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Abstract—In this paper, a mathematical model is formu-
lated to investigate the effect of a submerged trapezoidal
breakwater and its turbulence on reducing wave transmission.
The breakwater has a composite slope on the side facing the
incident waves, in common with many practical examples. Wave
motions obeying modified Linear Shallow Water Equations
(LSWE) are considered with the addition of a diffusion term in
the momentum equation to represent the energy dissipation
due to turbulent motion promoted by the breakwater. The
modified equations are solved analytically using the Separation
of Variables Method to obtain wave reflection and transmission
coefficients. Test cases are presented to validate the analytical
solutions against the known solutions for common breakwater
structures, such as rectangular breakwaters. For the composite-
sloped structure, wave shoaling may occur, increasing the
incident wave amplitude. After passing over the breakwater, the
wave amplitude decreases as it propagates into deeper water.
Here, the diffusion effect caused by the breakwater works
as a reducer to help reduce the wave amplitude. Applying
the model to the real bathymetry of the coast of Aceh,
Sumatera, Indonesia, shows that the breakwater can reduce the
tsunami wave amplitude slightly. It also shows that the diffusion
coefficient reduces the wave amplitude differently depending on
the characteristics of the wave itself.

Index Terms—diffusion term, shallow water equation, sub-
merged trapezoidal breakwater, transmission coefficient, turbu-
lence.

I. INTRODUCTION

WAVE height changes as they move closer to the
coast for a variety of reasons, including refraction,

diffraction, reflection, wave breaking, wave-current interac-
tion, friction, wind-induced wave growth, and wave shoaling.
The phenomenon of wave shoaling occurs when surface
waves enter shallower water and increase in height. It is due
to the fact that group velocity diminishes as water depth
decreases. To maintain a constant energy flow, the decline in
group velocity must be compensated for by a rise in wave
height [1]. In the absence of the other wave effects, shoaling
arises purely as a result of variations in mean water depth –
without concern for changes in wave propagation direction or
dissipation. Additionally, it is shown in [2] that the behaviour
of wave shoaling is dependent on the cross-sectional shape
of the seabed on which the wave propagates. As the wave
propagates, shoaling will continue until the wave becomes
unstable and begins to break, dissipating energy. Shoaling is
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one of the reasons that long waves, such as tsunamis, storm
surges, and swells, cause significant disruption to coastal
areas. Since such waves have very long wavelengths in the
deep ocean and contain huge amounts of water in each
wavelength, they will shoal as high as they do as the water
gets shallower. And as the waves become higher, their energy,
which is mainly in the form of kinetic energy, is transformed
into potential energy, creating a devastating impact on the
coast. Several researchers have investigated the phenomenon
of wave shoaling on infinite steps [3], [4] and over a shelf
with a linear transition [2], [5]–[7].

Recognizing the consequences of wave shoaling, re-
searchers and engineers in relevant fields have been at-
tempting to propose a variety of strategies to protect the
coastal environment. One of the proposals that has gained
the most attention in recent years is the breakwater, a
structure developed to defend the shoreline from wave action,
especially by reducing the wave height that was previously
amplified due to shoaling. Breakwaters may be emergent,
with their crests still visible above the still water surface
or submerged. Emergent breakwaters act as an obstacle to
wave propagation, causing the wave reflection phenomenon
and potentially wave breaking. Submerged breakwaters in-
duce partial reflection, allowing some wave energy to be
transmitted to the shore. This is appropriate in circumstances
where some wave actions are tolerable. The cross-sectional
geometry of submerged breakwaters will affect the wave
transmission and reflection, making it a critical design factor
of the structure.

Over the years, many studies have investigated the im-
pacts of submerged breakwaters on wave height reduction.
Early research on the effect of rectangular breakwaters
on reducing wave height can be traced back to [8]–[10].
Other researchers followed in their steps by evaluating the
same subject using different models and methods [11], [12].
Recently, Magdalena et al. [13] extended these studies to
analyse the wave transmitted amplitude as it travels over
multiple rectangular breakwaters using linear shallow water
equations. Furthermore, several researchers went above and
beyond to investigate the effects of porous, floating, or
flexible structures [14]–[20]. Dalrymple and Kirby [21], on
the other hand, totally altered the shape of the breakwater
into ripples rather than merely modifying its characteristics
and observed its effect on wave height reduction using
Green’s Theorem. Furthermore, Lin [22], Chang and Liou
[23], and Behera and Khan [24] generalised the form of the
submerged breakwater by making it trapezoidal and studying
the structure using a variety of models such as linear shallow
water equations, Potential Theory, and Helmholtz Equation.
However, neither of those studies considered the turbulence
effect, which is ideally present alongside the breakwater
structure. This effect is an important feature of breakwater
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performance since it is an effective wave energy dissipator.
Wave energy may decrease drastically near the breakwater
owing to increased turbulent dissipation and energy loss
from lower harmonics to higher harmonics [25]. As a result,
several experiments were carried out in order to capture
the turbulence effect induced by the breakwater so that
the structure’s effect on decreasing wave height could be
properly studied. Experiments were carried out to assess
the effect of rectangular breakwaters on wave amplitude
suppression [26]–[30]. Further, Beji and Bettjes [31] and
Ohyama et al. [32] conducted experiments to investigate the
interaction of waves and trapezoidal breakwaters. Extending
on those reports, Garcia et al. [33] and Kramer et al. [34]
performed experiments on the composite-sloped trapezoidal
breakwater. Such experimental findings are highly likely to
be accurate. However, laboratory tests are quite costly due
to the inflexibility of this approach, which must be modified
every time we want to observe other set-ups or use different
parameter values.

