δi(t)fi(δi(t)) ≥ 0, δi(t) 6= 0} (4)

This paper investigates the delay-dependent stability of the
system (1) satisfying the time-varying delay conditions (2)
and sector conditions (3). To achieve this purpose, the system
(1) is rearranged into the following form:

Eεẋ(t) = Ax(t) +Bx(t− h(t)) + Cf(δ(t)) (5)

where Eε =

[
In 0
0 εIm

]
, A =

[
A11 A12

A21 A22

]
, B =[

B11 B12

B21 B22

]
, C =

[
C1

C2

]
.

And following lemmas are required in deriving the stabil-
ity criteria:

Lemma 2.1: [30] For any symmetric positive definite ma-
trix W ∈ Rn×n, a scalar γ > 0, and vector function ẋ:
[−γ, 0]→ Rn such that the integration

∫ t
t−γ ẋ

T (s)Wẋ(s)ds
is well defined, then the following inequality holds:

−γ
∫ t

t−γ
ẋT (s)Wẋ(s)ds ≤[

x(t)
x(t− γ)

]T [−W W
∗ −W

] [
x(t)

x(t− γ)

]
Lemma 2.2: [31] Suppose r1 ≤ r(t) ≤ r2, where r(.) :

R+ → R+. Then, for any R = RT > 0, following integral
inequality holds:

−
∫ t−r1

t−r2
ẋT (s)Rẋ(s)ds ≤ δT (t)[(r2 − r(t))TR−1TT

+(r(t)− r1)Y R−1Y T + [Y − Y + T − T ]

+[Y − Y + T − T ]T ]δ(t) (6)

where δ(t) = [xT (t − r1) xT (t − r(t)) xT (t − r2)]T , T =
[TT1 TT2 TT3 ]T , and Y = [Y T1 Y T2 Y T3 ]T are free matrices of
appropriate dimension.

Lemma 2.3: [32] Suppose r1 ≤ r(t) ≤ r2, where r(.) :
R+ → R+. Then for any constant matrices Ξ1, Ξ2, and Ξ
with proper dimensions, the following matrix inequality

Ξ + (γ(t)− γ1)Ξ1 + (γ2 − γ(t))Ξ2 < 0

holds, if and only if

Ξ + (γ2 − γ1)Ξ1 < 0

Ξ + (γ2 − γ1)Ξ2 < 0

Schur complement: Given constant symmetric matrices Σ1,
Σ2 and Σ3 where Σ1 = ΣT1 and 0 < Σ2 = ΣT2 , the Σ1 +
ΣT3 Σ−12 Σ3 < 0, if and only if[

Σ1 ΣT3
Σ3 −Σ2

]
< 0, or

[
−Σ2 Σ3

ΣT3 Σ1

]
< 0

III. MAIN RESULT

Now the main result of the work, i.e., absolute stability
criteria for the system (1) satisfying the time-varying delay
conditions (2) and sector conditions (3) are presented in the
form of a theorem as below.

Theorem 3.1: The system (1) satisfying the time-varying
delay conditions (2) and sector conditions (3) is absolute-
ly stable, if there exist real symmetric positive definite
matrices P , Q, Z1 and Z2; matrices Q11, Q12 and Q22

such that
[
Q11 Q12

∗ Q22

]
> 0; positive semidefinite matrices

R = diag(r1, r2, . . . , rm) and Λ = diag(λ1, λ2, . . . , λl);
slack matrices Ti, Yi, Mi, Ni, i = 1, 2, 3 of appropriate
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dimensions such that the following LMIs are satisfied:

[
Π + Π′ + Π1 + ΠT

1
h
2Ta

∗ −h2Z1

]
< 0 (7)[

Π + Π′ + Π1 + ΠT
1

h
2Ya

∗ −h2Z1

]
< 0 (8)[

Π + Π′′ + Π2 + ΠT
2

h
2Ma

∗ −h2Z2

]
< 0 (9)[

Π + Π′′ + Π2 + ΠT
2

h
2Na

∗ −h2Z2

]
< 0 (10)

