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Abstract—Missing data is a common problem faced with
real-world datasets. A large number of missing data will
greatly affect the quality of the data and cause deviations
in the results of data analysis. Therefore, missing values
imputation (MVI) is a critical data processing process. Most
imputation methods model the distribution of observed data
to approximate the missing values. Such an approach usually
models a single distribution for the entire dataset, which ignores
the dependencies between data. In this paper, we propose a
novel hybrid imputation algorithm, called combining Functional
dependencies and clUstering for miSsing vAlues ImputatioN
(FUSAIN), which combines Functional Dependencies (FDs),
K Nearest Neighbor (KNN), and Affinity Propagation (AP)
clustering. This proposed algorithm not only considers the
distribution of data but also uses the data dependency rela-
tionship represented by FDs to impute missing values. From
the experimental results, the imputation performance of the
proposed algorithm achieves superior performance compared
to common and popular imputation algorithms.

Index Terms—Missing value imputation, Affinity propagation
clustering, Functional dependencies, K nearest neighbor.

I. INTRODUCTION

THE growing use of machine learning (ML) and deep
learning (DL) techniques demand more and more data.

However, Missing values are common in real-world datasets,
such as medical and financial records, and can cause bias
and degrade the quality of supervised learning and clas-
sification systems [1], [2]. Statistics and machine learning
algorithms typically require complete datasets to accomplish
classification or prediction tasks [3], [4], [5]. It underlines the
importance of managing missing data correctly. Equipment
failure, human mistakes, data corruption, and other factors
can all lead to missing values. The three forms of missing
data problems are determined by the relationship between
the missing and observed values: missing completely at
random (MCAR), missing at random (MAR), and missing
not at random (MNAR) [6], [7]. MCAR occurs when the
missingness is completely independent of all other variables
in the data [8]. Missingness in MAR is only relevant for
observable variables. MNAR exists when missingness is

Manuscript received September 28, 2021; revised March 17, 2022.
This work is supported by National Natural Science Foundation of Chi-
na(61672470) and Major Public Welfare Projects in Henan Province, Chi-
na(201300210200).

Huaiguang Wu is a professor of the Faculty of Computer and Commu-
nication Engineering, Zhengzhou University of Light Industry, Zhengzhou,
Henan Province, 450066, China (e-mail: hgawu@126.com).

Shuaichao Li is a postgraduate student of Zhengzhou University of
Light Industry, Zhengzhou, Henan Province, 450066, China (e-mail:
shuaichao li@163.com).

Wenjun Shi is a lecturer of the Faculty of Computer and Communication
Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan
Province, 450066, China (e-mail: swjij@sina.com).

Shaoqing Du is a postgraduate student of Zhengzhou University of
Light Industry, Zhengzhou, Henan Province, 450066, China (e-mail: shao-
qing duu@163.com).

determined by both the observed and missing variables [9].
MAR is a more common type of deletion than MCAR and
MNAR.

Missing data is generally dealt with by: deletion and
imputation. [10]. The first method of processing is used when
only a small amount of data is missing. When there are a
large number of missing values in the data, deleting them
completely would result in a large loss of information, so
MVI may be a better option [7]. MVI is a technique for
estimating missing values from observable data. To replace
missing values for a variable, traditional imputation methods
typically use statistical estimates, such as mean [7], [11], [12]
and linear regression (LR) [13], [14], [15] imputation. These
methods simply infer the missing data from the distribution
of data for a single variable, resulting in an underestimation
of the variance of the predicted values and poor performance
[9]. Advanced methods, such as expectation maximisation
(EM), assume a multivariate normal distribution and estimate
missing values based on the overall distribution of the
data set [16]. Imputation methods based on statistics are
simple to construct and interpolate well for data sets with
certain distributions, but they do not capture deep correlation
information between variables.

