
 

  
Abstract—For traditional data mining, all data shall be 

loaded into memory for analysis and calculation. It belongs to a 
stand-alone computing mode, which has low calculation 
efficiency, and a high mining failure rate during the work 
process. As the data storage and computer technology develop 
rapidly, how to store and process big data effectively has become 
an important problem to be solved. Cloud computing can 
quickly obtain resources from the computing resource pool, and 
implement parallel improvement of data mining algorithms, 
which can achieve an efficient combination of cloud computing 
platform and data mining, and effectively make up for the 
bottlenecks faced by traditional data mining processes. 
Therefore, based on the Hadoop cloud computing platform, this 
paper makes full use of the characteristics of the MapReduce 
programming framework, and proposes a parallel design of 
decision tree nodes, node attribute metrics, and Gini index 
ranking for the SPRINT decision tree algorithm. The 
performance of the parallelized SPRINT algorithm on 
classification accuracy, scalability, and speedup ratio is tested. 
The results indicate that the parallel design of the SPRINT 
algorithm can obtain good scalability and parallel speedup 
under the premise of ensuring classification accuracy, which 
verifies the feasibility of the parallel design of data mining 
algorithms on the basis of cloud computing. 

 
Index Terms—data mining, cloud computing, SPRINT 

algorithm, parallel design 
 

I. INTRODUCTION 
ITH the continuous improvement of 
informationization and intelligence, we have 

gradually entered the era of information explosion, and the 
amount of data to be processed has increased significantly. 
How to discover and use valuable information in a timely and 
accurate manner has become the focus of current research. 
Data mining can obtain a lot of useful information from the 
database. The application of parallel cloud computing can 
provide great convenience for data mining, and it can dig out 
more valuable information in less time [1-10]. The promotion 
and application of cloud computing has created good 
conditions for large-scale data storage and processing, and the 
available data mining algorithms are more diverse [11-14]. 
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For example, in business, IBM's cloud computing platform 
supports data clustering and regression prediction, and can 
automatically complete data analysis and processing [15]. 
SPSS's Clementine executes standardized data mining 
processes to provide users with business decisions [16]. 
Academia has also done a lot of research on its algorithms 
based on cloud computing. Literature [17] proposed an 
optimized clustering and access algorithm for cloud 
computing databases combined with chaotic probability 
analysis. The chaotic phase space reconstruction algorithm 
was used to perform phase space feature clustering of massive 
data sets in cloud computing databases. Based on this, 
massive data classification and feature extraction are 
performed to optimize data scheduling performance. 
However, the algorithm has poor convergence performance 
and the calculation process is too complicated. Literature [18] 
proposed a distributed access algorithm for cloud computing 
database retrieval based on information-based matching 
method. Through the single node data scheduling, the 
construction and access of the state characteristic model of the 
cloud computing database was realized, and the accuracy of 
the data was enhanced. But the algorithm has limitations in 
extracting prior knowledge, and the clustering performance of 
the data is poor. Literature [19] used the attribute weight 
allocation method of cloud computing database access 
channel for data mining, and conducted random sample query 
from the cloud computing database through the query 
interface. However, the algorithm reduces the classification 
accuracy and recall of massive data. Literature [20] improved 
the SPRINT decision tree classification algorithm to enable it 
to be deployed in parallel on the Hadoop cloud computing 
platform to reduce the duplication and unnecessary 
calculations in the data processing process. But the reliability 
is not ideal. Reference [21] improved the Bayesian 
classification (a classification algorithm that already exists in 
MLlib) of the machine learning library in Spark cloud 
computing platform and applied it to the Spark Streaming 
framework to achieve real-time classification of data. The 
directories should be introduced into the classification 
performance of metadata. They limit the development and use 
of applications. Literature [22] put forward a MapReduce 
parallel computing framework based on cloud computing 
platform Hadoop, and implemented an ID3 decision tree 
parallel classification algorithm for massive data sets. 
However, the calculation is so complex that the system 
response time performance is poor. Literature [23] suggested 
the SVM_KNN classification algorithm based on the 
advantages and disadvantages of KNN and SVM algorithm, 
and realized the parallelization of the algorithm on the 

 Design of SPRINT Parallelization of Data 
Mining Algorithms Based on Cloud Computing      

Lei Song, Huajie Zhang, Dongdong Feng 

W 

 

Engineering Letters, 30:2, EL_30_2_02

Volume 30, Issue 2: June 2022

 
______________________________________________________________________________________ 



 

Hadoop cloud computing platform. However, due to the lack 
of mutation process, the system is easy to fall into local 
optimization and cannot realize the optimal parallelization. 

