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Abstract—In this work, we study the coupled Burgers’
equations and the modified coupled Burgers’ equations, which
including nonlinear viscous terms. The Hopf-Cole transfor-
mation method is applied to obtain the analytical solutions.
The explicit finite difference schemes are used to evaluate the
numerical solutions. In addition, we compare the numerical
solutions with the analytical solutions for the selected initial and
boundary conditions. Moreover, the behaviors of the modified
coupled Burger’ equations with varied viscosity coefficients are
also investigated.

Index Terms—modified Burgers’ equations, Hopf-Cole trans-
formation, finite difference method, explicit scheme.

I. INTRODUCTION

BURGERS’ equation is a nonlinear partial differential
equation that is widely used as a model for convection-

diffusion processes. It is closely related to the Navier–Stokes
equations. In general, the Burgers’ equation plays a vital
role to analyze fluid turbulences, gas dynamics, and fluid
mechanics problems in many different fields of science and
engineering. It is also used to model for traffic flow and com-
puter network problems. As the result, many researchers have
been interested in developing methods for finding numerical
solutions of the Burgers’ equation, which are finite difference
methods, finite element methods, and finite volume methods.

The complete nonlinear one-dimensional Burgers’ equa-
tion is given by [1] as

∂u

∂t
+ u

∂u

∂x
= µ0

∂2u

∂x2
, (x, t) ∈ D, (1)

where u is fluid velocity, µ0 is viscosity coefficient, x is
position, t is time and D is a continuous space-time domain.

Equation (1) is a parabolic PDE, which can be served as a
model equation for boundary–layer problems. For a steady-
state boundary–layer and the “parabolized” Navier–Stokes
equation, the independent variables t and x can be replaced
by x and y, respectively to give

∂u

∂x
+ u

∂u

∂y
= µ0

∂2u

∂y2
, (2)
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where u(x, y) gives a marching direction and (x, y) ∈ D.
According to [1], the two-dimensional coupled Burgers’
equations can be written as

ut + uux + vuy = µ0 (uxx + uyy) , (3)
vt + uvx + vvy = µ0 (vxx + vyy) . (4)

In this problem, we assume that the initial conditions are

u (x, y, 0) = a1 (x, y)
v (x, y, 0) = a2 (x, y)

}
, (x, y) ∈ Ω, (5)

and the boundary conditions are

u (x, y, t) = b1 (x, y, t)
v (x, y, t) = b2 (x, y, t)

}
, (x, y) ∈ ∂Ω, t > 0, (6)

where Ω = {(x, y) , a ≤ x ≤ b, c ≤ y ≤ d} is the computa-
tional domain, ∂Ω is the boundary of the domain, u and v are
the velocity components, and µ0 is the viscosity coefficient.
In the initial and boundary conditions, a1, a2, b1 and b2 are
assumed to be known functions. The terms ut and vt are the
unsteady terms. In addition, uux + vuy and uvx + vvy are
the non–linear convection term; uxx+uyy and vxx+vyy are
the diffusion terms.

In 2010, Zhua et al. [2] applied the discrete Adomian
decomposition method to evaluate the numerical solutions
of two-dimensional Burgers’ nonlinear differential equations.
They showed that the numerical results are in a good agree-
ment with the exact solutions. Moreover, Huang and Ab-
duwali [3] applied a modified local Crank-Nicolson method
to solve one- and two-dimensional Burgers’ equations. The
new explicit finite difference schemes with unconditionally
stable were obtained.

In 2014, Shukla et al. [4] used a modified cubic B-spline
differential quadrature method to obtain numerical solutions
of the two-dimensional nonlinear coupled viscous Burgers’
equation with appropriate initial and boundary conditions.

In 2015, Gulkac [5] illustrated the locally one-dimensional
method (LOD) for solving the two-dimensional coupled
Burgers’ equations. The Fourier method of the LOD method
is also investigated to analyze stability of the solutions. The
method used in this work can be easily implemented for
solving nonlinear problems evolving in several branches of
engineering and science.