where

Π =


PA+ATP +Q+ L1 Q12

∗ Q22 −Q11

∗ ∗
∗ ∗
∗ ∗

PB + L2 0 PC + L3

0 −Q12 0
−(1− hd)Q 0 L4

∗ −Q22 0
∗ ∗ L5 + LT5 + L6


L1 = ATE−1ε [

h

2
(Z1 + Z2)]E−1ε A,

L2 = ATE−1ε [
h

2
(Z1 + Z2)]E−1ε B,

L3 = ATE−1ε HΛT +ATE−1ε [
h

2
(Z1 + Z2)]E−1ε C

+HKR,

L4 = BTE−1ε HΛT +BTE−1ε [
h

2
(Z1 + Z2)]E−1ε C,

L5 = ΛHTE−1ε C,

L6 = CTE−1ε [
h

2
(Z1 + Z2)]E−1ε C − 2R,

Π′ = (e2 − e4)T (− 2

h
Z2)(e2 − e4),

Π1 = [Ya − Ya + Ta − Ta 0 0],

Ya = [Y T1 Y T2 Y T3 0 0]T ,

Ta = [TT1 TT2 TT3 0 0]T ,

Π′′ = (e1 − e2)T (− 2

h
Z1)(e1 − e2),

Π2 = [0 −Na +Ma Na −Ma 0],

Ma = [0 MT
1 MT

2 MT
3 0]T ,

Na = [0 NT
1 NT

2 NT
3 0]T

ei, i = 1, . . . , 5 are block entry matrices of appropriate
dimension, i.e., e1 = [I 0 0 0 0], e2 = [0 I 0 0 0], and
so on, with e5 = [0 0 0 0 I].

Proof: In order to simplify the symbols, denote xt ,
x(t) in the proof. Construct a Lyapunov-Krasovskii function-
al as below

V (xt) =
4∑
i=1

Vi(xt) (11)

where

V1(xt) = xT (t)EεPx(t),

V2(xt) = 2
l∑
i=1

λi

∫ δi(t)

0

fi(δ)dδ,

V3(xt) =

∫ t

t−h(t)
xT (s)Qx(s)ds

+

∫ t

t−h
2

[
x(s)

x(s− h
2 )

]T [
Q11 Q12

∗ Q22

] [
x(s)

x(s− h
2 )

]
ds

V4(xt) =

∫ 0

−h
2

∫ t

t+θ

ẋT (s)Z1ẋ(s)dsdθ

+

∫ −h
2

−h

∫ t

t+θ

ẋT (s)Z2ẋ(s)dsdθ

Take the derivative of V (xt) with the respect to t along the
trajectory of system (1) , we obtain

V̇1(xt) = 2xT (t)PEεẋ(t)

= 2xT (t)P
{
Ax(t) +Bx(t− h(t)) + Cf(δ(t))

}
V̇2(xt) = 2

l∑
i=1

λiδ̇i(t)fi(δi(t))

= 2
l∑
i=1

λifi(δi(t))h
T
i ẋ(t)

= 2fT (δ(t))ΛHT ẋ(t)

= 2fT (δ(t))ΛHTE−1ε

{
Ax(t) +Bx(t− h(t))

+Cf(δ(t))
}

V̇3(xt) ≤ xT (t)Qx(t)− (1− hd)xT (t− h(t))Q

×x(t− h(t)) + ηT (t)Φη(t)

V̇4(xt) = ẋT (t)
[h

2
(Z1 + Z2)

]
ẋ(t)

−
∫ t

t−h
2

ẋT (s)Z1ẋ(s)ds

−
∫ t−h

2

t−h
ẋT (s)Z2ẋ(s)ds

where η(t) = [xT (t) xT (t− h
2 ) xT (t− h)]T ,

Φ =

Q11 Q12 0
∗ Q22 −Q11 −Q12

∗ ∗ −Q22

 (12)

Now for systems satisfying the sector condition (3), for any
ri ≥ 0, i = 1, 2, . . . , l, it yields

rifi(δi(t))(kih
T
i x(t)− fi(δi(t))) ≥ 0, i = 1, 2, . . . , l (13)

which is equivalent to

xT (t)HKRf(δ(t))− fT (δ(t))Rf(δ(t)) ≥ 0 (14)

Using the positive quantity (14), V̇ (xt) is bounded as follows

V̇ (xt) ≤
4∑
i=1

V̇i(xt)

+2
(
xT (t)HKRf(δ(t))− fT (δ(t))Rf(δ(t))

)

Engineering Letters, 30:1, EL_30_1_44

Volume 30, Issue 1: March 2022

 
______________________________________________________________________________________ 



Define an augmented state vector ξ(t) = [xT (t) xT (t −
h
2 ) xT (t − h(t)) xT (t − h) fT (δ(t))]T , then the above
inequality can be reformed into

V̇ (xt) ≤ ξT (t)Πξ(t)−
∫ t

t−h
2

ẋT (s)Z1ẋ(s)ds

−
∫ t−h

2

t−h
ẋT (s)Z2ẋ(s)ds (15)

Next, according to Lemma 1 and Lemma 2, we will
deal with the integral terms −

∫ t
t−h

2
ẋT (s)Z1ẋ(s)ds and

−
∫ t−h

2

t−h ẋT (s)Z2ẋ(s)ds differently in the delay intervals
h(t) ∈ [0, h2 ] and h(t) ∈ [h2 , h].