To solve the problems of the above traditional algorithms, 
this article has fully analyzed the Hadoop cloud computing 
platform, using the related features of MapReduce 
programming framework, implemented a parallel design of 
the SPRINT decision tree algorithm, and determined the 
feasibility of the design through relevant performance tests. 
Simulation analysis further verifies the effectiveness of this 
method, which obtains good scalability and parallel speedup 
under the premise of ensuring the classification accuracy. 
Compared with traditional data mining method, it has more 
outstanding performance advantages. 

The remainder of this paper is structured as follows: In 
Section 2, the background of the cloud computing platform 
and features of Hadoop will be explained. In Section 3, the 
detailed design of parallelization of data mining algorithms on 
the basis of cloud computing will be elaborated. Section 4 
describes the performance evaluation results. Finally, the 
conclusions and future work will be presented in Section 5. 

II. RELATED WORKS 

A. Cloud Computing Platform and Hadoop 
In the face of very large-scale data sets and 

high-dimensional data types, traditional stand-alone 
processing is increasingly unable to meet actual needs in 
terms of computing power and time efficiency. Cloud 
computing follows the "give on demand" service model and 
uses technologies such as virtualization to connect computers 
into a computing platform with high fault tolerance, high 
storage, and high scalability. Due to the popularity of cloud 
computing technology, many algorithms can be parallelized 
and applied to cloud platforms [24]. This makes processing 
large-scale data no longer a problem. By parallelizing the 
algorithm, it can be deployed on a computing cluster 
composed of relatively inexpensive consumer-grade 
computers, and obtain computing power and efficiency 
comparable to expensive supercomputers [25, 26]. 

As shown in Table 1, compared with traditional data 
processing methods, cloud computing platforms have 
significant advantages. 

 
TABLE Ⅰ  

COMPARISON OF TRADITIONAL AND CLOUD COMPUTING SERVICES 

Item Traditional mode Cloud 
computing 

Man-machine 
mode Internet / LAN Using SaaS with 

the Internet 

Implementation 
mode 

Equipment 
development 

system 
External service 

Technology 
model Single user  Flexible, scalable, 

dynamic users 

Business model Pay for equipment 
and labor 

What you use is 
what you pay 

Hadoop is derived from the open source project of the 
Apache Foundation and belongs to one of many cloud 
computing platforms, which provides great convenience for 

data processing [27]. The Hadoop platform is mainly 
composed of MapReduce, Pig, HDFS, Hive and HBase [28]. 
In this platform, users can store large-scale data in HDFS 
systems and apply MapReduce model to process data in 
HDFS. 

The Hadoop platform mainly includes the following 
features: 

(1) During the parallel design process, the increase of 
nodes can expand the storage capacity and computing power 
of the Hadoop cluster. 

(2) Since the cluster of the Hadoop platform can be built on 
a general commercial computer, the cost is relatively low. 

(3) By using the MapReduce framework for task 
distribution, and implementing parallel processing and 
protocol summarization of different parts of the data, the 
desired results can be obtained, and there will be a positive 
correlation between the computing speed and the number of 
computing nodes. 

(4) The cluster itself can complete fault detection and 
processing, which is more conducive to the successful 
completion of tasks. 

B. Definition and Process of Data Mining 
Data mining is to find useful information from a database. 

This process is closely related to many fields such as 
databases, statistics, artificial intelligence, and so on. From a 
functional perspective, data mining includes cluster analysis, 
classification and prediction, association analysis, and outlier 
detection [29]. Generally, the basic process of data mining 
should include the following steps: 

(1) Data cleaning. Data mining algorithms cannot be 
applied on unqualified data sets. Thus, the data should be 
cleaned before data mining, and the data quality should be 
improved by eliminating data anomalies and filling in missing 
data, so that it can better meet the specifications of mining 
algorithms. 

