

Abstract—For traditional data mining, all data shall be

loaded into memory for analysis and calculation. It belongs to a
stand-alone computing mode, which has low calculation
efficiency, and a high mining failure rate during the work
process. As the data storage and computer technology develop
rapidly, how to store and process big data effectively has become
an important problem to be solved. Cloud computing can
quickly obtain resources from the computing resource pool, and
implement parallel improvement of data mining algorithms,
which can achieve an efficient combination of cloud computing
platform and data mining, and effectively make up for the
bottlenecks faced by traditional data mining processes.
Therefore, based on the Hadoop cloud computing platform, this
paper makes full use of the characteristics of the MapReduce
programming framework, and proposes a parallel design of
decision tree nodes, node attribute metrics, and Gini index
ranking for the SPRINT decision tree algorithm. The
performance of the parallelized SPRINT algorithm on
classification accuracy, scalability, and speedup ratio is tested.
The results indicate that the parallel design of the SPRINT
algorithm can obtain good scalability and parallel speedup
under the premise of ensuring classification accuracy, which
verifies the feasibility of the parallel design of data mining
algorithms on the basis of cloud computing.

Index Terms—data mining, cloud computing, SPRINT

algorithm, parallel design

I. INTRODUCTION
ITH the continuous improvement of
informationization and intelligence, we have

gradually entered the era of information explosion, and the
amount of data to be processed has increased significantly.
How to discover and use valuable information in a timely and
accurate manner has become the focus of current research.
Data mining can obtain a lot of useful information from the
database. The application of parallel cloud computing can
provide great convenience for data mining, and it can dig out
more valuable information in less time [1-10]. The promotion
and application of cloud computing has created good
conditions for large-scale data storage and processing, and the
available data mining algorithms are more diverse [11-14].

Manuscript received August 22, 2021; revised January 26, 2022.
L. Song is a lecturer at the Modern Education Center, Kaifeng Vocational

College of Culture and Arts, Kaifeng 475004, China. (corresponding author
to provide phone: +86-371-22115401, fax: +86-371-22115401, e-mail:
songlei@kfwyxy.edu.cn).

H. J. Zhang is a lecturer at the Engineering Training Centre, Zhengzhou
University of Technology, Zhengzhou 450044, China. (e-mail:
20146047@zzut.edu.cn).

D. D. Feng is a vice professor at the School of Software, Henan
University, Kaifeng 475004, China. (e-mail: Postans1T@gmail.com).

For example, in business, IBM's cloud computing platform
supports data clustering and regression prediction, and can
automatically complete data analysis and processing [15].
SPSS's Clementine executes standardized data mining
processes to provide users with business decisions [16].
Academia has also done a lot of research on its algorithms
based on cloud computing. Literature [17] proposed an
optimized clustering and access algorithm for cloud
computing databases combined with chaotic probability
analysis. The chaotic phase space reconstruction algorithm
was used to perform phase space feature clustering of massive
data sets in cloud computing databases. Based on this,
massive data classification and feature extraction are
performed to optimize data scheduling performance.
However, the algorithm has poor convergence performance
and the calculation process is too complicated. Literature [18]
proposed a distributed access algorithm for cloud computing
database retrieval based on information-based matching
method. Through the single node data scheduling, the
construction and access of the state characteristic model of the
cloud computing database was realized, and the accuracy of
the data was enhanced. But the algorithm has limitations in
extracting prior knowledge, and the clustering performance of
the data is poor. Literature [19] used the attribute weight
allocation method of cloud computing database access
channel for data mining, and conducted random sample query
from the cloud computing database through the query
interface. However, the algorithm reduces the classification
accuracy and recall of massive data. Literature [20] improved
the SPRINT decision tree classification algorithm to enable it
to be deployed in parallel on the Hadoop cloud computing
platform to reduce the duplication and unnecessary
calculations in the data processing process. But the reliability
is not ideal. Reference [21] improved the Bayesian
classification (a classification algorithm that already exists in
MLlib) of the machine learning library in Spark cloud
computing platform and applied it to the Spark Streaming
framework to achieve real-time classification of data. The
directories should be introduced into the classification
performance of metadata. They limit the development and use
of applications. Literature [22] put forward a MapReduce
parallel computing framework based on cloud computing
platform Hadoop, and implemented an ID3 decision tree
parallel classification algorithm for massive data sets.
However, the calculation is so complex that the system
response time performance is poor. Literature [23] suggested
the SVM_KNN classification algorithm based on the
advantages and disadvantages of KNN and SVM algorithm,
and realized the parallelization of the algorithm on the

 Design of SPRINT Parallelization of Data
Mining Algorithms Based on Cloud Computing

Lei Song, Huajie Zhang, Dongdong Feng

W

Engineering Letters, 30:2, EL_30_2_02

Volume 30, Issue 2: June 2022

__

Hadoop cloud computing platform. However, due to the lack
of mutation process, the system is easy to fall into local
optimization and cannot realize the optimal parallelization.

To solve the problems of the above traditional algorithms,
this article has fully analyzed the Hadoop cloud computing
platform, using the related features of MapReduce
programming framework, implemented a parallel design of
the SPRINT decision tree algorithm, and determined the
feasibility of the design through relevant performance tests.
Simulation analysis further verifies the effectiveness of this
method, which obtains good scalability and parallel speedup
under the premise of ensuring the classification accuracy.
Compared with traditional data mining method, it has more
outstanding performance advantages.

The remainder of this paper is structured as follows: In
Section 2, the background of the cloud computing platform
and features of Hadoop will be explained. In Section 3, the
detailed design of parallelization of data mining algorithms on
the basis of cloud computing will be elaborated. Section 4
describes the performance evaluation results. Finally, the
conclusions and future work will be presented in Section 5.