In 2016, Rotich et al. [6] used three methods to solve
the coupled Burgers’ equations, which are the alternative
direction implicit method, the variation of iteration method,
and the locally one-dimensional finite difference method.
In this work the Hopf-Cole transformation and separation
of variables were used to generate appropriate initial and
boundary conditions. The result shows that the numerical
schemes are unconditionally stable.
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In 2018, Sungnul et al. [7] investigated the behavior of
the modified Burgers’ equation of the form

ut + (c+ bu)ux = (µ0 + µ1u)uxx

where c, b, µ0 and µ1 are arbitrary parameters. The numerical
solutions of this problem was obtained by the finite difference
method with the forward-time central-space (FTCS) implicit
scheme. The results obtained by advantages of mathematical
software are compared between the numerical solutions and
the exact solutions for some examples of initial and boundary
conditions.

In 2019, Mukundan et al. [8] applied the two-dimensional
Hopf-Cole transformation to convert the nonlinear coupled
Burgers’ equations into a two-dimensional linear diffusion
equation with Neumann boundary conditions. Multistep
methods based on backward differentiation formulas of order
one, two and three were employed to solve the related dif-
ferential systems. In addition, Mohamed [9] introduced new
fully implicit numerical schemes for solving one-dimensional
and two-dimensional unsteady Burgers’ equations. The non-
linear Burgers’ equation was discretized in the spatial di-
rection by using a second-order finite difference method to
convert the Burgers’ equation to a system of nonlinear ODEs.

In 2021, Camcoon and Pochai [10] introduced a gov-
erning equation of a one-dimensional shoreline evolution
model, when a couple of groins is added. The introduced
model is a transient one-line model. The traditional forward-
time centered-space method and the unconditionally stable
Saulyev finite difference methods are employed to approxi-
mate the incremental model in each year.

In this work, we aims to investigate the behavior of the
modified coupled Burgers’ equations of the form

ut + uux + vuy = (µ0 + µ1u) (uxx + uyy), (7)
vt + uvx + vvy = (µ0 + µ1v) (vxx + vyy), (8)

with the initial conditions

u (x, y, 0) = a1 (x, y)
v (x, y, 0) = a2 (x, y)

}
, (x, y) ∈ Ω, (9)

and the boundary conditions

u (x, y, t) = b1 (x, y, t)
v (x, y, t) = b2 (x, y, t)

}
, (x, y) ∈ ∂Ω, t > 0, (10)

where Ω = {(x, y) , a ≤ x ≤ b, c ≤ y ≤ d} is the compu-
tational domain and ∂Ω is the domain’s boundary, u and
v are the velocity components to be determined. Here, the

parameter µ0 =
1

Re
, where Re is the Reynolds number, µ1

are vicosity coefficients. From (9)-(10), functions a1, a2, b1
and b2 are known functions.

In this work, we also focus on the numerical solutions of
(7)-(8) based on the finite difference method. We also apply
the Hopf-Cole transformation to find analytical solutions for
the case µ1 = 0, and then compare the obtained analytical
solutions with the numerical solutions to investigate the
efficiency of the numerical schemes and the behavior of the
modified Burgers’ equations.

II. METHODS

In this section, we present two methods to solve (7)-(10).
The first method is the Hopf-Cole transformation method,

which is used to find analytical solutions. The second method
is the finite difference method to find the related numerical
solutions.

A. The Hopf-Cole Transformation Method

The Hopf-Cole transformation was named after Eberhard
Hopf and Julian D. Cole [1]. Consider the Burgers’ equation
system

ut + uux + vuy = µ0 (uxx + uyy) , (11)
vt + uvx + vvy = µ0 (vxx + vyy) . (12)

In this problems, we assume that µ0 =
1

Re
, where Re is the

Reynolds number.
The analytical solutions of the Burgers’ equation system

(11)-(12) with various sets of the initial and boundary
conditions (9)-(10) using the Hopf-Cole transformation are
followings.
1. Linearization of the Burgers’ equations by replacing
function φ(x, y, t) to u(x, y, t) and v(x, y, t) in the following
way:

u = −2µ0
φx
φ
, (13)

v = −2µ0
φy
φ
. (14)

For simplicity in calculation, let

u = f1(φ), (15)
v = f2(φ). (16)