When 0 ≤ h(t) ≤ h
2 , we have

−
∫ t

t−h
2

ẋT (s)Z1ẋ(s)ds

≤ ζT1 (t)
[(h

2
− h(t)

)
TZ−11 TT

+h(t)Y Z−11 Y T + [Y − Y + T − T ]

+[Y − Y + T − T ]T
]
ζ1(t) (16)

−
∫ t−h

2

t−h
ẋT (s)Z2ẋ(s)ds

≤
[
x(t− h

2 )
x(t− h)

]T [− 2
hZ2

2
hZ2

∗ − 2
hZ2

]
×
[
x(t− h

2 )
x(t− h)

]
(17)

Similarly, when h
2 ≤ h(t) ≤ h, we have

−
∫ t

t−h
2

ẋT (s)Z1ẋ(s)ds

≤
[

x(t)
x(t− h

2 )

]T [− 2
hZ1

2
hZ1

∗ − 2
hZ1

] [
x(t)

x(t− h
2 )

]
(18)

−
∫ t−h

2

t−h
ẋT (s)Z2ẋ(s)ds

≤ ζT2 (t)
[
(h− h(t))MZ−12 MT

+
(
h(t)− h

2

)
NZ−12 NT

+[−N +M N −M ]

+[−N +M N −M ]T
]
ζ2(t) (19)

where

ζ1(t) =
[
xT (t) xT (t− h

2
) xT (t− h(t))

]T
,

ζ2(t) =
[
xT (t− h

2
) xT (t− h(t)) xT (t− h)

]T
,

Y =
[
Y T1 Y T2 Y T3

]T
, T =

[
TT1 TT2 TT3

]T
,

M =
[
MT

1 MT
2 MT

3

]T
, N =

[
NT

1 NT
2 NT

3

]T
.

For 0 ≤ h(t) ≤ h
2 , substituting inequalities (16) and (17)

into (15) leads to

V̇ (xt) ≤ ξT (t)
[
Π + Π′ + Π1 + ΠT

1

+
(h

2
− h(t)

)
TaZ

−1
1 TTa + h(t)YaZ

−1
1 Y Ta

]
ξ(t)

Based on Lemma 3 and Schur complement, by combining
Eqs. (7) and (8), we arrive at (20)[

Π + Π′ + Π1 + ΠT
1

+
(h

2
− h(t)

)
TaZ

−1
1 TTa + h(t)YaZ

−1
1 Y Ta

]
< 0(20)

It can be easily seen that the inequality (20) can guarantee
that V̇ (xt) < 0 for 0 ≤ h(t) ≤ h

2 .
In the similar way, for h

2 ≤ h(t) ≤ h, substituting
inequality (18) and inequality (19) into (15) leads to

V̇ (xt) ≤ ξT (t)
[
Π + Π′′ + Π2 + ΠT

2

+
(
h− h(t)

)
MaZ

−1
2 MT

a

+
(
h(t)− h

2

)
NaZ

−1
2 NT

a

]
ξ(t) (21)

And inequalities (9) and (10) are sufficient conditions for
inequality (22) which can guarantee that V̇ (xt) < 0 for h

2 ≤
h(t) ≤ h.

[
Π + Π′′ + Π2 + ΠT

2 +
(
h− h(t)

)
MaZ

−1
2 MT

a

+
(
h(t)− h

2

)
NaZ

−1
2 NT

a

]
< 0 (22)

This completes the proof.
Corollary 3.1: If the delay items in the system (1) are

nonexistent, i.e., the h = 0, then the absolute stability
conditions in the LMI forms are simplified as below:[

PA+ATP PC +ATE−1ε HΛ
∗ ΛHTE−1ε C

]
< 0 (23)

Proof: Define the Lyapunov-Krasovskii functional
V (t) = V1(t) + V2(t), which are the same as V1(t), V2(t)
in the theorem 1, and the corollary result can be obtained
easily.