II. RELATED WORKS

A. Cloud Computing Platform and Hadoop
In the face of very large-scale data sets and

high-dimensional data types, traditional stand-alone
processing is increasingly unable to meet actual needs in
terms of computing power and time efficiency. Cloud
computing follows the "give on demand" service model and
uses technologies such as virtualization to connect computers
into a computing platform with high fault tolerance, high
storage, and high scalability. Due to the popularity of cloud
computing technology, many algorithms can be parallelized
and applied to cloud platforms [24]. This makes processing
large-scale data no longer a problem. By parallelizing the
algorithm, it can be deployed on a computing cluster
composed of relatively inexpensive consumer-grade
computers, and obtain computing power and efficiency
comparable to expensive supercomputers [25, 26].

As shown in Table 1, compared with traditional data
processing methods, cloud computing platforms have
significant advantages.

TABLE Ⅰ

COMPARISON OF TRADITIONAL AND CLOUD COMPUTING SERVICES

Item Traditional mode Cloud
computing

Man-machine
mode Internet / LAN Using SaaS with

the Internet

Implementation
mode

Equipment
development

system
External service

Technology
model Single user Flexible, scalable,

dynamic users

Business model Pay for equipment
and labor

What you use is
what you pay

Hadoop is derived from the open source project of the
Apache Foundation and belongs to one of many cloud
computing platforms, which provides great convenience for

data processing [27]. The Hadoop platform is mainly
composed of MapReduce, Pig, HDFS, Hive and HBase [28].
In this platform, users can store large-scale data in HDFS
systems and apply MapReduce model to process data in
HDFS.

The Hadoop platform mainly includes the following
features:

(1) During the parallel design process, the increase of
nodes can expand the storage capacity and computing power
of the Hadoop cluster.

(2) Since the cluster of the Hadoop platform can be built on
a general commercial computer, the cost is relatively low.

(3) By using the MapReduce framework for task
distribution, and implementing parallel processing and
protocol summarization of different parts of the data, the
desired results can be obtained, and there will be a positive
correlation between the computing speed and the number of
computing nodes.

(4) The cluster itself can complete fault detection and
processing, which is more conducive to the successful
completion of tasks.

B. Definition and Process of Data Mining
Data mining is to find useful information from a database.

This process is closely related to many fields such as
databases, statistics, artificial intelligence, and so on. From a
functional perspective, data mining includes cluster analysis,
classification and prediction, association analysis, and outlier
detection [29]. Generally, the basic process of data mining
should include the following steps:

(1) Data cleaning. Data mining algorithms cannot be
applied on unqualified data sets. Thus, the data should be
cleaned before data mining, and the data quality should be
improved by eliminating data anomalies and filling in missing
data, so that it can better meet the specifications of mining
algorithms.

(2) Data integration. This process can implement combined
processing on multiple data sources, merge them together,
make data storage consistent, and eliminate possible data
redundancy through appropriate processing.

(3) Data protocol. This process can compress and process
related data through various methods such as data aggregation
and deletion of redundancy, extract task-related data, and
reduce the time complexity of data mining.

(4) Data transformation. Aggregation, data generalization,
smooth processing and other methods are used to transform
data. For data of real type, it can be transformed by using the
concept of data discretization and layering.

(5) Knowledge discovery. It is the core process of data
mining to analyze the data set using data mining algorithms to
find and extract useful data.

(6) Model evaluation. Evaluate the mined data according to
certain evaluation criteria to determine its reliability.

(7) Knowledge representation. The mined data is displayed
visually, and the analysis results can also be stored for other
applications to call.

The first four steps of data mining can be summarized as
data preprocessing. The overall steps are shown in Figure 1.

Engineering Letters, 30:2, EL_30_2_02

Volume 30, Issue 2: June 2022

__

Database

Cleaning and
integration

Data warehouse

Protocol and
transformation

Specific database

Knowledge
discovery

Mode

Evaluation and
representation

 Knowledge

 Fig. 1. Data pre-processing diagram.

III. PARALLEL DESIGN OF DATA MINING ALGORITHM BASED
ON CLOUD COMPUTING

A. SPRINT Decision Tree Algorithm
When making a decision tree, it is necessary to calculate

the attribute selection metric of each node, and then
determine the node split. Most decision tree algorithms
currently in use need to keep all or most of the data in
memory at all times. Therefore, when applying these
algorithms to deal with large-scale information, it is easy
to cause memory overflow, which greatly limits the
knowledge acquisition ability of data mining. With the
increasing scale of data processing, the requirements for
data mining and data processing capabilities have
increased significantly. In this context, people have
discovered a variety of decision tree algorithms such as
RainFORST [30] and SPRINT [31], which can process
large data sets.

1) Decision Tree Algorithm
This tree algorithm is more commonly used in the

process of program design. Tree-shaped rules can be
deduced from irregular and unordered training samples. It
is the most basic and widely used algorithm model in
machine learning algorithms. It consists of a decision map
and possible results (costs and risks included). According
to these, a plan can be created to reach the goal. The core
idea is to filter out the final desired result through
continuous decision making.

Excellent

Age

Credit rating Student Yes

Yes Yes Yes Yes

<=30 >40
31~40

OrdinaryNo Yes

 Fig. 2. Typical decision tree structure.
Decision tree uses a tree-like graph or decision model,

including random event results, resource costs, and
practicality. Leaf nodes are class labels, and the topmost
level of the decision tree is the root node. A typical model
is displayed in Figure 2.