(2) Data integration. This process can implement combined 
processing on multiple data sources, merge them together, 
make data storage consistent, and eliminate possible data 
redundancy through appropriate processing. 

(3) Data protocol. This process can compress and process 
related data through various methods such as data aggregation 
and deletion of redundancy, extract task-related data, and 
reduce the time complexity of data mining. 

(4) Data transformation. Aggregation, data generalization, 
smooth processing and other methods are used to transform 
data. For data of real type, it can be transformed by using the 
concept of data discretization and layering. 

(5) Knowledge discovery. It is the core process of data 
mining to analyze the data set using data mining algorithms to 
find and extract useful data. 

(6) Model evaluation. Evaluate the mined data according to 
certain evaluation criteria to determine its reliability. 

(7) Knowledge representation. The mined data is displayed 
visually, and the analysis results can also be stored for other 
applications to call. 

The first four steps of data mining can be summarized as 
data preprocessing. The overall steps are shown in Figure 1.  
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 Fig. 1. Data pre-processing diagram. 

III. PARALLEL DESIGN OF DATA MINING ALGORITHM BASED 
ON CLOUD COMPUTING 

A. SPRINT Decision Tree Algorithm 
When making a decision tree, it is necessary to calculate 

the attribute selection metric of each node, and then 
determine the node split. Most decision tree algorithms 
currently in use need to keep all or most of the data in 
memory at all times. Therefore, when applying these 
algorithms to deal with large-scale information, it is easy 
to cause memory overflow, which greatly limits the 
knowledge acquisition ability of data mining. With the 
increasing scale of data processing, the requirements for 
data mining and data processing capabilities have 
increased significantly. In this context, people have 
discovered a variety of decision tree algorithms such as 
RainFORST [30] and SPRINT [31], which can process 
large data sets. 

1) Decision Tree Algorithm 
This tree algorithm is more commonly used in the 

process of program design. Tree-shaped rules can be 
deduced from irregular and unordered training samples. It 
is the most basic and widely used algorithm model in 
machine learning algorithms. It consists of a decision map 
and possible results (costs and risks included). According 
to these, a plan can be created to reach the goal. The core 
idea is to filter out the final desired result through 
continuous decision making. 

Excellent

Age

Credit rating Student Yes 

Yes Yes Yes Yes 

<=30 >40
31~40

OrdinaryNo Yes 

 Fig. 2. Typical decision tree structure. 
Decision tree uses a tree-like graph or decision model, 

including random event results, resource costs, and 
practicality. Leaf nodes are class labels, and the topmost 
level of the decision tree is the root node. A typical model 
is displayed in Figure 2. 

2) SPRINT Algorithm and Basic Steps 
The SPRINT algorithm has important value in processing 

large-scale data sets, and has good scalability. Compared with 
most memory-resident algorithms, the SPRINT algorithm can 
describe the characteristics of the data set by using attribute 
lists and other methods [32]. When constructing a decision 
tree, attribute selection metrics are often used to evaluate the 
classification effect of the attributes of the tree nodes. The 
following three are more commonly used attribute selection 
metrics to help determine the best segmentation attributes. 

(1) Information gain. It is more common in the ID3 
algorithm, and the information size can be measured by the 
uncertainty of the information. 

(2) The calculation formula of the expected information of 
the tuple classification in DS is 

2
1

( ) log ( )
m

i i
i

Info DS p p
=

= −∑  (1) 

Divide the tuples in DS according to attribute A. In order to 
obtain a more accurate classification, the calculation formula 
of the amount of information that needs to be obtained is 

1

( ) ( )
m j

A j
i

DS
Info DS Info DS

DS=

= − ×∑  (2) 

Therefore, the calculation formula of the information gain is 

( ) ( ) ( )AGain A Info DS Info DS= −  (3) 

(2) Information gain rate. It is a new metric function that 
mainly penalizes multi-valued attributes by adding a split 
information item. Its calculation formulas are 

2
1

( ) log
v j j

A
j

DS DS
SplitInfo DS

DS DS=

 
 = − ×
 
 

∑  (4) 

( )( )
( )

Gain AGainRatio A
SplitInfo A

=

 
(5) 

(3) Gini indicator. The calculation of this indicator usually 
needs to be divided into two cases for analysis. The first case 
is if the attribute list is divided, as shown in the following 
formula. 