If the system satisfies the infinite sector condition (4), for
any ri ≥ 0, i = 1, 2, . . . , l, it yields

rifi(δi(t))h
T
i x(t) ≥ 0, i = 1, 2, . . . , l (24)

which is equivalent to

xT (t)HRf(δ(t)) ≥ 0 (25)

Using this condition in the stability analysis, we can obtain
the following corollary:

Corollary 3.2: The system (1) satisfying the time-varying
delay conditions (2) and sector conditions (4) is absolute-
ly stable, if there exist real symmetric positive definite
matrices P , Q, Z1 and Z2; matrices Q11, Q12 and Q22

such that
[
Q11 Q12

∗ Q22

]
> 0; positive semidefinite matrices

R = diag(r1, r2, . . . , rm) and Λ = diag(λ1, λ2, . . . , λl);
slack matrices Ti, Yi, Mi, Ni, i = 1, 2, 3 of appropriate
dimensions such that the following LMIs (7-10) hold with
L3 replaced with L̄3 and L6 replaced with L̄6, where

L̄3 = ATE−1ε HΛT +ATE−1ε [
h

2
(Z1 + Z2)]E−1ε C +H,

L̄6 = CTE−1ε [
h

2
(Z1 + Z2)]E−1ε C.

The proof is omitted here since it is similar to the proof of
Theorem 1.
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IV. NUMERICAL EXAMPLE

In this section, one numerical example is adopted to verify
the results obtained.

Example 4.1: In the light of system (1), the following
Lur’e SPSs is considered:

ẋ1(t) = −2.0x1(t) + 0.5x2(t) + x1(t− h(t))
+ 0.4x2(t− h(t)) + C1f(δ)

εẋ2(t) = −x2(t) + 0.4x1(t− h(t))− x2(t− h(t))
+ C2f(δ)

(26)

where ε = 0.01, C1 = [0.5 0], C1 = [0 0.5], δ =[
x1(t)
x2(t)

]
,

[
x1(0)
x2(0)

]
=

[
−1
2

]
.

In order to test the theorem 1, we convert system (26) into
the form of (5), where

Eε =

[
1 0
0 ε

]
, A =

[
2 0.5
0 −1

]
,

B =

[
−2.9 0.4
0.4 −1.8

]
, C =

[
C1

C2

]
,

H =

[
1 0
0 1

]
,

f(δ) =

[
0.5 sin(x1(t)) + 0.5x1(t)
0.5 sin(x2(t)) + 0.5x2(t)

]
,

and it can be seen that f(δ(t)) satisfies the finite sector
conditions (3) with k1 = k2 = 1. In the first place, it is
assumed that h = hd = 1, and by using the LMI Toolbox of
MATLAB, we obtain the following solution to the LMIs of
Theorem 1:

P =

[
8.7594 −0.5659
−0.5659 13.5072

]
,

Q =

[
11.2720 −0.2564
−0.2564 3.7845

]
,

Z1 =

[
5.4890 0.0013
0.0013 0.0011

]
,

Z2 =

[
5.2023 0.0040
0.0040 0.0017

]
,

Q11 =

[
15.7417 −0.0300
−0.0300 19.7131

]
,

Q12 =

[
−5.7868 −0.2174
−0.2174 0.3017

]
,

Q22 =

[
16.0719 0.0607
0.0607 10.3597

]
,

R =

[
10.4148 0

0 12.3882

]
,

Λ =

[
3.6829 0

0 0.0561

]
,

T1 =

[
−0.4978 0.0010
0.0010 0.0086

]
,

T2 =

[
−0.9590 0.0134
0.0134 −0.0080

]
,

T3 =

[
−0.3462 0.0024
0.0024 0.0168

]

Y1 =

[
−5.2013 −0.6411
−0.6411 −4.0359

]
,

Y2 =

[
0.9549 −0.2829
−0.2829 −4.8027

]
,

Y3 =

[
1.0500 −1.3153
−1.3153 1.4609

]
,

M1 =

[
5.7868 0.2174
0.2174 −0.3017

]
,

M2 =

[
−10.9980 5.0965

5.0965 −23.0400

]
,

M3 =

[
−1.5790 −0.0303
−0.0303 1.2771

]
,

N1 =

[
7.8280 0.3851
0.3851 1.0137

]
,

N2 =

[
−19.2575 5.2568

5.2568 −24.6811

]
,

N3 =

[
−1.5790 −0.0303
−0.0303 1.2771

]
.

Figure 1 shows the states responses for the system (26) which
demonstrate the asymptotic stability of this system. And the
stabilized results are coincident with computation outcomes
from the LMI conditions which illustrate that the theorem 1
is effective to verify the absolute stability for the system (1).
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Fig. 1. The states responses of system

V. CONCLUSIONS

In this paper, the absolute stability of a class of singularly
perturbed Lur’e systems with an interval time-varying delays
and sector-bounded nonlinearity is considered. A Lyapunov-
Krasovskii functional (LKF) is constructed to derive the
absolute stability criteria in terms of LMIs. In the end, the
effectiveness of the theoretical result is verified using the
simulation of one numerical example.
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