2) SPRINT Algorithm and Basic Steps
The SPRINT algorithm has important value in processing

large-scale data sets, and has good scalability. Compared with
most memory-resident algorithms, the SPRINT algorithm can
describe the characteristics of the data set by using attribute
lists and other methods [32]. When constructing a decision
tree, attribute selection metrics are often used to evaluate the
classification effect of the attributes of the tree nodes. The
following three are more commonly used attribute selection
metrics to help determine the best segmentation attributes.

(1) Information gain. It is more common in the ID3
algorithm, and the information size can be measured by the
uncertainty of the information.

(2) The calculation formula of the expected information of
the tuple classification in DS is

2
1

() log ()
m

i i
i

Info DS p p
=

= −∑ (1)

Divide the tuples in DS according to attribute A. In order to
obtain a more accurate classification, the calculation formula
of the amount of information that needs to be obtained is

1

() ()
m j

A j
i

DS
Info DS Info DS

DS=

= − ×∑ (2)

Therefore, the calculation formula of the information gain is

() () ()AGain A Info DS Info DS= − (3)

(2) Information gain rate. It is a new metric function that
mainly penalizes multi-valued attributes by adding a split
information item. Its calculation formulas are

2
1

() log
v j j

A
j

DS DS
SplitInfo DS

DS DS=

 
 = − ×
 
 

∑ (4)

()()
()

Gain AGainRatio A
SplitInfo A

=

(5)

(3) Gini indicator. The calculation of this indicator usually
needs to be divided into two cases for analysis. The first case
is if the attribute list is divided, as shown in the following
formula.

2

1 1

() (1) 1
m w

i i i
i i

Gini DS p p p
= =

= − = −∑ ∑

(6)

The second case is if the data set DS contains m pieces of
data and is divided into two parts 1DS and 2DS . When 1m
and 2m data are included in these two parts, the Gini index
calculation formula is

1 2
1 2() () ()split

m mGini DS Gini DS Gini DS
m m

= +

(7)

The SPRINT algorithm decision tree generation process
is:

① First split the dataset by column to form a list of
attributes.

② Build the root node. After the build is complete, all
the attribute lists should be near the node.

Engineering Letters, 30:2, EL_30_2_02

Volume 30, Issue 2: June 2022

__

③ Calculate the Gini indicator and determine the split
point.

④ Compare the Gini index of each attribute list, select
the appropriate segmentation attribute, and split it
into two parts ()1, 2N N .

⑤ Generate 1N

and 2N decision trees until all

datasets belong to the same class of targets.

B. MapReduce Programming Framework
MapReduce [33] is a distributed programming model

proposed by Google, which is suitable for processing massive
data offline. Its main idea is to evolve from functional
programming, hide the specific implementation details of
parallel programming, and distribute large-scale operations of
data sets to each node in the cluster for parallel processing.
Then the calculation results of each node are merged together
to realize the calculation task. The MapReduce framework
was first born in the search field. The reason is that people
cannot input lots of data in a short time when there is more
data to be processed. Therefore, these calculations must be
distributed on lots of machines to meet the expected
requirements. How to perform data distribution, parallel
calculations, and error handling is also extremely important.
On the Hadoop platform, MapReduce framework can be
applied for data processing. By mastering the relevant content
of the MapReduce framework, users can write program code
on the Hadoop platform to complete data mining.

The programming model of the MapReduce framework
first requires input data. After the parsing and iterative
processing, the input <FName, FContent> pairs are mapped,
and the data is reduced in units of groups, and the resulting
values are saved. For example, to calculate the number of
each word occurrences in a voluminous document, the
prepared pseudo code is as follows.

map(String FName, String FContent):
//FName: file name

//FContent: file contents
For each word WD in FContent:

EmitIntermediate(WD,“1”):
Reduce(String FName，Iterator FContents):

//FName:a word
//FContents:a list of counts

Int result=0;
for each FC in FContents

Emit(AsString(result))
result+ =ParseInt(FC)

The Map and Reduce function can output each word in the

document and accumulate the count of specific words. Using
the MapReduce programming model, data mining algorithms
can be designed and run on the Hadoop platform.

C. Implementation of SPRINT Algorithm Based on
MapReduce Framework
By analyzing the SPRINT algorithm, we need to design

according to the MapReduce framework when designing a
parallelization scheme. It mainly includes three parts:
decision tree node, node attribute measurement and parallel
design of Gini index ranking.

1) Parallelization of Decision Tree Nodes
In a decision tree composed of a topological structure, the

tree is generated through the continuous splitting of each tree
node. Practically, the data set is split. After the tree nodes are
continuously split, the decision tree can be generated, so the
split of the data set is the root. The SPRINT algorithm needs
to first use the Gini index to determine the best split point. The
sub-attribute list after the tree node splits will be split twice in
the new child node. The splitting mode in Figure 3 (a) belongs
to the traditional SPRINT algorithm that was more commonly
used in the past. MapReduce-based SPRINT algorithm is
shown in Figure 3 (b). As shown below, since the algorithm of
each layer of the spanning tree is the same, when processing it,
the loop can be performed in order to complete the attribute
list split and construct the node. During the execution of the
algorithm, the attribute list marks its own tree node
information.

(a) (b)

Fig. 3. Parallel design of tree nodes.
 (a) Traditional SPRINT algorithm; (b) MapReduce-based SPRINT

algorithm
2) Node Attribute Metrics in Parallel

In the SPRINT algorithm, Gini mainly performs a
parallelizable process in the node attribute measurement. The
calculation of the Gini indicator is an extremely important
step [34, 35]. By calculating the Gini value of each attribute
on the node, the best splitting attribute can be determined, so
the calculation should be paid great attention. In the parallel
design of SPRINT, since the Gini indexes of the attributes do
not affect each other and are independent of each other, the
parallel design of node attribute measurement can be
performed according to the process shown in Figure 4.