2

1 1

( ) (1 ) 1
m w

i i i
i i

Gini DS p p p
= =

= − = −∑ ∑
 

(6) 

The second case is if the data set DS contains m pieces of 
data and is divided into two parts 1DS  and 2DS . When 1m  
and 2m  data are included in these two parts, the Gini index 
calculation formula is 

1 2
1 2( ) ( ) ( )split

m mGini DS Gini DS Gini DS
m m

= +

 

(7) 

The SPRINT algorithm decision tree generation process 
is: 

① First split the dataset by column to form a list of 
attributes. 

② Build the root node. After the build is complete, all 
the attribute lists should be near the node. 
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③ Calculate the Gini indicator and determine the split 
point. 

④ Compare the Gini index of each attribute list, select 
the appropriate segmentation attribute, and split it 
into two parts ( )1, 2N N . 

⑤ Generate 1N
 
and 2N  decision trees until all 

datasets belong to the same class of targets. 

B. MapReduce Programming Framework 
MapReduce [33] is a distributed programming model 

proposed by Google, which is suitable for processing massive 
data offline. Its main idea is to evolve from functional 
programming, hide the specific implementation details of 
parallel programming, and distribute large-scale operations of 
data sets to each node in the cluster for parallel processing. 
Then the calculation results of each node are merged together 
to realize the calculation task. The MapReduce framework 
was first born in the search field. The reason is that people 
cannot input lots of data in a short time when there is more 
data to be processed. Therefore, these calculations must be 
distributed on lots of machines to meet the expected 
requirements. How to perform data distribution, parallel 
calculations, and error handling is also extremely important. 
On the Hadoop platform, MapReduce framework can be 
applied for data processing. By mastering the relevant content 
of the MapReduce framework, users can write program code 
on the Hadoop platform to complete data mining. 

The programming model of the MapReduce framework 
first requires input data. After the parsing and iterative 
processing, the input <FName, FContent> pairs are mapped, 
and the data is reduced in units of groups, and the resulting 
values are saved. For example, to calculate the number of 
each word occurrences in a voluminous document, the 
prepared pseudo code is as follows. 

map(String FName, String FContent): 
//FName: file name 

//FContent: file contents 
For each word WD in FContent: 

EmitIntermediate(WD,“1”): 
Reduce(String FName，Iterator FContents): 

//FName:a word 
//FContents:a list of counts 

Int result=0; 
for each FC in FContents 

Emit(AsString(result)) 
result+ =ParseInt(FC) 

 
The Map and Reduce function can output each word in the 

document and accumulate the count of specific words. Using 
the MapReduce programming model, data mining algorithms 
can be designed and run on the Hadoop platform. 

C. Implementation of SPRINT Algorithm Based on 
MapReduce Framework 
By analyzing the SPRINT algorithm, we need to design 

according to the MapReduce framework when designing a 
parallelization scheme. It mainly includes three parts: 
decision tree node, node attribute measurement and parallel 
design of Gini index ranking. 

1) Parallelization of Decision Tree Nodes 
In a decision tree composed of a topological structure, the 

tree is generated through the continuous splitting of each tree 
node. Practically, the data set is split. After the tree nodes are 
continuously split, the decision tree can be generated, so the 
split of the data set is the root. The SPRINT algorithm needs 
to first use the Gini index to determine the best split point. The 
sub-attribute list after the tree node splits will be split twice in 
the new child node. The splitting mode in Figure 3 (a) belongs 
to the traditional SPRINT algorithm that was more commonly 
used in the past. MapReduce-based SPRINT algorithm is 
shown in Figure 3 (b). As shown below, since the algorithm of 
each layer of the spanning tree is the same, when processing it, 
the loop can be performed in order to complete the attribute 
list split and construct the node. During the execution of the 
algorithm, the attribute list marks its own tree node 
information. 

(a)                                                  (b)  

Fig. 3. Parallel design of tree nodes. 
 (a) Traditional SPRINT algorithm; (b) MapReduce-based SPRINT 

algorithm 
2) Node Attribute Metrics in Parallel 

In the SPRINT algorithm, Gini mainly performs a 
parallelizable process in the node attribute measurement. The 
calculation of the Gini indicator is an extremely important 
step [34, 35]. By calculating the Gini value of each attribute 
on the node, the best splitting attribute can be determined, so 
the calculation should be paid great attention. In the parallel 
design of SPRINT, since the Gini indexes of the attributes do 
not affect each other and are independent of each other, the 
parallel design of node attribute measurement can be 
performed according to the process shown in Figure 4. 