2. The derivatives of u and v with respect to t, x, and y are
found and substituted back into (11) and (12) to obtain that

f ′1(φ)φt + f1(φ)f ′1(φ)φx + f2(φ)f ′1(φ)φy

= µ0

(
f ′′1 (φ)φ2x + f ′1(φ)φxx + f ′′1 (φ)φ2y + f ′1(φ)φyy

)
(17)

and

f ′2(φ)φt + f1(φ)f ′2(φ)φx + f2(φ)f ′2(φ)φy

= µ0

(
f ′′2 (φ)φ2x + f ′2(φ)φxx + f ′′2 (φ)φ2y + f ′2(φ)φyy

)
. (18)

We assume that φ is bounded, and therefore it implies that
f ′1(φ) and f ′2(φ) are all nonzero functions. We can see that
equations (17) and (18) can be reduced to the heat equation
(19) by dividing f ′1(φ) and f ′2(φ), respectively.

φt = µ0 (φxx + φyy) . (19)

3. Equation (19) is linear and it can be solved by separation
of variables, which the solution φ is transformed back to the
original solutions of u and v using (13) and (14), respectively.
We seek a general solution of (19) in the form [11],

φ(x, y, t) = a+ bx+ cy + dxy +X(x)Y (y)T (t), (20)

which is the sum of the bilinear solution a+ bx+ cy+ dxy
and the separable solution X(x)Y (y)T (t).

The bilinear solution is added as a stabilizer while the
separable solution is defined as

X(x)Y (y)T (t) = W (x, y)T (t). (21)

So, (20) becomes

φ(x, y, t) = a+ bx+ cy + dxy +W (x, y)T (t). (22)
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Substitute (22) into (19), then we obtain that

WT ′ = µ0 (WxxT +WyyT ) . (23)

For simplicity, (23) can also be written as

1

µ0
(WT ′) = (∆W )T. (24)

Equation (24) can be rearranged as

1

µ0

T ′

T
=

∆W

W
= −α2, (25)

where α2 is a separation constant. The negative sign is used
because a decaying function of time is anticipated. Therefore,
(25) can be splited into two equations as

T ′ + α2µ0T = 0, (26)

and
∆W + α2W = 0, (27)

where ∆ is Laplacian operator. By solving (26), we have

T (t) = Ae−α
2µ0t. (28)

Equation (27) is solved by the separation of variable method.
Let W (x, y) = X(x)Y (y), then (27) becomes

X ′′Y +XY ′′ + α2XY = 0. (29)

After rearrangement, we have

X ′′

X
= −Y

′′

Y
− α2 = −β2, (30)

where β2 is a separation constant. By splitting the expression
(30), two equations are obtained in the form

X ′′ + β2X = 0, (31)

Y ′′ +
(
α2 − β2

)
Y = 0. (32)

The general solutions of (31) and (32) are given by

X(x) = Bsin(βx) + Ccos(βx), (33)

and
Y (y) = Dsin(γy) + Ecos(γy), (34)

respectively. Here γ2 =
(
α2 − β2

)
. Substitute the solutions

into the general solution (20), it yields that

φ(x, y, t) = a+ bx+ cy + dxy

+(B sinβx+ C cosβx)(D sin γy + E cos γy)Ae−α
2µ0t. (35)

Then we have the partial derivative of φ with respect to x
and y as

φx = b+ dy

+β(B cosβx− C sinβx)(D sin γy + E cos γy)Ae−α
2µ0t, (36)

φy = c+ dx

+γ(B sinβx+ C cosβx)(D cos γy − E sin γy)Ae−α
2µ0t. (37)

Substitute (35), (36) and (37) into the original solutions
u(x, y, t) and v(x, y, t) in (13) and (14), then we obtain the
analytical solutions of the coupled Burgers’ equations.