List of attributes
of the same node

Map ……

Reduce Reduce Reduce Reduce Reduce Reduce

Node A Node B

ATTR 1 ATTR 2 ATTR 3 ATTR 1 ATTR 2 ATTR 3

Map Map Map

Fig. 4. Node attribute metrics in parallel.

Gini index is based on the parallel mechanism of tree nodes.
Since the attribute list needs to be attached to the tree node,
when designing for parallelization, the attribute list marked by
different tree nodes needs to be parallelized. And it is
necessary to determine related rules so that the attribute list of
the same tree node and attribute tag can be assigned to the
same Reduce.

3) Gini Indicator Sorting in Parallel
In the SPRINT algorithm, if the data belongs to a

Engineering Letters, 30:2, EL_30_2_02

Volume 30, Issue 2: June 2022

__

continuous attribute list, it is necessary to find the split point
when calculating the Gini index. Therefore, the continuous
value attribute list needs to be sorted. Gini index sorting is
based on the sorting technique used by the MapReduce
framework, which can analyze and process the data in the data
set more efficiently. If the data set is a continuous value
attribute, the Gini index and the clear split point need to be
calculated. To realize the calculation of Gini index, the
continuous value attribute list must be sorted first. Cbelow
and Cabove in the continuous value attribute list indicate
respectively the attribute list information that has not been
scanned or scanned.

When sequential scanning is performed on continuous
value attributes, each scan record is taken as a candidate split
point, and the Gini index is calculated, and the optimal split
point is determined through repeated operations.

After completely splitting the data set into the attribute list
and sorting it, in the case of large data size, we can use the
MapReduce framework to deal with this problem. In this
framework, the keys of <FName, FContent> pairs can be
sorted by the <FName, FContent> pairs of Reduce through
the Map process. By combining the above methods, the
parallelization of the SPRINT algorithm can be realized using
the MapReduce framework.

IV. EXPERIMENT AND ANALYSIS OF ALGORITHM PARALLELIZATION

A. Experimental Environment Preparation
(1) Hardware environment. First install the VMware

virtualization software on the server, and then build a virtual
Hadoop platform. The server parameters are 32G memory,
Intel (R) Core i7 6700K @ 4.00GHz processor.

(2) Software environment. The test is completed in a Linux
environment and the software configuration of the test data
cluster includes CentOS6.5, hadoop-2.5.0-cdh5.3.6, etc.
Then the host name and network IP of the node machine are
divided.

(3) Hadoop cluster building process. Modify the mapping
between host and IP address of each node in Linux, turn off
the firewall of each node, and set the node time
synchronization. Set up SSH passwordless login, install jdk
and Hadoop. After starting the zookeeper cluster, start
journalnode on the corresponding node, format and start the
HDFS file system, and perform Hadoop performance tuning.

B. Classification Accuracy Test
Select four data sets DS1, DS2, DS3, and DS4 from UCI

Machine Learning Repository. DS1 has 300 sample points,
DS2 and DS3 have 5000 and 48888 sample points, and DS4
has 100,000 sample points. The key point of the improved
algorithm is to reduce the sample data set that needs to be
compared when searching for neighbors. As long as the limit
neighbor distance of the algorithm is set properly, there will
be no loss of neighbor points. That is, in theory, for the same
data point to be tested, the neighboring sample points found
by the parallelized SPRINT algorithm and the sample points
found by the original algorithm should be the same.

Through the analysis of the experimental results in Figure 5,
it is found that the classification accuracy of the MapReduce
model for the four data sets DS1, DS2, DS3, and DS4 is not

significantly different from that of the serial model. It can be
seen that although the SPRINT algorithm has not been
significantly improved in classification accuracy after parallel
design, it has not declined. It can ensure that the classification
accuracy of the algorithm after parallelization meets the
requirements.

0

10

20

30

40

50

60

70

80

90

100

DS1 DS2 DS3 DS4

A
cc

ur
ac

y
(%

)

Node

Serial model
Mapreduce model

Fig. 5. Classification results of SPRINT algorithm.

C. Scalability Test
When testing the algorithm after parallel design, scalability

is an important indicator that cannot be ignored. The
calculation formula is

SE
P

=

(8)

Where E represents scalability, S represents the speed ratio
of parallelization of the cluster, and P represents the number
of nodes of parallel computing. In UCI, DS1, DS2, DS3, and
DS4 are selected as four experimental sample sets of different
sizes. The Hadoop platform runs on different numbers of
clusters for data processing tasks. The nodes are slaver nodes,
and the number of nodes is 01 to 07. After passing the test
analysis, the scalability test results obtained are shown in
Figure 6.

0

0.2

0.4

0.6

0.8

1

1.2

01 02 03 04 05 06 07

Ex
pa

ns
io

n
ra

ti
o

Node numbers

DS1 DS2 DS3 DS4

Fig. 6. Test results of SPRINT algorithm scalability.
According to the test results, the SPRINT algorithm has

good scalability. It can increase the speed of large-scale data
calculations. As the cluster nodes increase, the degree of
parallelization and the corresponding data set size have been
maximized, and cannot grow as the computing nodes in the
cluster increase, and the scalability shows a downward trend.
We believe that this trend may be related to factors such as the
size of the corresponding data set and the maximum degree of
parallelism. By analyzing the curve in Figure 6, it can be
known that after the number of slave nodes reaches 5, the

Engineering Letters, 30:2, EL_30_2_02

Volume 30, Issue 2: June 2022

__

scalability of the DS1 dataset reaches a horizontal state,
indicating that the DS1 dataset only needs 5 computing nodes
to maximize the degree of parallelization of the algorithm.