Thus, in this paper, we will propose a model to inves-
tigate the effectiveness of submerged breakwater structures
in reducing wave height while considering the turbulence
effect on the breakwater. We will concentrate on the more
general form of breakwater, the composite-trapezoidal shape,
such that the findings of this paper can be applied to simpler
scenarios, such as trapezoidal and rectangular structures. The
model suggested here is the Linear Shallow Water Equations
(LSWE), which will be modified by incorporating a diffusion
term into the momentum equation to represent the turbulence
effect induced by the breakwater. The wave transmission and
reflection coefficients will then be determined analytically
using this model. These analytical solutions can be a sig-
nificant development to the study of breakwater, especially
when a turbulence is involved, since we can hardly find
the exact solutions from previous researches. These two
coefficients, especially the transmission coefficient, are crit-
ical in assessing how much the breakwater has reduced the
wave height, and thus how effective the breakwater structure
is in reducing the wave amplitude. Using this model, we
can easily adjust the model’s setup without spending a lot
of money. Besides that, as opposed to other models such
as Navier-Stokes Equations, Boussines-type Model, Green’s
Theorem, or Potential Theory, the LSWE are simpler to
solve analytically, which can save the cost of derivation of
analytical solutions. However, to validate this model, we
must equate its accuracy to that of previous models. There-
fore, we can compare the analytical solutions obtained using
LSWE to solutions for simplified cases, such as rectangular
breakwaters [10] and wave shoaling solution [3]. Following
that, the validated model and analytical solutions will be
used to investigate the influence of diffusion and breakwater
geometry on wave transmission. In addition, the model
will be used to examine the effect of a composite-sloped
trapezoidal submerged breakwater on the actual bathymetry
of the coast of Aceh, Sumatera, Indonesia.

To achieve our objectives, we will present the paper in
five sections, the first of which will explain the problem and
the goals of this paper. In the second section, the governing
equations will be briefly explained. The third section pro-
vides the analytical solutions for the wave communication
and reflection coefficients, which serve as measurement tools

for the efficacy of the breakwater. Section 4 contains the test
cases that will be used to validate our model, which will then
be used to investigate the behaviour of wave transmission
because of breakwater structure and diffusion coefficient
variations, as well as the interaction of waves and composite-
sloped trapezoidal breakwater over real bathymetry in Aceh.
Finally, the paper will be concluded with Section 5.

II. MATHEMATICAL MODEL

In this section, we formulate a 1-D time-dependent mathe-
matical model of wave propagation over a composite-sloped
submerged trapezoidal breakwater. The model that we use
is based on Linear Shallow Water Equations (LSWE). Here,
the modification of LSWE is needed to include the effect
of turbulent motions that are enhanced by the breakwater.
The effect of turbulence on the momentum balance can be
represented by νt∇(∇.u) where νt is the eddy viscosity [35].
Eddy viscosity is usually taken to be uniform in space [36]–
[38]. Assuming that νt is a constant, we can rewrite the
turbulence term νt∇(∇.u) as a simpler diffusion term κ∂

2u
∂x2 ,

with κ = νt denotes the uniform diffusion coefficient. Here,
we use the diffusion term to model energy dissipation in the
vicinity of the breakwater, so we will specify κ to be piece-
wise constant within sub-domains of the main domain. Thus,
our governing equations will be

ηt + (hu)x = 0, (1)

ut + gηx = 0, (2)

where (1) is the mass conservation equation and (2) is the
momentum conservation equation. Notation η denotes the
wave elevation that is measured from the still water level as
depicted in Fig. 1, u denotes the horizontal wave velocity, g is
the gravity acceleration, and h denotes the water depth calcu-
lated from undisturbed water position. Using the Separation
of Variables Method, we rewrite the wave elevation and
velocity as η (x, t) = η (x) e−iωt and u (x, t) = u (x) e−iωt

respectively. For ease of reference, we will use the following
notation from now on: dη(x)

dx = ηx and d2η(x)
dx2 = ηxx, and

similarly for other dependent and independent variables.