B. The Finite Difference Method

The finite difference methods can be used to convert
ordinary differential equations (ODEs) or partial differential
equations (PDEs) into a system of algebraic equations that
can be solved by matrix algebra methods. For example, in the
forward-time central-space scheme (FTCS), the time deriva-
tives are discretized in time by the forward Euler scheme, and
the space by the second-order central-difference scheme. For
the time domain [0, T ], the discrete time points are given by
{0, t1, t2, . . . , T}, with tn+1 = tn+τ, where τ is a time-step.
Similarly, for each space dimension [a, b]×[c, d], the discrete
mesh points are given by {a = x1, x2, x3, . . . , xM = b},
{c = y1, y2, y3, . . . , yn = d}, with xi+1 = xi + h, yj+1 =
yj+h, where h is the space-step. Let uni,j = u(xi, yj , tn) and
vni,j = v(xi, yj , tn), the modified coupled Burgers’ equations
in FTCS scheme are as follows:

un+1
i,j − uni,j

τ
= −uni,j

(
uni+1,j − uni−1,j

2h

)
−vni,j

(
uni,j+1 − uni,j−1

2h

)
+(µ0 + µ1u

n
i,j)

(
uni+1,j − 2uni,j + uni−1,j

h2

)
+(µ0 + µ1u

n
i,j)

(
uni,j+1 − 2uni,j + uni,j−1

h2

)
,

(38)
vn+1
i,j − vni,j

τ
= −uni,j

(
vni+1,j − vni−1,j

2h

)
−vni,j

(
vni,j+1 − vni,j−1

2h

)
+(µ0 + µ1v

n
i,j)

(
vni+1,j − 2vni,j + vni−1,j

h2

)
+(µ0 + µ1v

n
i,j)

(
vni,j+1 − 2vni,j + vni,j−1

h2

)
.

(39)
Equation (38)-(39) can be rearranged as

un+1
i,j = uni,j − τ

(
uni,j · dudx + vni,j · dudy

)
+τ(µ0 + µ1u

n
i,j) (d2udx + d2udy) (40)

and

vn+1
i,j = vni,j − τ

(
vni,j · dvdx + vni,j · dvdy

)
+τ(µ0 + µ1v

n
i,j) (d2vdx + d2vdy) , (41)

where

dudx =
uni+1,j − uni−1,j

2h
,

dudy =
uni,j+1 − uni,j−1

2h
,

dvdx =
vni+1,j − vni−1,j

2h
,

dvdy =
vni,j+1 − vni,j−1

2h
,

d2udx =
uni+1,j − 2uni,j + uni−1,j

h2
,

d2udy =
uni,j+1 − 2uni,j + uni,j−1

h2
,

d2vdx =
vni+1,j − 2vni,j + vni−1,j

h2
,

d2vdy =
vni,j+1 − 2vni,j + vni,j−1

h2
.
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In the case that µ1 = 0, the scheme (38) - (39) can be proved

to be conditionally stable for
( τ
h

)2
≤ 2

(
τ

µ0h2

)
≤ 1, see

[1] for more details.
The computational domain for the finite difference scheme

is staggered grid as shown in Fig. 1.

Fig. 1: Computational domain

III. RESULTS

The analytical solutions and the numerical solutions of
the modified coupled Burgers’ equation using the Hopf-Cole
transformation and the finite difference method are presented
in this section. We consider the solutions of the modified
coupled Burgers’ equation in two cases as follows:

Case 1 : µ0 =
1

Re
, µ1 = 0,

and

Case 2 : µ0 =
1

Re
, 5 ≤ µ1 ≤ 30.

Case 1: µ0 =
1

Re
, µ1 = 0 with Re = 500, 10000, 50000.

Consider the modified coupled Burgers’ equations (7) and
(8), where µ0 = 1

Re and µ1 = 0. We obtain the two-
dimentional coupled Burgers’ equations of the form

ut + uux + vuy =
1

Re
(uxx + uyy) , (42)

vt + uvx + vvy =
1

Re
(vxx + vyy) , (43)

where Ω = {(x, y) , 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.

(1.1) The analytical solutions and the numerical solutions
of the coupled Burgers’ equations (42) and (43) for Re =
500 and the parameters [11] a = 100, b = 0, c = 0, d = 1,

A = 1, B = 1, C = 1, D = 1, E = 0, β = π, γ = π,
with the initial conditions (44) and the boundary conditions
(45)-(46) are investigated.

