
 

  
Abstract— This paper presents a voltage-mode universal 

biquadratic filter with voltage differencing transconductance 
amplifiers (VDTAs) as active components. The proposed filter 
comprises four inputs and a single output and can perform all 
five general biquadratic filter functions, namely lowpass, 
bandpass, highpass, bandstop, and allpass responses, without 
modifying the circuit architecture. It also offers the advantages 
of resistorless implementation with only two grounded 
capacitors, orthogonal adjustment of the natural angular 
frequency and the quality factor, as well as the absence of any 
constraint related to the values of input signals. Moreover, 
because the circuit contains all of the high input impedance 
levels, it may be cascaded without the requirement of 
additional buffers. The suggested filter's functioning has been 
validated by simulations using the PSPICE application. 
 

Index Terms-universal filter, Voltage Differencing 
Transconductance Amplifier (VDTA), biquadratic filter, 
voltage-mode circuit, electronically tunable. 

I. INTRODUCTION 
niversal filters are analog active filters that can 

perform all five typical filter functions such as lowpass 
(LP), bandpass (BP), highpass (HP), bandstop (BS), and 
allpass (AP) from the same topology [1]. They are a very 
valuable circuit function block that is frequently employed 
in communication and measurement systems such as phase-
locked loop FM stereo demodulators, touch-tone telephones, 
and cross-over networks used in three-way high-fidelity 
loudspeakers [2]. The following benefits must be offered by 
a voltage-mode universal biquadratic filter topology: (i) 
high input impedance; (ii) all grounded passive components; 
(iii) no additional conditioning of input and/or output 
signals; and (iv) orthogonal tuning of natural angular 
frequency (ωo) and quality factor (Q). A plethora of 
fascinating multiple-input single-output (MISO) voltage-
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mode universal biquad solutions with diverse active element 
types, such as those described in [3-26], have been 
proposed. However, these MISO solutions come with some 
of the following problems:  

(i) there are non-grounded passive components in the 
topology [3-6, 8-9, 11-16, 19-23, 25-26]; 

(ii) there are no high-impedance inputs [5-6, 8-9, 11-13, 
15-16, 18, 20-23, 25-26];  

(iii) they have external passive resistors [3, 5-9, 11-14, 
16, 19-22, 24-26];  

(iv) additional input and/or output signal conditioning is 
required [4, 6, 8-9, 11-13, 15-17, 20-23, 25-26]; 

(v) the critical parameters ωo and Q are inseparable [3-7, 
10-17, 19, 22, 26]; 

(vi) they are not electronically tunable [3, 5-9, 12-14, 20, 
22];  

(vii) they employ various types of active elements [4, 20].  
 

Because of the resistorless filter topologies accessible, the 
voltage differencing transconductance amplifier (VDTA) is 
an interesting active component for the implementation of 
universal biquadratic filters [28-32]. The VDTA is a 
voltage-controlled current source combining active devices. 
It functions as a multiple-output transconductor with 
differential input voltage control, resulting in two distinct 
transconductances: first transconductance (gmF) and second 
transconductance (gmS) [33-34]. Because of its ability to 
regulate these transconductances individually via external 
bias currents, it is an alternative device for circuit designers 
to other active components. Furthermore, a VDTA's ability 
to function as a voltage or current-mode device adds to its 
versatility. 

The primary goal of this work is to present a circuit 
configuration for the creation of a universal voltage-mode 
biquadratic filter based on VDTAs and solely grounded 
capacitors. The proposed circuit, which has four inputs and 
a single output (FISO), can perform the LP, BP, HP, BS, 
and AP filter functions concurrently. It possesses a high 
input impedance and independent electronic control of the 
ωo and Q parameters. In addition, no further conditioning of 
input or output signals is required by the circuit. The 
simulation results from the PSPICE program are used to 
demonstrate the behavior of the circuit.    

II. CIRCUIT DESCRIPTION 
The VDTA active element has been used for the 

realization of the proposed FISO voltage-mode universal 
biquadratic filter. The port relation of the ideal VDTA, 
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depicted in Fig. 1, can be characterized by the matrix given 
below.  
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In the above expression, gmF and gmS denote the first and 
second small-signal transconductance parameters, 
respectively. It should be noted that the transconductances 
gmF and gmS may be electrically adjusted using external DC 
control voltages or currents.  
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Fig. 1.  Symbol of the VDTA   
 

Fig. 2 depicts the proposed voltage-mode universal 
biquadratic filter. It consists of two VDTAs and two 
grounded capacitors. Using solely grounded capacitors is 
helpful for general integrated circuit implementation [35]-
[36]. For the ideal case, the circuit analysis in Fig. 2 
provides the following output voltage function:  
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and gmF2 = gmS3. Here, gmFi and gmSi, i = 1, 2, 3, are the 
transconductance parameters gmF and gmS of the i-th VDTA.  
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Fig. 2.  Proposed VDTA-based universal biquadratic filter 
 

According to (2) and (3), the proposed circuit can realize 
all basically five biquadratic filtering functions under the 
following conditions: 

(i)  to obtain an LP filter, set vin (input voltage) = vin1 and 
vin2 = vin3 = vin4 = 0 (ground potential);  

(ii) to obtain a BP filter, set vin = vin3 and vin1 = vin2 = vin4 = 
0;  

(iii) to obtain an HP filter, set vin = vin4 and vin1 = vin2 = vin3 
= 0;  

(iv) to obtain a BS filter, set vin = vin1 = vin4 and vin2 = vin3 
= 0;  

(v)  to obtain an AP filter, set vin = vin1 = vin2 = vin4 and vin3 
= 0.  