D. Speedup Ratio Test
The speedup ratio can reflect the parallel computing

performance of the cluster. The calculation formula is

s

p

TS
T

=

(9)

Among them, sT is the calculation time of a single node,
and pT is the time of parallel calculation of P nodes with the
same performance. When implementing the test, the larger the
acceleration ratio, the better the cluster performance. Selected
data for the speedup test is the same as the scalability test. The
specific test results are shown in Figure 7.

Sp
ee

du
p

ra
ti

o

0

1

2

3

4

5

6

7

Node numbers
01 02 03 04 05 06 07

DS1 DS2 DS3 DS4

Fig. 7. Test results of SPRINT algorithm speedup ratio.
According to the test results, the SPRINT algorithm after

parallel design has a good cluster acceleration ratio, and the
calculation speed is good in each data set processing. The
speedup ratio keeps stable or declines with the increase of
cluster nodes, and the reason may be related to the maximum
degree of parallelization. After the ratio is maximized, even if
the number of cluster computing nodes increases, it cannot
continue to grow. The reasons are as follows: (1) The more
the number of cluster nodes, the higher the communication
overhead between nodes; (2) The server that builds the
experimental environment is a PC, and the computer's own
hardware has limitations, which will reach the PC computing
limit of the machine.

When the DS1 data set reaches five slaver nodes, the
speedup ratio remains at a level. The reason may be that there
are 5 nodes in the DS1 dataset with 23,000 sample points,
which maximizes the degree of parallelization of the
algorithm. For DS3 and DS4, even if there are 7 computing
nodes, the degree of parallelism has not reached the highest
level.

V. CONCLUSIONS
Aiming at the problem that traditional data mining

algorithms cannot effectively store and efficiently process
data, this article uses the Hadoop platform to implement
parallelization of the SPRINT algorithm to achieve efficient
storage and processing of large-scale data sets. In terms of the
analysis and processing of large-scale data sets, the parallel
data mining algorithm on the basis of the cloud computing
platform does not lose classification accuracy. Compared
with the original algorithm, it has obvious advantages in

computing speed and excellent parallel speedup. The
following research work has mainly been done:

(1) The necessity and research background of parallel
design of data mining algorithms is analyzed, and the
characteristics of Hadoop platform and data mining are fully
understood.

(2) The SPRINT decision tree algorithm is designed with
parallelization of decision tree nodes, node attribute metrics,
and Gini index ordering. Parallelization is achieved through
the MapReduce programming framework.

(3) The classification accuracy, scalability, and speedup
performance of the SPRINT algorithm have been tested. The
results indicate that the algorithm has good accuracy, speedup,
and scalability.

In future, it is necessary to conduct further research in
combination with the actual environment of massive data
mining to enhance the mining ability of the system.

AUTHOR CONTRIBUTIONS
 Conceptualization, Lei Song; methodology, Huajie Zhang;

software, Lei Song; validation, Huajie Zhang; formal analysis,
Dongdong Feng; investigation, Lei Song; resources,
Dongdong Feng; data curation, Huajie Zhang; writing, Lei
Song & Huajie Zhang; supervision, Dongdong Feng.

ACKNOWLEDGMENTS
 The authors thank Mingzhe Song, Xiaojing Wang, Xi'an

Zhang and Tong Song for their useful advice during this work.

REFERENCES
[1] Y. Zang, T. Hu, T. Zhou, “An Automated Penetration Semantic

Knowledge Mining Algorithm Based on Bayesian Inference,” Comput.
Mater. Contin., vol. 66, pp. 2573-2585, 2021.

[2] A. K. Arslan, C. Colak, M. E. Sarihan, “Different medical data mining
approaches based prediction of ischemic stroke,” Comput. Methods
Programs Biomed., vol. 130, pp. 87–92, 2016.

[3] H. Wiemer, L. Drowatzky, S. Ihlenfeldt, “Data mining methodology
for engineering applications (DMME)—A holistic extension to the
CRISP-DM model,” App. Sci., vol. 9, pp. 2407, 2019.

[4] Q. Yaseen, Y. Jararweh, B. Panda, Q. Althebyan, “An insider threat
aware access control for cloud relational databases,” Clust. Comput.,
vol. 20, no. 1, pp. 2669–2685, 2017.

[5] S. Huber, H. Wiemer, D. Schneider, S. Ihlenfeldt, “DMME: Data
mining methodology for engineering applications—a holistic
extension to the CRISP-DM model,” Procedia CIRP 2019, vol. 79, pp.
403–408. In Proceedings of the 12th CIRP Conference on Intelligent
Computation in Manufacturing Engineering, 18–20 July, 2018.

[6] U. Fayyad, G. Piatetsky-Shapiro, P. Smith, “From Data Mining to
Knowledge Discovery in Databases,” Commun. ACM., vol. 39, pp.
37–54, 1996.

[7] G. B. Hima Bindu, K. Ramani, and C. Shoba Bindu, “Optimized
Resource Scheduling using the Meta Heuristic Algorithm in Cloud
Computing,” IAENG International Journal of Computer Science, vol.
47, no.3, pp. 360-366, 2020.

[8] X. Y. Tian, Q.H. Zheng, and N. Jiang, “An Abnormal Behavior
Detection Method Leveraging Multi-modal Data Fusion and Deep
Mining,” IAENG International Journal of Applied Mathematics, vol.
51, no.1, pp. 92-99, 2021.