The initial conditions for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 are

u (x, y, 0) = −
y + (π cos(πx)− π sin(πx)) sin(πy)

25000 + 250xy + (250(sin(πx) + cos(πx)) sin(πy)
,

v (x, y, 0) = −
x+ (sin(πx) + cos(πx))π cos(πy))

250xy + 25000 + (250(sin(πx) + cos(πx)) sin(πy)
.

(44)

The boundary conditions for 0 ≤ y ≤ 1 where t > 0 are

u (0, y, t) =
−π sin(πy)e

−π2t
250 − y

(25000 + 250 sin(πy)e
−π2t
250

,

v (0, y, t) =
−π cos(πy)e

−π2t
250

25000 + 250 sin(πy)e
−π2t
250

,

u (1, y, t) =
−π sin(πy)(cos(π)− sin(π))e

−π2t
250 − y

25000 + 250y + (250(sin(π) + cos(π))) sin(πy)e
−π2t
250

,

v (1, y, t) =
π cos(πy)e

−π2t
250 − 1

250y + 25000− 250 sin(πy)e
−π2t
250

. (45)

The boundary conditions for 0 ≤ x ≤ 1 where t > 0 are

u (x, 0, t) = 0,

v (x, 0, t) = − x

25000
− sin(πx) + cos(πx)πe

−π2t
250

25000
,

u (x, 1, t) =
−1

(25000 + 250x)
,

v (x, 1, t) =
(−x+ (sin(πx) + cos(πx))πe

−π2t
250

25000 + 250x
. (46)

The analytical solution from the Hopf-Cole transformation
method for case 1 (1.1) is

u =

(
− 1

250

) y + (cosπx− sinπx) sinπye

(
−π2

250

)
t

100 + xy + (sinπx+ cosπx) sinπye

(
−π2

250

)
t

 ,

(47)

v =

(
− 1

250

) x+ π(cosπx+ sinπx) cosπye

(
−π2

250

)
t

100 + xy + (sinπx+ cosπx) sinπye

(
−π2

250

)
t

 .

(48)

Fig. 2a-3a show the analytical solutions for Re = 500
at t = 1, with 10 × 10 grids size. The graphs of the
numerical solutions by the finite difference method with
the FTCS scheme of u and v in Eqs. (40) and (41),
where ∆x = ∆y = 0.1, and ∆t = 0.001 at t = 1 are
shown in Fig. 2b-3b. The plots of absolute error between
the analytical and the numerical solutions for this case
are shown in Fig. 2c-3c. We can see that the maximum
of absolute error of u and v are 10−8 and 10−5, respectively.

(1.2) The analytical solutions and the numerical solutions
of the coupled Burgers’ equation (42) and (43) for Re =
10000 and the parameters [11] a = 0, b = 5, c = 10, d =
0, A = 1, B = 0, C = 1, D = 0, E = 1, β = 0, γ = 2π with
the initial conditions (49), and boundary conditions (50)-(51)
are considered.
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The initial conditions for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 are

u (x, y, 0) = − 1

1000(5x+ 10y + cos(2πy))
,

v (x, y, 0) =
π sin(2πy)− 5

12500x+ 25000y + 2500 cos(2πy)
. (49)

The boundary conditions for 0 ≤ y ≤ 1 where t > 0 are

u (0, y, t) = −
1

10000y + 1000 cos(2πy)e−(1/2500)π2t
,

v (0, y, t) = −
10− 2π sin(2πy)e−(1/2500)π2

50000y + 5000 cos(2πy)e−(1/2500)π2t
,

u (1, y, t) = −
1

5000 + 10000y + 1000 cos(2πy)e−(1/2500)π2t
,

v (1, y, t) = −
10− 2π sin(2πy)e(−(1/2500)π2t)

25000 + 50000y + 5000 cos(2πy)e−(1/2500)π2t
. (50)

The boundary conditions for 0 ≤ x ≤ 1 where t > 0 are

u (x, 0, t) = − 1

5000x+ 1000e−(1/2500)π2t
,

v (x, 0, t) = − 1

2500x+ 500e−(1/2500)π2 ,

u (x, 1, t) = − 1

5000x+ 10000 + 1000 cos(2π)e−(1/2500)π2t
,

v (x, 1, t) = − 1

500(5x+ 10 + e−(1/2500)π2t
. (51)