Fig. 1: Illustration of modified Linear Shallow Water Equa-
tion

Substituting η and u to (1) and (2) produces the following
equation

ω2u (x) + 2ghxux + (gh (x)− iωκ)uxx = 0, (3)
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and relation

η (x) =
1

iω
(hu)x, (4)

where ω denotes the wave angular frequency and h(x) is the
undisturbed water depth.

Considering a composite-sloped submerged trapezoidal
breakwater which set-up is illustrated in Fig. 2, we split the
depth h(x) into six domains, on which we can write as

h(x) =



h0 , x ≤ x0

h0 + h1−h0

x1−x0
(x− x0) , x0 < x ≤ x1

h1 + h2−h1

x2−x1
(x− x1) , x1 < x ≤ x2

h2 , x2 < x ≤ x3

h2 + h3−h2

x4−x3
(x− x3) , x3 < x ≤ x4

h3 , x > x4.

(5)

Next, the general solution of η and u will be calculated
for each domain using the bottom elevation described by (5)
and the dynamic governing equations (3) and (4).

Fig. 2: Set-up of the breakwater structure

III. ANALYTICAL SOLUTION

The analytical solution described in this section is in the
form of a reflection and transmission coefficient, which is the
ratio of reflected or transmitted amplitude to the incoming
wave amplitude. The coefficients are calculated using the
general solution of η and u for each domain, which can be
obtained by solving (3) and (4). The general solution is then
solved using matching conditions and elimination procedures
to find the reflected and transmission coefficients.

A. General Solution of η and u

1) Flat Domain Ω1, Ω4 and Ω6: For domain Ω1, we
consider h(x) = h0 as the depth of the water. We substitute
h(x) into (3) and (4) to find the following equations

ηx = h0

iωuxx,

ω2u+ (gh− iωκ)uxx = 0.
(6)

Because the turbulence effects are considered to be limited to
the region of the breakwater, we assume that there will be no
diffusion in either of the domains Ω1 and Ω6. Consequently,

the value of κ is set as zero in the domain Ω1, so that the
last equation becomes

ω2u+ ghuxx = 0. (7)

which give solution for η and u that can be written as follows.

u (x) =
gk0
ω

(AIe
ik0x −Are−ik0x), (8)

η (x) = AIe
ik0x +Are

−ik0x, (9)

with AI is the amplitude of the incoming wave, Ar is the
reflected wave amplitude, and k0 = ω/

√
gh0 is the wave

number in domain Ω1. The same assumption is used for the
domain Ω6, so that κ = 0. With depth h (x) = h3, the
solution of η and u in domain Ω6 are

u (x) =
gk3
ω
Ate

ik3x, (10)

η (x) = Ate
ik3x, (11)

in which At is the transmitted wave amplitude and k3 =
ω/
√
gh3. It has been assumed that waves propagate freely

out of the right-hand side of Ω6 without any reflection.
In domain Ω4 with water depth h (x) = h2, the assumption

of zero diffusion is not applicable because the domain is part
of the breakwater structure. Consequently, the solutions of η
and u obtained for this domain are

u (x) =

(
gk2
ω
− iκk2

h2

)
(A5e

ik2x −A6e
−ik2x), (12)

η(x) = A5e
ik2x +A6e

−ik2x, (13)

where A5 and A6 are unknown constants, and
k2 = ω/

√
gh2 − iωκ.

2) Sloping Domain Ω2, Ω3 and Ω5: For domain Ω2, the
water depth is h(x) = h0 + h1−h0

x1−x0
(x − x0), so that (3)

becomes

ω2u+ 2g(h1−h0)
x1−x0

ux

+
(
gh0 + g(h1−h0)

x1−x0
(x− x0)− iωκ

)
uxx = 0,

(14)

which can be rewritten as

(x+ x̃0)

2
uxx + ux +

ω2

2g
x̃1u = 0, (15)

where x̃0 = x1h0−x0h1

h1−h0
− iωκ(x1−x0)

g(h1−h0)
and x̃1 = (x1 −

x0)/(h1 − h0). The solution of (15) is

u(x) =
1√

x+ x̃0
(A1J1(α0(x)) +A2Y1(α0(x)), (16)

in which J1(x) and Y1(x) are Bessel function of the first
kind and the second kind, respectively, while α0(x) =
2ω√
g

√
x̃1
√
x+ x̃0. A1 and A2 are unknown constants. Then,

substituting the solution of u that we have obtained into (4)
we will get the solution of η as follows.
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η (x) = 1

iω(x+x̃0)
3
2

(
A1

(
− iωκg J1 (α0(x))

+α0(x)(x1h0−x0h1+xh1−xh0)
2(x1−x0)

J0 (α0(x))
)

+ A2

(
− iωκg Y1 (α0(x))

+α0(x)(x1h0−x0h1+xh1−xh0)
2(x1−x0)

Y0(α0(x))
))

.