The preceding shows that the five filter functions are 
accomplished by selecting the proper input signals with no 
requirement for inverting the output signals. Furthermore, 
all realized filter functions have the same sign; therefore no 
additional inversion stages are required at the filter's output.  
Another essential characteristic is the availability of voltage 
inputs with high impedance, allowing for voltage-mode 
cascadability. 

The important filter characteristics, namely ωo and Q, for 
all responses are given by 
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The above-mentioned analysis proves that the filter 
characteristics ωo and Q can be orthogonally tuned and 
electrically modified through the VDTA transconductance 
gains (i.e., the bias currents of the VDTAs). Under the 
assumptions of gmi = gmFi = gmSi, the ωo and Q parameters 
simplify to, respectively,  
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When the values of C1 and C2 are known in advance, the 
ωo-value can be determined using gm1. The transconductance 
gain gm3 can also be used to adjust the parameters Q without 
altering the ωo-value.  

III.  NON-IDEALITY ANALYSIS  
Given the VDTA’s non-ideality, its terminal relationship 

may be expressed as: 
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where βF, βSP, and βSN are the parasitic transconductance 
gains for the VDTA’s input and output stages, respectively. 

When these parasitic transconductance gains are taken 
into account, the denominator in (3) becomes  
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 (9)
 In (9), βFi, βSPi, and βSNi are the parameters βF, βSP, and βSN 

of the i-th VDTA. In this case, the filter characteristics ωo 
and Q are obtained as:  
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The active and passive sensitivities of the parameters ωo 
and Q to circuit components are determined as provided in 
Table I. It reveals that the sensitivity performance is low. 

 
TABLE I 

INCREMENTAL SENSITIVITIES OF THE ωO AND Q PARAMETERS. 
 

x o
xSω  Q

xS  

gmF1  0.5 0.5 
gmS1 0.5 0.5 
gmF2 0 0 
gmS2 0.5 -0.5 
gmF3 -0.5 0.5 
gmS3 0 -1 
βF1 0.5 0.5 
βSP1 0 0 
βSN1 0.5 0.5 
βF2 0 0 
βSP2 0 0 
βSN2 0.5 -0.5 
βF3 -0.5 0.5 
βSP3 0 -1 
βSN3 0 0 
C1  -0.5 -0.5 
C2 -0.5 0.5 

 
 

IV.  DESIGN EXAMPLE AND SIMULATION RESULTS   
The CMOS realization of the VDTA in Fig.3 was used 

for simulations of the proposed VDTA-based universal 
biquadratic filter in PSPICE using TSMC 0.18-µm CMOS 
technology [33-34]. The supplied DC bias voltages were +V 
= -V = 1V. Table II lists the transistor dimensions of the 
CMOS VDTA in Fig.3. In all subsequent simulations, the 
capacitor values were set to C1 = C2 = 100 pF.    

 
TABLE II 

TRANSISTOR ASPECT RATIOS (W/L) OF THE VDTA IN FIG.3. 
 

Transistors W/L (µm/µm) 

M1 - M2 ,  M5 - M6  20/0.18 
M3 - M4 ,  M7 - M8 27/0.18 

M9 - M18  5/0.18 

 
As a design example, the filter realization with fo = 2.22 

MHz and Q = 1 has been considered. To obtain the filter 
characteristic above, the following settings were used: gmFi 
= gmSi ≅ 1.40 mAV-1 (IBFi = IBSi = 150 µA). Figs. 4-8 show 
the ideal and simulated frequency response characteristics, 
as well as the related phase plots, for the five types of filters. 
The simulation results demonstrate that the fo of operation is 
2.16 MHz for all filter designs, which is close to the 
predicted value. It is also observed that the overall power 
consumption of the circuit is roughly 1.8 mW for the 
specified component values, which is a really low value.  

For the same given component values, the simulated 
time-domain responses for all filter configurations are also 
shown in Figs.9-13 when a sinusoid with an amplitude of 50 
mV (peak) at 2.22 MHz was applied to the filter. Table III 
shows the relationship between the total harmonic distortion 
(THD) of the BP filter output and the amplitude of the 
applied sinusoidal signal at 2.22 MHz operation frequency. 
It should be noted that the percentage of THD is modest and 
maintained within the acceptable range of 5% [37] until the 
significant input signal of 200 mV (peak) is applied.  
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Fig. 3.  CMOS realization of the VDTA 
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Fig. 4. Ideal and simulated frequency characteristics of the LP filter 
obtained from Fig.2.    
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Fig. 5. Ideal and simulated frequency characteristics of the BP filter 
obtained from Fig.2.    

