
 

 

Abstract—In this paper, the error exponent of a polar code 
generator matrix for data rate enhancement between two users 
is investigated. A new expression for optimal correlation 
coefficient between the error probability of the main and 
eavesdropper channel in Wyner’s wiretap channel model 
introduced. By using this optimal correlation coefficient, a 
relationship between code length and the error exponent is 
defined. Moreover, to investigate the performance of the 
proposed formulation, an optimization based on Arikan and 
Korda’s theory on the maximum value of the error exponent 
was conducted. It is shown that the new correlation coefficients 
significantly increase the decoding error probability in the 
wiretapper side for both of the theories. In addition, the 
Bhattacharyya parameter was also defined for the wiretap 
channel.  Finally, by applying the optimized values to a binary 
erasure channel, the error probability for each scenario is 
calculated.    
 
 

Index Terms—Polar code, Wiretap channel, Error exponent, 
Generator matrix, Error probability, Bhattacharyya 
parameter. 

I. INTRODUCTION 

olar coding, i.e., a channel coding method, can achieve 
the capacity of binary symmetric channels (BSCs), i.e.,  

binary erasure channels (BECs). Arikan introduced polar 
coding in 2009 [1]. Due to the complexity of both encoding 
and decoding with the order ( .log ),O N N this paper aims to 

enhance the secrecy capacity of the wiretap channel using 
the polar coding technique. In particular, the coefficient 
between the error probability of the main and wiretapper’s 
channels is introduced using the order of successive 
cancellation (SC) decoding. For this purpose, Wyner’s 
model is utilized [2]. Afterwards, we investigate the 
relationship between error exponent and code length in 
order to come up with an optimal coefficient, and then we 
construct a general matrix for polar code. 

II. WIRETAP CHANNEL 

Wiretap channel was introduced by Wyner in 1975 [2]. In 
this channel transmitter, the main sender (i.e., Alice) wishes  
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to send a message to the legitimate receiver (i.e., Bob) and 
prevent the leakage of the transmitted information to an 
eavesdropper (i.e., Eve). The communication channel 
between Alice and Bob is called the main channel, and the 
communication channel between Alice and the eavesdropper 
is called the wiretapper’s channel. The wiretap channel 
model is illustrated in Fig. 1.  

 
 
Fig. 1.  Wiretap channel model which is drawn for this article. 
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Equation (1) denotes the equivocation rate eR  as follows: 
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n
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where W, Z, and n denote a transmitted message, received 
data on the eavesdropper side,  and code length, respectively. 
Regarding (1), the error probability of the wiretap channel 
must be higher than the value of the main channel. This is 
the primary assumption in this article. 

III. POLAR CODE 

 Polar codes are designed to achieve the capacity of binary- 
input discrete memoryless channels. The generator matrix of 
polar codes is demonstrated as (3) and (4): 
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where  is the Kronecker product. These codes produce the 
generator matrix, 2 ,nG  which is applied to the input of an 

2nN  input block. The result of this matrix multiplication, 
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known as P, will be transmitted through independent copies 
of the binary-input discrete memoryless channel (B-DMC). 
When the number of n-independent channels increases, the 
channel becomes more polarized; then, we have two main 
channel statuses, noiseless (good channel) and pure noisy 
(bad channel). For [ ],i N [ ] {1, 2,..., }N N , and ( )i

NP is the 
i-th polarized channel, which is defined by the following 
transition probability shown in (5):  

1

( ) 1
1 1 1 11

1
( , | ) ( , )

2
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i N i N N
N i Nu N

P y u u P y u



                             

For any 0.5  , the reliability of polar codes calculated 
from the block error probability under SC yields the 
following error probability complexity:  

( ) ( )( ) (2 )i N
e Ni AP Z P O


                                              (6) 

By considering the error probability in (6), this paper seeks 
to design a wiretap channel to  achieve secrecy capacity. 

IV. SECURITY COEFFICIENT FOR THE WIRETAP CHANNEL 

   The paper outlines some methods of securing data 
transition in wiretap channels. In order to achieve this, the 
error probability of the main channel as well as the 
wiretapper's channel is estimated by polar coding technique. 
Based on (6), in polar codes, the decoding error probability 

of the channel converges to  ( )2 NO
 complexityFor any 

0.5  , the block error probability determines the reliability 

of polar codes under SC. 

,[ ]i j n nG g  

(8) and (9) show the polar code generator matrices at the 
main and wiretapper's channels in the wiretap model: 
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 
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2 N
eP AEG

    

A. Code design based on error exponent 

In the ideal wiretap channel that allows Alice and Bob to 
secure their communication, the wiretapper's channel would 
show a higher error probability value than the main channel. 
Definition (transmission over a secure channel): when a 
transmission is secure, the error probability of the main and 
wiretapper’s channel calculated as follows: 

( ) ( )e eP AE mP AB                                                            (10) 

Equation (10) shows the advantages of a legitimate sender 
and the differences between receivers. The coefficient m is a 
parameter used to generate generator matrices and simulate 
the wiretap model, and represents the difference between the 
decoding error probability on Bob's and Eve's side. Taking 
logarithm of (10) in two stages, the error exponent of each 
channel is achieved. 