(17)
Using the same method as before, for domain Ω3 with

h(x) = h1 + h2−h1

x2−x1
(x − x1) and domain Ω5 with h(x) =

h2 + h3−h2

x4−x3
(x − x3), the analytical solutions of u and η,

respectively, are

u(x) = 1√
x+x̃2

(A3J1(α1(x)) +A4Y1(α1(x)),

η (x) = 1

iω(x+x̃3)
3
2

(
A3

(
− iωκg J1 (α1(x))

+α1(x)(x2h1−x1h2+xh2−xh1)
2(x2−x1)

J0(α1(x))
)

+A4

(
− iωκg Y1 (α1 (x))

+α1(x)(x2h1−x1h2+xh2−xh1)
2(x2−x1)

Y0(α1(x))
))

,

(18)
and

u(x) = 1√
x+x̃4

(A7J1(α2(x)) +A8Y1(α2(x)),

η (x) = 1

iω(x+x̃4)
3
2

(
A7

(
− iωκg J1 (α2(x))

+α2(x)(x4h2−x3h3+xh3−xh2)
2(x4−x3)

J0(α2(x))
)

+A8

(
− iωκg Y1 (α2 (x))

+α2(x)(x4h2−x3h3+xh3−xh2)
2(x4−x3)

Y0(α2(x))
))

,

(19)
in which A3, A4, A7, and A8 denote the unknown constants,
whereas

x̃2 = x2h1−x1h2

h2−h1
− iωκ(x2−x1)

g(h2−h1)
x̃3 = (x2 − x1)/(h2 − h1)

x̃4 = x4h2−x3h3

h3−h2
− iωκ(x4−x3)

g(h3−h2)
x̃5 = (x4 − x3)/(h3 − h2)

α1(x) = 2ω√
g

√
x̃3
√
x+ x̃2 α2(x) = 2ω√

g

√
x̃5
√
x+ x̃4

(20)

B. General Solution of η and u

Now, we have 6 regions to determine the analytical so-
lution of transmission and reflection coefficients, giving us
5 boundaries on which two corresponding solutions must
match. To determine transmission and reflection coefficients,
matching conditions need to be satisfied. The matching
conditions are the continuity of the elevation and flux at
each boundary point, xi with i = 0, 1, 2, 3, 4. Below are
the matching conditions for every xi:

η|x=x−
i

= η|x=x+
i
, hu|x=x−

i
= hu|x=x+

i
. (21)

From these conditions, we have two equations for every
boundary (corresponding to the elevation and the flux), so
that we will have 10 equations which can be written as a
system of simultaneous equations:

−e−ik0x0Ar + ζ0A1 + γ0A2 = eik0x0AI ,

ie−ik0x0Ar +
√

h0
g

1
κ1
√
x̃1
J1 (β0)A1

+
√

h0
g

1
κ1
√
x̃1
Y1(β1))A2 = eik0x0AI ,

ζ1A1 + γ2A2 − ζ2A3 − γ2A4 = 0,

1√
x̃1

(J1 (β1)A1 + Y1 (β1)A2)

− 1√
x̃3

(J1 (β2)A3 + Y1 (β2)A4) = 0,

ζ3A3 + γ3A4 − eik2x2A5 − e−ik2x2A6 = 0,

(h2)
3
2

(κ2)
3
√
gx̃3

J1 (β3)A3 +
(h2)

3
2

(κ2)
3
√
gx̃3

Y1(β3)A4

−eik2x2A5 + e−ik2x2A6 = 0,

eik2x3A5 + e−ik2x3A6 − ζ4A7 − γ4A8 = 0,

eik2x3A5 − e−ik2x3A6 − (h2)
3
2

(κ3)
3
√
gx̃5

J1 (β4)A7

− (h2)
3
2

(κ3)
3
√
gx̃5

Y1(β4)A8 = 0,

ζ5A7 + γ5A8 = eik3x4At,√
h3
g

1
κ4
√
x̃5
J1 (β5)A7 +

√
h3
g

1
κ4
√
x̃5
Y1(β5)A8 = eik3x4At,

(22)
where

β0 = 2ω√
g x̃1κ1, β1 = 2ω√

g x̃1κ2, β2 = 2ω√
g x̃3κ2,

β3 = 2ω√
g x̃3κ3, β4 = 2ω√

g x̃5κ3, β5 = 2ω√
g x̃5κ4.