The analytical solution obtained by the Hopf-Cole transfor-
mation method for case 1 (1.2) is

u =

(
− 1

5000

) 1

x+ 2y + 1
5 cos 2πye

(
−π2

2500

)
t

 (52)

v =

(
− 1

5000

) 10− 2π sin 2πye

(
−π2

2500

)
t

5x+ 10y + cos 2πy cos 2πye

(
−π2

2500

)
t


(53)

The graphs of the analytical solutions for case 1 (1.2), with
t = 1 and 100 × 100 grids size, are shown in Fig. 4a-5a.
The numerical solutions by finite-differnce method with
the FTCS scheme of u and v in Eqs. (40) and (41), where
∆x = ∆y = 0.01 and ∆t = 0.0001 are shown in Fig.
4b-5b. Moreover, Fig. 4c-5c show the graphs of absolute
errors between the analytical and the numerical solutions
for case 1 (1.2). We can see that the absolute error of u and
v are 10−9 and 10−4, respectively.

(1.3) The analytical solutions and the numerical solutions
of the coupled Burgers’ equations (42) and (43) for Re =
50000 and the parameters [11] a = 10, b = 50, c = 0, d =
0, A = 1, B = 0, C = 1, D = 1, E = 0, β = 2π, γ = 2π
with the initial conditions (54) and the boundary conditions
(55)-(56) are presented.

The initial conditions for 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 are

u (x, y, 0) =
π sin(2πx)sin(2πy)− 25

12500 cos(2πx) sin(2πy) + 625000x+ 125000
,

v (x, y, 0) = − cos(2πx)π cos(2πy)

12500(50x+ 10 + cos(2πx) sin(2πy))
. (54)

The boundary conditions for 0 ≤ y ≤ 1 where t > 0 are

u (0, y, t) = − 1

500 sin(2πy)e−(1/6250)π2t + 5000
,

v (0, y, t) = − π cos(2πy)e−(1/6250)π2t

125000 + 12500 sin(2πy)e−(1/6250)π2t
,

u (1, y, t) =
1

500 sin(2πy))e−(1/6250)π2t + 30000
,

v (1, y, t) = − π cos(2πy)e−(1/6250)π2

750000 + 12500 sin(2πy)e−(1/6250)π2t
. (55)

The boundary conditions for 0 ≤ x ≤ 1 where t > 0 are

u (x, 0, t) = − 1

25000x+ 5000
,

v (x, 0, t) = −cos(2πx)πe−(1/6250)π2t

125000(5x+ 1)
,

u (x, 1, t) = − 1

25000x+ 5000
,

v (x, 1, t) = −cos(2πx)πe−(1/6250)π2t

125000(5x+ 1)
. (56)

The analytical solution obtained by the Hopf-Cole transfor-
mation method for case 1 (1.3) is

u =

(
− 1

25000

) 50− 2π sin 2πx sin 2πxye

(
−π2

6250

)
t

10 + 50x+ cos 2πx sin 2πye

(
−π2

6250

)
t

 ,

(57)

v =

(
− 1

25000

) 2π sin 2πx cos 2πye

(
−π2

6250

)
t

10 + 50x+ cos 2πx sin 2πye

(
−π2

6250

)
t

 .

(58)
Then, we obtain analytical solutions for case 1 (1.3) with
Re = 50000 and 100 × 100 grids size. The graphs of the
analytical solutions are shown in Fig. 6a-7a. The numerical
solutions by the finite difference method with the FTCS
scheme of u and v in Eqs. (40) and (41) where ∆x = ∆y =
0.01 and ∆t = 0.00001 are presented in Fig. 6b-7b. The plots
of absolute errors between the analytical and the numerical
solutions for case 1 (1.3) are shown in Fig. 6c-7c. We can
see that the absolute error of u and v are 10−11 and 10−7,
respectively.

In addition, numerical solutions of u and v at x = 0.5, y =
0.5 for 0 ≤ t ≤ 1 are computed. The results are shown in
Fig. 8 with Re = 500, 10000 and 50000.