[9] G. Galli , C. Patrone, A. C. Bellam, N. R. Annapareddy, and R.
Revetria, “Improving process using digital twin: a methodology for the
automatic creation of models,” In Lecture Notes in Engineering and
Computer Science: Proceedings of the World Congress on Engineering
and Computer Science, pp. 22-24, 2019.

[10] M. Nijim, H. Albataineh, “En-Stor: Energy-Aware Hybrid Mobile
Storage System using Predictive Prefetching and Data Mining
Engine,” Engineering Letters, vol. 26, no. 2, pp. 252-256, 2018.

Engineering Letters, 30:2, EL_30_2_02

Volume 30, Issue 2: June 2022

__

[11] M. Kalra, S. Singh, “A review of metaheuristic scheduling techniques
in cloud computing,” Egypt. Inform. J., vol.16, pp. 275–295, 2015.

[12] M. Kumar, S. Sharma, A. Goel, S. Singh, “A comprehensive survey for
scheduling techniques in cloud computing,” J. Netw. Comput. Appl.,
vol. 143, 1–33, 2019.

[13] J. Tang, C. Huang, H. Liu, N. Al-Nabhan, “ Cloud Storage Strategy of
Blockchain Based on Genetic Prediction Dynamic Files,” Electronics,
vol. 9, pp. 398, 2020.

[14] J. M. Do, Y. J. Song, N. Park, “Attribute based proxy re-encryption for
data confidentiality in cloud computing environments,” In Proceedings
of the 2011 First ACIS/JNU International Conference on Computers,
Networks, Systems and Industrial Engineering (CNSI) 2011, 23-25
May, 2011, pp. 248–251.

[15] M. N. Birje, P. S. Challagidad, R. H. Goudar, M. T. Tapale, “Cloud
computing review: concepts, technology, challenges and security,”
IEEE Trans. on Cloud Comput., vol. 6, pp. 32-57, 2017. P. Lemenkova,
“Numerical Data Modelling and Classification in Marine Geology by
the SPSS Statistics,” Int. J. Eng. Technol., vol. 5, pp. 90–99, 2019.

[16] S. Gharehpasha, M. Masdari, A. Jafarian, “Power efficient virtual
machine placement in cloud data centers with a discrete and chaotic
hybrid optimization algorithm,” Cluster Comput., vol. 24, pp.
1293-1315, 2021.

[17] M. Tarahomi, M. Izadi, M. Ghobaei-Arani, “An efficient power-aware
VM allocation mechanism in cloud data centers: a micro genetic-based
approach,” Cluster Comput., vol. 24, pp. 919-934, 2021.

[18] A. Khosravi, L. L. Andrew, R. Buyya, “Dynamic vm placement
method for minimizing energy and carbon cost in geographically
distributed cloud data centers,” IEEE Trans. Sustain. Comput., vol. 2,
pp. 183-196, 2017.

[19] S. Kikuchi, Y. Matsumoto, “Impact of live migration on multi-tier
application performance in clouds,” In Proceedings of the 2012 IEEE
Fifth International Conference on Cloud Computing, pp. 261-268,
2012.

[20] D. Jiang, P. Huang, P. Lin, J. Jiang, “Energy efficient VM placement
heuristic algorithms comparison for cloud with multidimensional
resources,” In Proceedings of the International Conference on
Information Computing and Applications, vol. 7473, pp. 413-420,
2012.

[21] F. N. Afrati, N. Stasinopoulos, J. D. Ullman, A. Vassilakopoulos,
Sharesskew, “An algorithm to handle skew for joins in mapreduce,” Inf.
Syst., vol. 77, pp. 129-150, 2018.

[22] J. Pinto, P. Jain, T. Kumar, “Fault prediction for distributed computing
Hadoop clusters using real-time higher order differential inputs to
SVM: Zedacross,” Int. J. Inf. Comput. Secur., vol. 12, pp. 181-198,
2020.

[23] G. Fylaktopoulos, M. Skolarikis, I. Padadopoulos, G. Goumas, A.
Sotiropoulos, I. Maglogiannis, “A distributed modular platform for the
development of cloud based applications,” Future Gener. Comput.
Syst., vol. 78, pp. 127–141, 2018.

[24] M. Jensen, J. Schwenk, N. Gruschka, L. L. Iacono, “On technical
security issues in cloud computing,” In Proceedings of the IEEE
International Conference on In Cloud Computing CLOUD’09, pp.
109-116, 2009.

[25] G. Yang, M. Jiang, W. Ouyang, G. Ji, H. Xie, A. M. Rahmani, H.
Tenhunen, “IoT-based remote pain monitoring system. From device to
cloud platform,” IEEE J. Biomed. Health. Inform., vol. 22, pp.
1711-1719, 2017.

[26] B. Qureshi, S. Alwehaibi, A. Koubaa, “On power consumption profiles
for data intensive workloads in virtualized Hadoop clusters,” In
Proceedings of the 2017 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pp. 42-47,
2017.

[27] S. Ibrahim, “Governing energy consumption in Hadoop through CPU
frequency scaling: An analysis,” Future Gener. Comput. Syst., vol. 54,
pp. 219-232, 2016.

[28] U. Shafique, H.A. Qaiser, “Comparative Study of Data Mining Process
Models (KDD, CRISP-DM and SEMMA),” Int. J. Innov. Sci. Res., vol.
12, pp. 217-222, 2014.

[29] F. F. Malavelle, J. M. Haywood, L. M. Mercado, G. A. Folberth, N.
Bellouin, S. Sitch, P. Artaxo, “Studying the impact of biomass burning
aerosol radiative and climate effects on the Amazon rainforest
productivity with an Earth system model,” Atmos. Chem. Phys., vol 19,
pp. 1301-1326, 2019.