(23)

κ1 =
√
h0 − iωκ

g , κ2 =
√
h1 − iωκ

g ,

κ3 =
√
h2 − iωκ

g , κ4 =
√
h3 − iωκ

g ,
(24)

ζ0 = 1

iω(x̃1κ2
1)

3
2

(
− iωκg J1 (β0) + β0h0

2 J0(β0)
)
,

γ0 = 1

iω(x̃1κ2
1)

3
2

(
− iωκg Y1 (β0) + β0h0

2 Y0(β0)
)
,

ζ1 = 1

iω(x̃1κ2
2)

3
2

(
− iωκg J1 (β1) + β1h1

2 J0(β1)
)
,

γ1 = 1

iω(x̃1κ2
2)

3
2

(
− iωκg Y1 (β1) + β1h1

2 J0(β1)
)
,

ζ2 = 1

iω(x̃3κ2
2)

3
2

(
− iωκg J1 (β2) + β2h2

2 J0(β2)
)
,

γ2 = 1

iω(x̃3κ2
2)

3
2

(
− iωκg Y1 (β2) + β2h1

2 Y0(β2)
)
,

ζ3 = 1

iω(x̃3κ2
3)

3
2

(
− iωκg J1 (β3) + β3h2

2 J0(β3)
)
,

γ3 = 1

iω(x̃3κ2
3)

3
2

(
− iωκg Y1 (β3) + β3h2

2 Y0(β3)
)
,

ζ4 = 1

iω(x̃5κ2
3)

3
2

(
− iωκg J1 (β4) + β4h2

2 J0(β4)
)
,

γ4 = 1

iω(x̃5κ2
3)

3
2

(
− iωκg Y1 (β4) + β4h2

2 Y0(β4)
)
,

ζ5 = 1

iω(x̃5κ2
4)

3
2

(
− iωκg J1 (β5) + β5h3

2 J0(β0)
)
,

γ5 = 1

iω(x̃5κ2
4)

3
2

(
− iωκg Y1 (β5) + β5h5

2 Y0(β5)
)
.

(25)

The equation system is then solved using the Elimination
Method to obtain solutions for the unknown constants, which
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are Ar, A1, A2, A3, A4, A5, A6, A7, A8 and At. The reflec-
tion and transmission coefficients are the ratios of the re-
flected amplitude (Ar) and transmitted amplitude (At) to the
incoming wave amplitude (AI), respectively. Consequently,
we obtain the reflection coefficient (Kr) and the transmission
coefficient (Kt) as follows.

Kr =
ϕ7 (γ0 − P ) + ϕ8 (ζ0 −Q)

2
eik0x0 , (26)

Kt =
2

ϕ7 (γ0 + P ) + ϕ8 (ζ0 +Q)
eik0x0 . (27)

where

P = Y1 (β0)
(
h0

κ2
1

) 3
2 1√

gx̃1
,

Q = J1 (β0)
(
h0

κ2
1

) 3
2 1√

gx̃1

(28)

The definition of the unknown variables ϕn, with n =
1, 2, . . . , 8 are

ϕ8 =
ϕ5

(
γ2Y1(β1)−γ1Y 1(β2)

√
x̃1
x̃3

)
ζ1Y1(β1)−γ1J1(β1)

+
ϕ6

(
ζ2Y1(β1)−γ1Y 1(β2)

√
x̃1
x̃3

)
ζ1Y1(β1)−γ1J1(β1)

,

ϕ7 =
ϕ5

(
γ2J1(β1)−ζ1Y 1(β2)

√
x̃1
x̃3

)
γ1J1(β1)−ζ1Y1(β1)

+
ϕ6

(
ζ2J1(β1)−ζ1J1(β2)

√
x̃1
x̃3

)
γ1J1(β1)−ζ1Y1(β1)

,

ϕ6 =

ϕ4e
ik2x3

Y1(β3)−γ3
(
κ23
h2

) 3
2√

gx̃3


ζ3Y1(β3)−γ3J1(β3)

+

ϕ3e
−ik2x3

Y1(β3)+γ3

(
κ23
h2

) 3
2√

gx̃3


ζ3Y1(β3)−γ3J1(β3)

,

ϕ5 =

ϕ4e
ik2x3

J1(β3)−ζ3(κ23h2
) 3

2√
gx̃3


γ3J1(β3)−ζ3Y1(β3)

+

ϕ3e
−ik2x3

J1(β3)+ζ3(κ23h2
) 3

2√
gx̃3


γ3J1(β3)−ζ3Y1(β3)

,

ϕ4 =
ϕ1

(
γ4+Y1(β4)

(
h2
κ23

) 3
2 1√

gx̃5

)
2

+
ϕ2

(
ζ4+J1(β4)

(
h2
κ23

) 3
2 1√

gx̃5

)
2

e−ik2x3 ,

ϕ3 =
ϕ1

(
γ4−Y1(β4)

(
h2
κ23

) 3
2 1√

gx̃5

)
2

+
ϕ2

(
ζ4−J1(β4)

(
h2
κ23

) 3
2 1√

gx̃5

)
2

eik2x3 ,

ϕ2 =
Y1(β5)−γ5

(
κ24
h3

) 3
2√

gx̃5

ζ5Y1(β5)−γ5J1(β5)
eik3x4 ,

ϕ1 =
J1(β5)−ζ5

(
κ24
h3

) 3
2√

gx̃5

γ5J1(β5)−ζ5Y1(β5)
eik3x4 .