For Re = 500 it can be seen that the value of u increases
rapidly at the beginning and then decreases slowly and it is
converges to 5.7176×10−5. The value of v fastly decrease at
the beginning and then slightly increases, and it converges to
−3.9163× 10−5. For Re = 10000 and 50000, we obtained
that the values of u and v decrease rapidly during the first
0.1 seconds, and then the values of u and v remains contant.
Case 2: µ0 = 1

Re , 5 ≤ µ1 ≤ 30
The modified coupled Burgers’ equations (7) and (8) with

fixed µ0 = 1
Re and various 5 ≤ µ1 ≤ 30 are considered

which present in equations (59) and (60).

ut + uux + vuy =

(
1

500
+ µ1u

)
(uxx + uyy) , (59)

vt + uvx + vvy =

(
1

500
+ µ1v

)
(vxx + vyy) . (60)
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(a) Analytical solution of u

(b) Numerical solution of u

(c) Absolute error of u

Fig. 2: Graph of analytical and numerical solutions with
absolute error of u at t = 1 for case 1 (1.1)

(a) Analytical solution of v

(b) Numerical solution of v

(c) Absolute error of v

Fig. 3: Graph of analytical and numerical solutions with
absolute error of v at t = 1 for case 1 (1.1)
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(a) Analytical solution of u

(b) Numerical solution of u

(c) Absolute error of u

Fig. 4: Graph of analytical and numerical solutions with
absolute error of u at t = 1 for case 1 (1.2)

(a) Analytical solution of v

(b) Numerical solution of v

(c) Absolute error of v

Fig. 5: Graph of analytical and numerical solutions with
absolute error of v at t = 1 for case 1 (1.2)
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(a) Analytical solution of u

(b) Numerical solution of u

(c) Absolute error of u

Fig. 6: Graph of analytical and numerical solutions with
absolute error of u at t = 1 for case 1 (1.3)

(a) Analytical solution of v

(b) Numerical solution of v

(c) Absolute error of v

Fig. 7: Graph of analytical and numerical solutions with
absolute error of v at t = 1 for case 1 (1.3)
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(a) Re = 500 : u(0.5, 0.5, t) when 0 ≤ t ≤ 1 (b) Re = 500 : v(0.5, 0.5, t) when 0 ≤ t ≤ 1

(c) Re = 10000 : u(0.5, 0.5, t) when 0 ≤ t ≤ 1 (d) Re = 10000 : v(0.5, 0.5, t) when 0 ≤ t ≤ 1

(e) Re = 50000 : u(0.5, 0.5, t) when 0 ≤ t ≤ 1 (f) Re = 50000 : v(0.5, 0.5, t) when 0 ≤ t ≤ 1

Fig. 8: Graph of numerical solutions u and v at x = y = 0.5 for case 1 (1.1-1.3)
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The initial conditions in this case are

u (x, y, 0) = −
y + (π cos(πx)− π sin(πx)) sin(πy)

25000 + 250xy + (250(sin(πx) + cos(πx)) sin(πy)
,

v (x, y, 0) = −
x+ (sin(πx) + cos(πx))π cos(πy))

250xy + 25000 + (250(sin(πx) + cos(πx)) sin(πy)
.

for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 (61)

The boundary conditions for 0 ≤ y ≤ 1 where t > 0 are

u (0, y, t) =
−π sin(πy)e

−π2t
250 − y

(25000 + 250 sin(πy)e
−π2t
250

,

v (0, y, t) =
−π cos(πy)e

−π2t
250

25000 + 250 sin(πy)e
−π2t
250

,

u (1, y, t) =
−π sin(πy)(cos(π)− sin(π))e

−π2t
250 − y

25000 + 250y + (250(sin(π) + cos(π))) sin(πy)e
−π2t
250

,

v (1, y, t) =
π cos(πy)e

−π2t
250 − 1

250y + 25000− 250 sin(πy)e
−π2t
250

. (62)