List of attributes 
of the same node

Map ……

Reduce Reduce Reduce Reduce Reduce Reduce

Node A Node B

ATTR 1 ATTR 2 ATTR 3 ATTR 1 ATTR 2 ATTR 3

Map Map Map

 
Fig. 4. Node attribute metrics in parallel. 

Gini index is based on the parallel mechanism of tree nodes. 
Since the attribute list needs to be attached to the tree node, 
when designing for parallelization, the attribute list marked by 
different tree nodes needs to be parallelized. And it is 
necessary to determine related rules so that the attribute list of 
the same tree node and attribute tag can be assigned to the 
same Reduce. 

3) Gini Indicator Sorting in Parallel 
In the SPRINT algorithm, if the data belongs to a 
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continuous attribute list, it is necessary to find the split point 
when calculating the Gini index. Therefore, the continuous 
value attribute list needs to be sorted. Gini index sorting is 
based on the sorting technique used by the MapReduce 
framework, which can analyze and process the data in the data 
set more efficiently. If the data set is a continuous value 
attribute, the Gini index and the clear split point need to be 
calculated. To realize the calculation of Gini index, the 
continuous value attribute list must be sorted first. Cbelow 
and Cabove in the continuous value attribute list indicate 
respectively the attribute list information that has not been 
scanned or scanned. 

When sequential scanning is performed on continuous 
value attributes, each scan record is taken as a candidate split 
point, and the Gini index is calculated, and the optimal split 
point is determined through repeated operations. 

After completely splitting the data set into the attribute list 
and sorting it, in the case of large data size, we can use the 
MapReduce framework to deal with this problem. In this 
framework, the keys of <FName, FContent> pairs can be 
sorted by the <FName, FContent> pairs of Reduce through 
the Map process. By combining the above methods, the 
parallelization of the SPRINT algorithm can be realized using 
the MapReduce framework. 

IV. EXPERIMENT AND ANALYSIS OF ALGORITHM PARALLELIZATION 

A. Experimental Environment Preparation 
(1) Hardware environment. First install the VMware 

virtualization software on the server, and then build a virtual 
Hadoop platform. The server parameters are 32G memory, 
Intel (R) Core i7 6700K @ 4.00GHz processor. 

(2) Software environment. The test is completed in a Linux 
environment and the software configuration of the test data 
cluster includes CentOS6.5, hadoop-2.5.0-cdh5.3.6, etc. 
Then the host name and network IP of the node machine are 
divided. 

(3) Hadoop cluster building process. Modify the mapping 
between host and IP address of each node in Linux, turn off 
the firewall of each node, and set the node time 
synchronization. Set up SSH passwordless login, install jdk 
and Hadoop. After starting the zookeeper cluster, start 
journalnode on the corresponding node, format and start the 
HDFS file system, and perform Hadoop performance tuning. 

B. Classification Accuracy Test 
Select four data sets DS1, DS2, DS3, and DS4 from UCI 

Machine Learning Repository. DS1 has 300 sample points, 
DS2 and DS3 have 5000 and 48888 sample points, and DS4 
has 100,000 sample points. The key point of the improved 
algorithm is to reduce the sample data set that needs to be 
compared when searching for neighbors. As long as the limit 
neighbor distance of the algorithm is set properly, there will 
be no loss of neighbor points. That is, in theory, for the same 
data point to be tested, the neighboring sample points found 
by the parallelized SPRINT algorithm and the sample points 
found by the original algorithm should be the same.  

Through the analysis of the experimental results in Figure 5, 
it is found that the classification accuracy of the MapReduce 
model for the four data sets DS1, DS2, DS3, and DS4 is not 

significantly different from that of the serial model. It can be 
seen that although the SPRINT algorithm has not been 
significantly improved in classification accuracy after parallel 
design, it has not declined. It can ensure that the classification 
accuracy of the algorithm after parallelization meets the 
requirements. 
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Fig. 5. Classification results of SPRINT algorithm. 