(29)

IV. RESULTS AND DISCUSSION

A. Hydrostatic Part

Here, we will discuss how our analytical solutions can
be reduced into some well-known solutions, such as the

analytical solution for a step with an infinite length [3] and
a rectangular obstacle with a finite length [10].

1) Sloping Domain Ω2, Ω3 and Ω5: To fit the case
properly, we need to change some parameters of our model
to convert the composite-sloped trapezoidal shape into a
rectangular one. This may be achieved by setting (x1 −
x0) → 0, (x2 − x1) → 0, and (x4 − x3) → 0, hence
β0 → 0, β1 → 0, β2 → 0, β3 → 0, β4 → 0, and β5 → 0.
For these test cases, we will use g = 9.81 m/s2 as the
acceleration due to gravity, T = π/2 s as the incoming wave
period, and Ai = 0.05 m as the incoming wave amplitude.
In this simulation, the diffusion coefficient is varied in the
range of 0 ≤ κ ≤ 0.1. The comparison between our
analytical solutions (for various diffusion coefficient values)
and solutions obtained in [10] is presented in Fig. 3.

Fig. 3: Analytical solution Kt (upper) and Kr (lower) for
rectangular breakwater case compared to solution obtained
in [10] with h0 = h1 = h3 = 0.4 m, 0.1 ≤ h2 < 0.4, and
breakwater width x3 − x2 = 0.25 m

Our analytical solution produces excellent agreement with
the solution from [10]. Moreover, it may be seen that the
transmission coefficient Kt never exceeds the value of 1.
The solutions also show that as the height of the break-
water increases, (h2 → 0), so the transmission coefficient
decreases. Further, when diffusion coefficient is included,
we can see that the transmission coefficient decreases as the
diffusion coefficient increases. However, the reduction in Kt

also depends on the height of the breakwater above the sea
bed. In the limit, when h0 = h2 which means the waves
propagate over a flat topography, the value of Kt is 1 for
κ = 0. This is happen because in this condition, there will be
no reflected waves and there is no diffusion effect that can
decreases the amplitude. Notice that when we include the
diffusion coefficient in the model, even in the flat bottom
setting, the waves amplitude is still reduced. It might be

Engineering Letters, 30:2, EL_30_2_06

Volume 30, Issue 2: June 2022

 
______________________________________________________________________________________ 



because in this model, we consider diffusion coefficient to
exists in all domains except Ω1 and Ω6. Therefore, even when
there is no breakwater, the diffusion remains in the domain
and consequently reduce the waves amplitude.

As for the reflection coefficient, Fig. 3 shows that Kr

decreases as the breakwater’s height decreases. As the height
of the breakwater tends to zero, so the value of Kr tends
to zero because there will be no reflected wave in a flat
bottomed basin. As for the reflection coefficient, the diffusion
coefficient reduces Kr depending on the height ratio of the
breakwater. Yet, the changes in diffusion coefficient give
smaller changes in Kr than for Kt for the parameter ranges
shown in Fig. 3.

The width of the breakwater crest is another important de-
sign parameter. To illustrate this, we consider the case where
h0 = h1 = h3 = 0.4 m and h2 = 0.15 m, while the width
is changed within the range of 0.1 < (x3 − x2)/λ < 1.2 ,
where λ is the wave length. In this case, we vary the diffusion
coefficient in the range of 0 ≤ κ ≤ 1.

Solutions for the transmission and reflection coefficients
in this case as a function of crest width are shown in Fig.
4. The solution presented in [10] is shown in blue asterisks
and is extremely well matched by our solution, shown as the
full red line. Further solutions for various values of diffusion
coefficient are shown in broken and dashed lines. As we can
see in Fig. 4, Kt and Kr vary periodically with the width
of the breakwater. The introduction of diffusion dampens the
oscillatory behaviour.

Fig. 4: Analytical Kt (upper) and Kr (lower) vs M2, where
M2 = (x3 − x2)/λ, with λ is the wave length

2) Sloping Domain Ω2, Ω3 and Ω5: A second ‘canonical’
problem has been selected to provide additional testing and
illustration of our new solution. This is the propagation of
a wave over a semi-infinite shelf. In this instance there are
two cases: wave propagation from shallow to deep water with
h0 = h1 = h2 < h3(left infinite step) and wave propagation
from deep to shallow water with h3 = h2 < h0 = h1
(right infinite step). In this test case, we will only present

the validation of our model for the right infinite step, to see
how our model works on wave propagation to the shore and
the shoaling phenomena. Below are the analytical results of
Kt for various values of step height (or various values of
h2). We use the same parameters that have been used in
rectangular test case which are g = 9.81 m/s2 as the gravity
acceleration, T = π/2 s as the incoming wave period, and
Ai = 0.05 m as the incoming wave amplitude. Fig. 5 shows
the comparison between our model and the result given by
[3] for the right infinite step case, as well as the effect of the
changes in diffusion coefficient on wave transmission and
reflection coefficient. The diffusion coefficient used in this
simulation is in the range of 0 ≤ κ ≤ 0.1.