The boundary conditions for 0 ≤ x ≤ 1 where t > 0 are

u (x, 0, t) = 0,

v (x, 0, t) = − x

25000
− sin(πx) + cos(πx)πe

−π2t
250

25000
,

u (x, 1, t) =
−1

(25000 + 250x)
,

v (x, 1, t) =
(−x+ (sin(πx) + cos(πx))πe

−π2t
250

25000 + 250x
. (63)

The numerical simulation of the nonlinear Burgers’ equa-
tions (59) and (60) with fixed µ0 = 1/Re = 1/500 and
various 5 ≤ µ1 ≤ 30 are computed using the finite
difference method in the FTCS scheme. The graph of the
numerical solutions of u and v at t = 1 for µ0 = 1/500
and various 5 ≤ µ1 ≤ 30 are shown in Fig. 9a-9d and Fig.
10a-10d respectively. In addition, we compare the numerical
solutions u and v in case that x = 0.5, µ0 = 1/500 and
5 ≤ µ1 ≤ 30 at t = 1. The two-dimensional plots of this case
are shown in Fig. 11a-11b. We can see that the numerical
solutions u are slightly decreasing when µ1 increased, which
occur around the middle of the domain of y, while the
numerical solutions v have a little different at the initial part
of the domain of y. The two-dimensional plots for y = 0.5,
where µ0 = 1/500 and 5 ≤ µ1 ≤ 30 at t = 1 are presented
in Fig. 12a-12b. It is shown that the numerical solutions u
are slightly decreasing when µ1 is increasing, which occur at
the end of domain x about 0.5 ≤ x ≤ 0.9 while the behavior
of numerical solutions v have almost no difference when µ1

is changed.
In addition, we show a comparison of the numerical

solutions u and v vs. time at the center of domain x =
0.5, y = 0.5 for the four different values of µ1 in Fig. 13a-
13b. It can be seen that the values of u and v are linearly
decrease with time while µ1 is increasing.

IV. CONCLUSION

The modified coupled Burgers’ equations which include
a nonlinear viscous term are investigated. In the first case
µ0 = 1/Re and µ1 = 0, the numerical solutions are
solved by using the finite difference method in the FTCS
scheme. The analytical solutions are obtained by the Hopf-
Cole transformation in three different values of Reynolds
numbers, Re = 500, 10000 and 50000. We found that the

numerical solutions of u and v converge to the analytical
solutions in all cases are presented in Table I. In the second
case, µ0 = 1/500 and various 5 ≤ µ1 ≤ 30, the numerical
solutions are obtained by using the finite difference method
in explicit FTCS scheme. The two-dimensional and three-
dimensional graphs of this case are presented in Fig. 9-
12. We found that the behavior of numerical solutions u
are slightly decreasing when µ1 increased in both cases for
fixed x = 0.5 and y = 0.5, while the behavior of numerical
solutions v have a little different when µ1 is changed.

TABLE I: The maximum of absolute errors for Case 1

Re The maximum of absolute error
velocity u velocity v

500 10−8 10−5

10000 10−9 10−4

50000 10−11 10−7
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(a) µ1 = 5 (b) µ1 = 10

(c) µ1 = 20 (d) µ1 = 30

Fig. 9: Graph of numerical solutions of u at t = 1 for µ0 = 1/500 and 5 ≤ µ1 ≤ 30
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(a) µ1 = 5 (b) µ1 = 10

(c) µ1 = 20 (d) µ1 = 30

Fig. 10: Graph of numerical solutions of v at t = 1 for µ0 = 1/500 and 5 ≤ µ1 ≤ 30
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(a) velocity in x direction : u (b) velocity in y direction : v

Fig. 11: Comparison the numerical solutions of u and v at t = 1 for fixed x = 0.5 with µ0 = 1/500 and 5 ≤ µ1 ≤ 30

(a) velocity in x direction : u (b) velocity in y direction : v

Fig. 12: Comparison the numerical solutions of u and v at t = 1 for fixed y = 0.5 with µ0 = 1/500 and 5 ≤ µ1 ≤ 30
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(a) u(0.5, 0.5, t) (b) v(0.5, 0.5, t)

Fig. 13: Comparison of the numerical solutions u and v at fixed x = y = 0.5 with 0 ≤ t ≤ 1 and 0 ≤ µ1 ≤ 30
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