C. Scalability Test 
When testing the algorithm after parallel design, scalability 

is an important indicator that cannot be ignored. The 
calculation formula is 

SE
P

=

 

(8) 

Where E represents scalability, S represents the speed ratio 
of parallelization of the cluster, and P represents the number 
of nodes of parallel computing. In UCI, DS1, DS2, DS3, and 
DS4 are selected as four experimental sample sets of different 
sizes. The Hadoop platform runs on different numbers of 
clusters for data processing tasks. The nodes are slaver nodes, 
and the number of nodes is 01 to 07. After passing the test 
analysis, the scalability test results obtained are shown in 
Figure 6. 
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Fig. 6. Test results of SPRINT algorithm scalability. 
According to the test results, the SPRINT algorithm has 

good scalability. It can increase the speed of large-scale data 
calculations. As the cluster nodes increase, the degree of 
parallelization and the corresponding data set size have been 
maximized, and cannot grow as the computing nodes in the 
cluster increase, and the scalability shows a downward trend. 
We believe that this trend may be related to factors such as the 
size of the corresponding data set and the maximum degree of 
parallelism. By analyzing the curve in Figure 6, it can be 
known that after the number of slave nodes reaches 5, the 

Engineering Letters, 30:2, EL_30_2_02

Volume 30, Issue 2: June 2022

 
______________________________________________________________________________________ 



 

scalability of the DS1 dataset reaches a horizontal state, 
indicating that the DS1 dataset only needs 5 computing nodes 
to maximize the degree of parallelization of the algorithm. 

D. Speedup Ratio Test 
The speedup ratio can reflect the parallel computing 

performance of the cluster. The calculation formula is 

s

p

TS
T

=

 
(9) 

Among them, sT  is the calculation time of a single node, 
and pT  is the time of parallel calculation of P nodes with the 
same performance. When implementing the test, the larger the 
acceleration ratio, the better the cluster performance. Selected 
data for the speedup test is the same as the scalability test. The 
specific test results are shown in Figure 7. 
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Fig. 7. Test results of SPRINT algorithm speedup ratio. 
According to the test results, the SPRINT algorithm after 

parallel design has a good cluster acceleration ratio, and the 
calculation speed is good in each data set processing. The 
speedup ratio keeps stable or declines with the increase of 
cluster nodes, and the reason may be related to the maximum 
degree of parallelization. After the ratio is maximized, even if 
the number of cluster computing nodes increases, it cannot 
continue to grow. The reasons are as follows: (1) The more 
the number of cluster nodes, the higher the communication 
overhead between nodes; (2) The server that builds the 
experimental environment is a PC, and the computer's own 
hardware has limitations, which will reach the PC computing 
limit of the machine.  

When the DS1 data set reaches five slaver nodes, the 
speedup ratio remains at a level. The reason may be that there 
are 5 nodes in the DS1 dataset with 23,000 sample points, 
which maximizes the degree of parallelization of the 
algorithm. For DS3 and DS4, even if there are 7 computing 
nodes, the degree of parallelism has not reached the highest 
level. 

V. CONCLUSIONS 
Aiming at the problem that traditional data mining 

algorithms cannot effectively store and efficiently process 
data, this article uses the Hadoop platform to implement 
parallelization of the SPRINT algorithm to achieve efficient 
storage and processing of large-scale data sets. In terms of the 
analysis and processing of large-scale data sets, the parallel 
data mining algorithm on the basis of the cloud computing 
platform does not lose classification accuracy. Compared 
with the original algorithm, it has obvious advantages in 

computing speed and excellent parallel speedup. The 
following research work has mainly been done: 

(1) The necessity and research background of parallel 
design of data mining algorithms is analyzed, and the 
characteristics of Hadoop platform and data mining are fully 
understood. 

(2) The SPRINT decision tree algorithm is designed with 
parallelization of decision tree nodes, node attribute metrics, 
and Gini index ordering. Parallelization is achieved through 
the MapReduce programming framework. 

(3) The classification accuracy, scalability, and speedup 
performance of the SPRINT algorithm have been tested.  The 
results indicate that the algorithm has good accuracy, speedup, 
and scalability. 

In future, it is necessary to conduct further research in 
combination with the actual environment of massive data 
mining to enhance the mining ability of the system. 
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