Fig. 5: Plot of Kt (upper) and Kr (lower) vs ratio of depth on
top of the right infinite step and depth of flat bottom domain
in front of it with h0 = 0.4 m

In addition to the results of the rectangular case, our model
also gives a very good agreement with the theory given by
[3]. Fig. 5 shows that for the case of a right infinite step, Kt

increases as the step becomes closer to the water surface, and
so does the value of Kr. We can see that when h2 = 0.1 m,
the value of Kt is more than 1.3 m which is larger than
1, and it is always more than or equal to one for any other
value of h2. It is caused by the phenomenon called shoaling,
which makes wave amplitude increase when it propagates
over a shallower domain and there is no other structure to
hold it down. Kr rises because the higher the step, the more
wave amplitude is reflected back to the ocean, causing Ar
to rise and Kr to rise as well.

After κ is included, we can see the differences between the
diffusion effects on Kt and Kr. In the case of Kt, as in the
rectangular case, the effect of kappa varies depending on the
height ratio between the depth at the top of the step and the
flat bottom depth. As the step becomes higher, the diffusion
coefficient reduces the value of Kt more significantly. As
the step becomes equal to the flat bottom, the diffusion
coefficient can only be reduced slightly. The interesting result
for Kr is that no matter how big the value of κ, there is no
change in the value of Kr. This happens because, for infinite
steps, we technically divided the domain into two domains,
the deeper domain and the shallower domain. The reflected
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waves only exist in the deeper domain caused by the waves
that crash against the step, while in the shallower domain,
the waves are all transmitted to the shore. Meanwhile,
the diffusion coefficient is only included in the shallower
domain, according to our initial assumptions. Hence, the
diffusion coefficient will not affect the reflected amplitude
no matter how large the value is. This is different from the
results produced by the rectangular structure. Because in the
rectangular case, the reflection waves also exist on top of
the crest where the diffusion is also present. Therefore, the
changes in κ will affect Kr in the rectangular case.

B. Effect of Breakwater Characteristics

In this section, we will investigate the effect of a
composite-sloped trapezoidal breakwater on wave transmis-
sion amplitude. In terms of wave parameters, we continue to
use the same values from the test cases: g = 9.81 m/s2,
T = π/2 s, and Ai = 0.05 m. We have investigated
the effect of the crest’s width in the rectangular test case,
and we also studied the relationship between the height
ratio in both the rectangular and infinite step test cases.
Because the slopes barely affect the transmission coefficient,
or Kt [2], the effect of the crest’s width and height ratio on
the transmission coefficient in composite-sloped trapezoidal
breakwaters will most likely be the same as its effect in rect-
angular breakwaters and infinite step cases. Consequently,
here we will only study the effect of the depth of the flat
bottom behind the structure (h3). In order to do that, we set
h0 = 0.4 m, h1 = 0.3 m, and h2 = 0.1 m. The crest’s
width is set to be x3 − x2 = 0.25 m. The value of h3 is in
the 0.1 ≤ h3 ≤ 0.4 m range.The results for how h3 affects
Kt, as well as how the diffusion coefficient will affect Kt

are shown in Fig. 6.

Fig. 6: Value of Kt depends on ratio h3/h2 with various
value of κ

Fig. 6 shows us how h3/h2 affects the value of Kt. First,
when the diffusion coefficient equals zero, the value of Kt

decreases when the water depth behind the crest becomes
deeper. The problem is, we can see that even with a backside
depth of 0.4 m, which is as deep as the front bottom,
the transmission coefficient is still high, which is equal to
0.9479. This is mostly because of the shoaling phenomena.
The crest increases the wave amplitude significantly as the
wave crashes against it, but the deeper bottom behind the
crest is only enough to decrease the amplitude as much as
it increases, maybe slightly bigger. However, in the actual
phenomenon, we have considered the diffusion term caused

by the breakwater itself. So now we will investigate how the
diffusion helps the breakwater reduce the wave amplitude.

Fig. 6 also shows us that the diffusion term works nicely
to reduce the transmission amplitude in the composite-sloped
trapezoidal breakwater. We can see that as κ increases, the
value of Kt decreases in all values of the ratio h3/h2. So,
even if the breakwater itself is not enough to significantly
decrease the wave amplitude, the diffusion effect caused by
the breakwater will do it nicely. Even the small value of the
diffusion coefficient can significantly reduce Kt. The effect
of the diffusion coefficient on transmitted wave amplitude in
general can be seen in Fig. 7.