 

-120

-90

-60

-30

0

30 180

135

90

45

0

-45

Gain
(dB)

Phase
(degree)

100k10k 1M 10M 100M 1G

Simulated Ideal

Frequency (Hz)

Phase

Gain

 
Fig. 6. Ideal and simulated frequency characteristics of the HP filter 
obtained from Fig.2.    
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Fig. 7. Ideal and simulated frequency characteristics of the BS filter 
obtained from Fig.2.    
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Fig. 8. Ideal and simulated frequency characteristics of the AP filter 
obtained from Fig.2.    
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Fig. 9. Simulated time-domain responses of the LP filter of Fig.2.    
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Fig. 10. Simulated time-domain responses of the BP filter of Fig.2.    
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Fig. 11. Simulated time-domain responses of the HP filter of Fig.2.    
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Fig. 12. Simulated time-domain responses of the BS filter of Fig.2.    
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Fig. 13. Simulated time-domain responses of the AP filter of Fig.2.    

 
TABLE III 

DEPENDENCE OF BP OUTPUT HARMONIC DISTORTION ON APPLIED SIGNAL 
AMPLITUDE 

 

Signal amplitude (mVpeak) THD (%) 

5 0.018 
10 0.017 
20 0.032 
50 0.080 
80 0.241 
100 0.674 
120 1.285 
140 1.996 
160 2.736 
180 3.461 
200 4.143 

 
The electronic tuning of the fo without altering the value 

of the Q-factor is shown in Fig. 14. In Fig. 14, equal 
transconductances with gmF3 = gmS3 = 1.40 mAV-1 and gm = 
gmF1 = gmS1 = gmF2 = gmS2 have different values of 1.14 mAV-

1, 1.61 mAV-1, and 2.13 mAV-1, resulting in Q = 1 for the 
BP filter and fo = 1.81 MHz, 2.57 MHz, and 3.39 MHz, 
respectively. The simulated fo are located at 1.80 MHz, 2.49 
MHz, and 3.56 MHz, respectively, thereby resulting in 
frequency errors of 0.55%, 3.11%, and 5.01%.  

Further, the modification of the Q-factor without 
influencing the fo-value for the BP filter is given in Fig. 15. 
This design is for a constant fo at 2.22 MHz with gmF1 = gmS1 
= gmF2 = gmS2 = gmF3 = 1.40 mAV-1, and just modifying the 
value of gmS3 to 0.67 mAV-1, 1.14 mAV-1, and 2.42 mAV-1, 
resulting in Q = 2.08, 1.22, and 0.58, respectively.  
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Fig. 14. Electronic Q tunability of BP response for the proposed filter.    
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Fig. 15. Electronic fo tunability of BP response for the proposed filter.    

 
The sensitivity performance was investigated for 200 

samples using Monte-Carlo statistical analysis, which 
considers both transconductance parameters (gmFi and gmSi) 
and capacitance values (C1 and C2) with a 5% deviation. 
The derived family histogram plots of fo are provided in 
Figs. 16 and 17. The mean and standard deviation figures 
were [2.21955 MHz, 37.92 kHz] and [2.21945 MHz, 45.74 
kHz], accordingly, indicating that the scheme has adequate 
sensitivity. 

 

2.10 2.15 2.20 2.25 2.30 2.35
fo (MHz)

20

15

10

5

0

Pe
rc

en
t o

f s
am

pl
es

 

 
Fig. 16. Monte Carlo statistical analysis of BP response with 5% deviation 
in transconductances gmFi and gmSi (sample = 200, mean = 2.21955 MHz, 
median = 2.21703 MHz, minimum = 2.13252 MHz, maximum = 2.31543 
MHz, sigma = 37.9206 kHz). 
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Fig. 17. Monte Carlo statistical analysis of BP response with 5% deviation 
in capacitances C1 and C2 (sample = 200, mean = 2.21945 MHz, median = 
2.22201 MHz, minimum = 2.11940 MHz, maximum = 2.32989 MHz, 
sigma = 45.7446 kHz).  
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V.  CONCLUSIONS  
This paper described an electronically tunable voltage-

mode universal biquadratic filter with four input and one 
output terminals that was created with three VDTAs and 
two grounded capacitors. The proposed circuit can realize 
LP, BP, HP, BS, and AP filter responses without any input 
signal constraints by appropriately setting the input signals. 
Its key characteristics, ωo and Q, can be tuned electronically 
and separately using the transconductances of the VDTAs. 
This design also has the advantages of being resistor-free, 
having high input impedance, and employing only grounded 
capacitors. Simulation findings utilizing TSMC 0.18-µm 
CMOS technology verify the design's viability.  
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