2log ( log ( ))N eP AB                                                      (11) 

2log ( log ( ))N eP AE                                                     (12) 

Taking the logarithm of each side of (10), we get: 

2 2 2( log ( )) log log ( )e eP AE N m P AB                    (13) 

 2 2 2log ( log ( ( ))) ( log log ( ( )))N e eP AE m P AB           (14) 

2 2 2log ( log ( ( ))) log ( log log ( ( )))N e N eP AE m P AB      (15)  

The correlation between the error exponent of the main and 
wiretapper’s channels is extracted from (16):                          

2log ( log )N m N                                                  (16)         

2log
log (1 ( ))N

m

N      

 A logarithmic expression reduces complexity by (18):  

1, log(1 )x x x    

As a result of (17), the error exponent for the wiretapper’s 
channel is: 

2log m

N                                                                    (19) 

By definition, the value of   (the error exponent) is in the 

range [0,0.5].   falls in the same range: 

2log
0

m

N                                                                 (20) 

where the maximum value of   is 0.5, which optimizes the 
coefficient between the error parameters. Considering the 
equations mentioned earlier, we approximate an optimal 
coefficient between the error probability of the main and 
wiretapper’s channels. An inequality that limited m can be 
expressed as (21):

 ( )1 2 Nm
   

To consider it secure, the lower bound should be set to 1. In 
addition, when   takes its maximum value in (21), 0.5, m 
equals 1. This equation was added to an optimal function 
circumstance named particle swarm optimization (PSO). 
This function gives us the maximum value for m, with 

1000N   and 0.355.  

3.2453m                                                                        (22) 

 
Fig. 2. The relationship between M, N, and   
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The error probability of thbe main and wiretapper’s channels 
is calculated to design an optimal scenario for the wiretap 
channel. In our optimization program, N should be 
considered at its maximum value of 1000 to achieve an 
optimal state: 

0.3551000( ) 2 2 0.0003189N
eP AB

                               (23) 

Theorem1: The optimal point of (21), which gives maximum 
m, is: 

1 1

lna N
    

Proof: The error probability of the wiretapper’s channel is 
calculated as follows:   

( ) 2 ( ) 0.001035N
e eP AE mP AB

                               (25) 

Taking the derivative of (21): 

( )2 a Nm
  

(0.5 )1
(( ( ) ln )2 )Nm

N N N
a

  



   


                      (26) 

1
0 ( ) ln

m
N N N

a
 




    


                                    (27) 

1 1

lna N
                                                                   

Remark: To have the highest coefficient (m), we set 
1/ 2a  :   

  
1/ 2 1/ (ln )N     

B. Error exponent of l l  matrix: Korada’s work 

 
The assumption presented in the previous section is based 

on Arikan’s determination of the error exponent that takes 
values in the range of 0 1/ 2  . Korada showed any l×l 

matrices that none of the column permutations is upper 
triangular polarizes binary-input memoryless channel [3]. In 
this paper they proved that any invertible G can be used as a 
building block to construct polar codes. They then showed 
that the error exponent of the l l generator matrix exceeds 
0.5, and discussed the relation between polar codes and 
Read-Muller (RM) in construction. One of the main reasons 
we realized the coefficient m could be higher was due to this 
approach. 

Theorem2 (Exponent from a partial distance): For any B-
DMC and any l×l polarizing matrix G, the error exponent is 
computed with 1{ }l

i iD  partial distance as follows: 

1

1
( ) log

l

i i
i

E G D
l 

                                                              (29) 

Example: For the generator matrix G, the partial distances, 
and the error exponent, is calculated as follows: 

1 0 0

1 1 0

0 1 1

G

 
   
  

                                                                (30) 

The partial distances, therefore, the error exponent will be: 

1 2 31, 2, 2,d d d    

3 3 3
1

( ) (log 1 log 2 log 2) 0.42062
3

E G                 (31) 

The upper bound and the lower bound in the error exponent 
were determined by Korada as follows: 

1
1

1
log ( , 1)

l

l
i

E d l l i
l 

                                                    (32) 

( , )d N k denotes the largest possible minimum distance of a 
binary code of length N and dimension k. The lower bound is 
as follows: 

1

1
log

l

l l i
i

E D
l 

                                                                 (33) 

The upper bound on the error exponent will also change by 
considering [4].   
0 1  

(1 )1 2 Nm
  

Moreover, the relationship between the error exponent and 
code length will be changed, and the new equation is shown 
as:         

1 (1/ ln )N   

Fig. 3 shows the relationship between error exponent and 
code length, that was shown in (24). a is the maximum value 
of error exponent in each scenario. 