Fig. 7: Effect of diffusion coefficient κ on wave transmission
coefficient Kt

Results from Fig. 7 show the transmission coefficient
depends on the diffusion coefficient, κ produced by the
analytical solution of our model. We still use the same set-up,
where the depths are h0 = 0.4 m, h1 = 0.3 m, h2 = 0.1 m
. The backside depth is in the range of 0.1 ≤ h3 ≤ 0.4 m.
From the figure, we can conclude that κ has successfully
reduced the transmission coefficient smoothly. Again, the
large value of κ is not necessary to reduce the amplitude.
In fact, if we can use a small value of κ, then Kt will
be reduced significantly. The figure also shows that, after a
certain point, increasing the value of κ no longer significantly
reduces the amplitude of the waves, and that the effect of
diffusion remains the same for larger values of κ.

C. Composite-slope Trapezoidal Breakwater Application on
Aceh’s Bathymetry

Here, we will apply our analytical model to real topog-
raphy, which is a cross-sectional bathymetry of the coast
of Aceh, in Sumatra, Indonesia, where the 2014 tsunami
occurred. This topography has been studied in order to better
understand the shoaling phenomenon on such bathymetry
[2]. The study results showed that the wave height on the
shallower domain became more than two times bigger than
the incoming waves on the deeper domain. This is why the
tsunami waves that hit Aceh in 2004 are very dangerous. In
this case, we will study what could happen if we placed a
breakwater, especially a composite-slope trapezoidal break-
water, over the transmission region, where the amplitude
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Fig. 8: Bathymetry of the coast of Aceh, Sumatera, Indonesia

Fig. 9: Set-up of the composite-slope trapezoidal break-
water placed on top of the transmission region of Aceh’s
bathymetry

increases. We will see whether the breakwater can decrease
the wave amplitude or not.

The real bathymetry is more complex and unsteady (see
Fig. 8). Hence, to apply our linear model, we need to adjust
a few things. First, we will only consider the transmission
domain where the wave amplitude has already increased and
place the breakwater on top of it. The transmission domain
is defined by x > 96.8. Secondly, we transform the domain
into a linearized topography so that we can apply our model.
The transmission domain is approximated to be 30 m deep.
With that, we can place the breakwater over the transmission
domain with a set-up as shown in Fig. 9.

We will investigate the transmitted amplitude of tsunami
waves after they propagate over the breakwater using the
setup depicted in Fig. 9. The incoming wave that we use
in this case is the transmitted wave obtained by [2] with a
wave height of 2.44 m and a wave period of 17 minutes.
For diffusion coefficient κ = 0, the transmitted coefficient
obtained after the waves pass over the breakwater is 0.9975
which is less than 1. This means that the amplitude of the
waves is successfully reduced by the breakwater, even though
the diffusion has not been included. However, we also want
to study how the diffusion affects the tsunami waves in this
configuration. The value of Kt as a result of the changes of
κ is presented in Fig. 10.

From Fig. 10, the most noticeable result is that we need
a very large κ to slightly reduce the wave transmitted
amplitude. This result is different from the previous result,
where only a small value of κ can significantly reduce the
wave amplitude. The most possible reason is because of the
wave’s characteristics itself. In this case, the incoming wave
is a very long and big wave. So, it makes sense if we need
a bigger κ to reduce the waves as significantly as the small
κ reduces a small wave.

Fig. 10: Transmitted coefficient Kt for various value of κ
for waves propagation over the Aceh’s bathymetry

V. CONCLUSIONS

In this paper, we present new analytical solutions for wave
propagation over a composite-sloped submerged trapezoidal
breakwater in the form of wave transmission and reflection
coefficients. These analytical solutions are then compared to
other previously published solutions for simpler breakwater
structures, such as rectangular breakwaters or infinite steps.
In both cases, our analytical solutions and the previously
well-known solutions agree very well. Furthermore, the effect
of composite-sloped trapezoidal breakwater properties, as
well as the diffusion coefficient, on wave height reduction has
been studied. It was discovered that the deeper region behind
the crest acts as a dissipator, reducing the amplitude induced
by the shoaling phenomenon. However, this is insufficient
to significantly reduce the wave amplitude. The turbulence
effect, represented by the diffusion term, comes into play
here to assist the breakwater in reducing the wave amplitude
that propagates over it. And, as expected, as the diffusion
coefficient increases, the wave transmission coefficient de-
creases, resulting in a reduction in wave amplitude. Finally,
we used actual bathymetry from the coast of Aceh, Sumatera,
Indonesia to investigate the effect of the breakwater on
reducing tsunami wave amplitude. The results suggest that
the breakwater can help minimise the amplitude of tsunami
waves moderately, and to optimise that feature, the diffusion
coefficient or turbulence effect can be adjusted to be as large
as possible. It also reveals that the ability of the diffusion
coefficient to minimise wave amplitude relies on the nature
of the wave itself, with the coefficient being less powerful
on long waves like tsunamis than it is on shorter waves.
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