[30] C. G. Derington, T. H. Gums, A. P. Bress, J. S. Herrick, T. H. Greene,
A. E. Moran, J. J. Saseen, “Association of Total Medication Burden
with Intensive and Standard Blood Pressure Control and Clinical
Outcomes: A Secondary Analysis of SPRINT,” Hypertension., vol. 74,
pp. 267-275, 2019.

[31] Z. Guo, M. Liu, H. Qin, B. Li, “Mechanical Fault Diagnosis of a DC
Motor Utilizing United Variational Mode Decomposition, SampEn,
and Random Forest-SPRINT Algorithm Classifiers,” Entropy., vol. 21,
pp. 470, 2019.

[32] A. Bechini, F. Marcelloni, A. Segatori, “A MapReduce solution for
associative classification of big data,” Inf. Sci., vol. 332, pp. 33–55,
2016.

[33] L. Leydesdorff, C. S. Wagner, L. Bornmann, “Interdisciplinarity as
diversity in citation patterns among journals: Rao-Stirling diversity,
relative variety, and the Gini coefficient,” J. Informetr., vol. 13, pp.
255–269, 2019.

[34] P. David, “Optimization of Gini Coefficient Affected by Imperfect
Input Data,” Eur. J. Bus. Sci. Technol., vol. 5, pp. 21-29, 2019.

[35] R. Valbuena, K. Eerikäinen, P. Packalen, M. Maltamo, “Gini
coefficient predictions from airborne lidar remote sensing display the
effect of management intensity on forest structure,” Ecol. Indic., vol.
60, pp. 574-585, 2016.

Engineering Letters, 30:2, EL_30_2_02

Volume 30, Issue 2: June 2022

__

	I. INTRODUCTION
	II. Related Works
	A. Cloud Computing Platform and Hadoop
	B. Definition and Process of Data Mining

	III. Parallel Design of Data Mining Algorithm Based on Cloud Computing
	A. Sprint Decision Tree Algorithm
	1) Decision Tree Algorithm
	2) Sprint Algorithm and Basic Steps

	B. MapReduce Programming Framework
	C. Implementation of SPRINT Algorithm Based on MapReduce Framework
	1) Parallelization of Decision Tree Nodes
	2) Node Attribute Metrics in Parallel
	3) Gini Indicator Sorting in Parallel

	IV. Experiment and Analysis of Algorithm Parallelization
	A. Experimental Environment Preparation
	B. Classification Accuracy Test
	C. Scalability Test
	D. Speedup Ratio Test