 
Fig. 3. The correlation between code length and error exponent. 

m will be different subsequently. Considering (19) and (36), 
the coefficient will increase significantly. In code length 

1024N  , for the generator matrix with 0.8526,  we 

have the optimal coefficient as 162.272 .m e  

Then, the error exponent for the eavesdropper is computed 
using (19).                                                                        

2(log / ) 0.70520035806m N                 

Fig. 4 shows the difference between the coefficient and the 
irregular generator matrix.  Using m and (37), the coding 
error probability for this assumption is calculated as follows: 

0.8526( ) (1024) 111( ) 2 2 1.080427N
eP AB e

                        (38) 

0.70520035( ) 1024 40( ) 2 2 1.1321467N
eP AE e

                     (39) 
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To design a wiretap, a polar code generator matrix needs to 
be defined for each channel individually. 

 

Fig. 4. The difference between coefficients for  the l l matrix. 

Considering the value from (37) and (38), the effectiveness 
of this coefficient in improving security can be understood. 
E(G) is the polarization rate exponent for generator matrix G, 
which is calculated using partial distance (Hamming 
distance) .iD  Furthermore, we have:  

1

1
( ) log

l

l i
i

E G D
l 

   

 and ( )E G  are similar. Therefore, we have:  

1

1
log

l

l i
i

D
l




   

A proper generator matrix is achieved for any error 
exponents using (40) and considering the upper bound in 
Korada’s work, indicating the possibility of constructing 
such a code. By calculating the upper bound of the error 
exponent for 1024N  , we have: 

1
1

1
log ( , 1)

l

l
i

E d l l i
l 

                                                    (41) 

1024

1024
1

1
log (1024,1024 1)

1024l
i

E d i


                            (42) 

0.8563lE   proves that the error exponent calculated for 
1024,N   is possible for the generator matrix with the 

mentioned characteristics.  

The polar code with the error probability calculated in (38) is 
designed using [5], [6]. By employing the BEC for the main 
channel, channel parameters can be defined as follows: 
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R W W y W y                          (44) 

The Bhattacharyya parameter for the BEC main channel with 
erasure probability ɛ is calculated based on the following 
theorem.                                           

Theorem 2:  Bhattacharyya parameter for the BEC is: 

Z                                                                                 (45) 

Proof:  
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 

            (46) 

All terms, except the last one, would be zero.  

Theorem 3 (Bhattacharyya parameter of a wiretap channel): 
Taking into consideration that the main channel and wiretap 
channel, in general, are modulated by BEC channels, we can 
define the Bhattacharyya parameter the following way: 

1 2 1 2 1 2( ) ( | 0) ( |1)
y Y

Z P p y y p y y  


                           (47) 

Proof 

The states that were shown in Fig. 5, help us to calculate the 
Bhattacharyya parameter. 

 
Fig. 5. The transmission states for a wiretap channel.  
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                 (48)                            

 It should be noted that, in the right side of Z(P) all terms 
except the last one would be equal to zero. 

1 2 1 2 1 2( ) (?? | 0) (?? |1) ( )( )Z P P P                 (49) 

The cutoff rate can be determined by (41). Arikan mentioned 

0 /R C in [5] for the BSC channel, you can also calculate this 
parameter for the BEC. This ratio is derived from a cutoff 
rate and channel capacity, which for BSC is defined as 
follows: 
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In order to determine this parameter for a BEC, first, one 
must determine the channel capacity and cutoff rate. These 
parameters are affected by the erasure probability.  

1C                                                                             (51) 

0 21 log (1 )R                                                               (52) 

By using (51) and (52) the 0 /R C  for BEC channel is 
defined as follows: 

0 21 log (1 )

1

R

C




 



                                                          (53) 

In Fig. 6, 0 /R C  per erasure probability is depicted. 

 
Fig. 6. The ratio of cutoff rate to capacity for the BEC. 

The cutoff rates for both scenarios are calculated from [1]. 
According to (6), two lower bounds of the Bhattacharyya 
parameter are (25) and (38), respectively. The cutoff rate is 
calculated using (54): 

0 2 2( ) 1 log (1 ) 1 log (1 )R W Z                                 (54) 

The cutoff rate for both tends to 1. The channel will be 
simulated with erasure probability ( eP ) extracted in (23) and 
(38). The simulation results are shown in Figs. 7 and 8. 

 
Fig. 7. Simulation of the BEC with error exponent limit 0.5. 

 

Fig. 8. Simulation of the BEC with error exponent limit 1. 

V. CONCLUSION 

This paper presents a novel technique that uses error 
exponents to improve security in wiretap channels. The 
order of complexity for decoding in polar codes was used to 
determine the relationship between code length and error 
exponent that provided secure coding and decoding. Our 
next goal was to find the optimal error exponent for a 
legitimate sender and generate a matrix of generators. 
Additionally, we calculated the decoding error probability 
for this generator matrix, which indicates that the wiretap 
channel has a higher error probability than the main channel. 
In our calculations for the l l  matrix, we applied Korada's 
assumption and displayed how it affected the error 
exponent. The process by which BEC simulated both states 
of the main channel and the BER was also discussed. It 
would be beneficial for future research to look into the 
multi-input, multi-output (MIMO) channel in order to 
enhance wiretap security.  
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