	V. Conclusions
	Author Contributions
	Acknowledgments
	References
	[1] Y. Zang, T. Hu, T. Zhou, “An Automated Penetration Semantic Knowledge Mining Algorithm Based on Bayesian Inference,” Comput. Mater. Contin., vol. 66, pp. 2573-2585, 2021.
	[2] A. K. Arslan, C. Colak, M. E. Sarihan, “Different medical data mining approaches based prediction of ischemic stroke,” Comput. Methods Programs Biomed., vol. 130, pp. 87–92, 2016.
	[3] H. Wiemer, L. Drowatzky, S. Ihlenfeldt, “Data mining methodology for engineering applications (DMME)—A holistic extension to the CRISP-DM model,” App. Sci., vol. 9, pp. 2407, 2019.
	[4] Q. Yaseen, Y. Jararweh, B. Panda, Q. Althebyan, “An insider threat aware access control for cloud relational databases,” Clust. Comput., vol. 20, no. 1, pp. 2669–2685, 2017.
	[5] S. Huber, H. Wiemer, D. Schneider, S. Ihlenfeldt, “DMME: Data mining methodology for engineering applications—a holistic extension to the CRISP-DM model,” Procedia CIRP 2019, vol. 79, pp. 403–408. In Proceedings of the 12th CIRP Conference on Inte...
	[6] U. Fayyad, G. Piatetsky-Shapiro, P. Smith, “From Data Mining to Knowledge Discovery in Databases,” Commun. ACM., vol. 39, pp. 37–54, 1996.
	[7] G. B. Hima Bindu, K. Ramani, and C. Shoba Bindu, “Optimized Resource Scheduling using the Meta Heuristic Algorithm in Cloud Computing,” IAENG International Journal of Computer Science, vol. 47, no.3, pp. 360-366, 2020.
	[8] X. Y. Tian, Q.H. Zheng, and N. Jiang, “An Abnormal Behavior Detection Method Leveraging Multi-modal Data Fusion and Deep Mining,” IAENG International Journal of Applied Mathematics, vol. 51, no.1, pp. 92-99, 2021.
	[9] G. Galli , C. Patrone, A. C. Bellam, N. R. Annapareddy, and R. Revetria, “Improving process using digital twin: a methodology for the automatic creation of models,” In Lecture Notes in Engineering and Computer Science: Proceedings of the World Con...
	[10] M. Nijim, H. Albataineh, “En-Stor: Energy-Aware Hybrid Mobile Storage System using Predictive Prefetching and Data Mining Engine,” Engineering Letters, vol. 26, no. 2, pp. 252-256, 2018.
	[11] M. Kalra, S. Singh, “A review of metaheuristic scheduling techniques in cloud computing,” Egypt. Inform. J., vol.16, pp. 275–295, 2015.
	[12] M. Kumar, S. Sharma, A. Goel, S. Singh, “A comprehensive survey for scheduling techniques in cloud computing,” J. Netw. Comput. Appl., vol. 143, 1–33, 2019.
	[13] J. Tang, C. Huang, H. Liu, N. Al-Nabhan, “ Cloud Storage Strategy of Blockchain Based on Genetic Prediction Dynamic Files,” Electronics, vol. 9, pp. 398, 2020.
	[14] J. M. Do, Y. J. Song, N. Park, “Attribute based proxy re-encryption for data confidentiality in cloud computing environments,” In Proceedings of the 2011 First ACIS/JNU International Conference on Computers, Networks, Systems and Industrial Engin...
	[15] M. N. Birje, P. S. Challagidad, R. H. Goudar, M. T. Tapale, “Cloud computing review: concepts, technology, challenges and security,” IEEE Trans. on Cloud Comput., vol. 6, pp. 32-57, 2017. P. Lemenkova, “Numerical Data Modelling and Classification...
	[16] S. Gharehpasha, M. Masdari, A. Jafarian, “Power efficient virtual machine placement in cloud data centers with a discrete and chaotic hybrid optimization algorithm,” Cluster Comput., vol. 24, pp. 1293-1315, 2021.
	[17] M. Tarahomi, M. Izadi, M. Ghobaei-Arani, “An efficient power-aware VM allocation mechanism in cloud data centers: a micro genetic-based approach,” Cluster Comput., vol. 24, pp. 919-934, 2021.
	[18] A. Khosravi, L. L. Andrew, R. Buyya, “Dynamic vm placement method for minimizing energy and carbon cost in geographically distributed cloud data centers,” IEEE Trans. Sustain. Comput., vol. 2, pp. 183-196, 2017.
	[19] S. Kikuchi, Y. Matsumoto, “Impact of live migration on multi-tier application performance in clouds,” In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, pp. 261-268, 2012.
	[20] D. Jiang, P. Huang, P. Lin, J. Jiang, “Energy efficient VM placement heuristic algorithms comparison for cloud with multidimensional resources,” In Proceedings of the International Conference on Information Computing and Applications, vol. 7473, ...
	[21] F. N. Afrati, N. Stasinopoulos, J. D. Ullman, A. Vassilakopoulos, Sharesskew, “An algorithm to handle skew for joins in mapreduce,” Inf. Syst., vol. 77, pp. 129-150, 2018.
	[22] J. Pinto, P. Jain, T. Kumar, “Fault prediction for distributed computing Hadoop clusters using real-time higher order differential inputs to SVM: Zedacross,” Int. J. Inf. Comput. Secur., vol. 12, pp. 181-198, 2020.
	[23] G. Fylaktopoulos, M. Skolarikis, I. Padadopoulos, G. Goumas, A. Sotiropoulos, I. Maglogiannis, “A distributed modular platform for the development of cloud based applications,” Future Gener. Comput. Syst., vol. 78, pp. 127–141, 2018.
	[24] M. Jensen, J. Schwenk, N. Gruschka, L. L. Iacono, “On technical security issues in cloud computing,” In Proceedings of the IEEE International Conference on In Cloud Computing CLOUD’09, pp. 109-116, 2009.
	[25] G. Yang, M. Jiang, W. Ouyang, G. Ji, H. Xie, A. M. Rahmani, H. Tenhunen, “IoT-based remote pain monitoring system. From device to cloud platform,” IEEE J. Biomed. Health. Inform., vol. 22, pp. 1711-1719, 2017.
	[26] B. Qureshi, S. Alwehaibi, A. Koubaa, “On power consumption profiles for data intensive workloads in virtualized Hadoop clusters,” In Proceedings of the 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 42-47, 2017.
	[27] S. Ibrahim, “Governing energy consumption in Hadoop through CPU frequency scaling: An analysis,” Future Gener. Comput. Syst., vol. 54, pp. 219-232, 2016.
	[28] U. Shafique, H.A. Qaiser, “Comparative Study of Data Mining Process Models (KDD, CRISP-DM and SEMMA),” Int. J. Innov. Sci. Res., vol. 12, pp. 217-222, 2014.
	[29] F. F. Malavelle, J. M. Haywood, L. M. Mercado, G. A. Folberth, N. Bellouin, S. Sitch, P. Artaxo, “Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model,” Atmo...
	[30] C. G. Derington, T. H. Gums, A. P. Bress, J. S. Herrick, T. H. Greene, A. E. Moran, J. J. Saseen, “Association of Total Medication Burden with Intensive and Standard Blood Pressure Control and Clinical Outcomes: A Secondary Analysis of SPRINT,” H...
	[31] Z. Guo, M. Liu, H. Qin, B. Li, “Mechanical Fault Diagnosis of a DC Motor Utilizing United Variational Mode Decomposition, SampEn, and Random Forest-SPRINT Algorithm Classifiers,” Entropy., vol. 21, pp. 470, 2019.
	[32] A. Bechini, F. Marcelloni, A. Segatori, “A MapReduce solution for associative classification of big data,” Inf. Sci., vol. 332, pp. 33–55, 2016.
	[33] L. Leydesdorff, C. S. Wagner, L. Bornmann, “Interdisciplinarity as diversity in citation patterns among journals: Rao-Stirling diversity, relative variety, and the Gini coefficient,” J. Informetr., vol. 13, pp. 255–269, 2019.
	[34] P. David, “Optimization of Gini Coefficient Affected by Imperfect Input Data,” Eur. J. Bus. Sci. Technol., vol. 5, pp. 21-29, 2019.
	[35] R. Valbuena, K. Eerikäinen, P. Packalen, M. Maltamo, “Gini coefficient predictions from airborne lidar remote sensing display the effect of management intensity on forest structure,” Ecol. Indic., vol. 60, pp. 574-585, 2016.