A number of ML-based imputation techniques have been
proposed since the beginning of machine learning. In 2003,
Thompson proposed a method for imputing missing data
using a neural network algorithm [17]. In 2004, Jonsson
and Wohlin proposed a KNN-based technique for MVI, also
known as K-nearest neighbors imputation (KNNI) [18]. In
2005, Hai Hong et al. proposed an imputation algorithm
for missing values based on support vector machine (SVM)
regression [19]. In 2009, Ling Wang et al. improved the KN-
NI algorithm and proposed a weighted KNNI, also referred
to as weighted K Nearest Neighbor imputation (WKNNI)
[20]. In 2014, Burgette and Reiter proposed a non-parametric
approach to multiple imputations through chained equations
by using a serial regression tree as a conditional model
[21]. Yun He and Dechang Pi proposed the RKNN induction
algorithm, an improved KNN method for iterative estimation
of microarray deletion values, in 2015 [22]. The RKNN
induction algorithm iterates over the input deletion data using
reduced association as a similarity metric and extends the set
of nearest neighbor candidate genes using the input genes.
In 2016, Razavi-Far et al. proposed a fuzzy neighborhood
density-based clustering technique for missing value attribu-
tion [23]. In 2017, Soni and Sharma jointly proposed a fuzzy
clustering method based on statistical information particles
and applied this method to MVI [24]. In 2020, Raja and
Sasirekha proposed a new method for MVI based on fuzzy
C-Means rough parameters, using a mixture of fuzzy and
rough sets to deal with missing values [25]. In 2021, Saqib
Ejaz Awan et al. proposed a new approach to estimating
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missing data by adapting the popular conditional generative
adversarial network based on its specific class features [26].

Real-world data contains a wide variety of data distribu-
tions, and a single imputation method only performs well
on data that satisfy certain specific distributions. Based on
this shortcoming, researchers have developed an imputa-
tion method based on multiple distributions. The multiple
imputation algorithm continues to increase in efficacy by
progressively reducing bias and reducing the requirement
for prior knowledge of the distribution. In 2004, Dan Li
et al. proposed a more sophisticated method for missing
value imputation, which combines fuzzy acuity and KNNI
[27]. In 2005, Wei Qiao et al. implemented a missing
data estimator that uses a combination of particle swarm
optimization and neural networks to predict missing values
[28]. In 2006, Abdella et al. proposed a combination of
neural networks and genetic algorithms to estimate missing
data in databases [29]. In 2012, Gajawada and Toshniwal
combined clustering theory with KNN and proposed a new
missing value imputation algorithm [30]. In 2013, Aydilek
and Arslan et al. proposed a fuzzy c-means clustering hybrid
imputation method that combines support vector regres-
sion and genetic algorithms [31]. In 2014, Jing Tian et
al. proposed a hybrid imputation method named Multiple
Imputation using Gray-system-theory and Entropy based on
Clustering (MIGEC)[32]. In 2015, induced by the thought
of collaborative training, Huihui et al. proposed a novel hy-
brid imputation method, called recursive mutual imputation
(RMI)[33]. In 2016, Geaur Rahman et al. proposed a novel
technique called a fuzzy expectation-maximization and fuzzy
clustering-based missing value imputation framework for
data pre-processing (FEMI) [34]. In 2018, Lin Qiao and Ran
Ran et al. proposed an effective imputation method based
on iterative KNN and extreme gradient boosting (XGBoost)
method. The method first determines the priority of attributes,
and then iteratively interpolates missing values [35]. In 2019,
Aikaterini Karanikola et al. proposed a novel MVI algorithm
based on a widely used imputation method and decision
tree theory [36]. In 2020, Nikfalazar et al. proposed a new
imputation method called DIFC by integrating the merits of
decision trees and fuzzy clustering into an iterative learning
approach [37]. In 2020, Raja et al. proposed a Novel Fuzzy
C-Means Rough Parameter-based missing value imputation
method that uses the hybridization of the fuzzy and rough
set to deal with missing values [38].

Although the hybrid multiple imputation techniques
achieve good interpolation results, there is still room for
improvement. In 2003, Dardzinska et al. used relaxed FDs
(rules extracted from the dataset) and thresholds for dis-
covered values of attributes to impute the final dataset
called [39]. This imputation algorithm takes advantage of
attribute dependencies to a great extent but ignores the data’s
overall distribution information. Furthermore, this approach
is limited to discrete data. To make full use of both data
distribution information and attribute-related information, we
present a hybrid imputation technique that combines ML
and FDs. The hybrid algorithm, as opposed to the single
imputation approach, takes greater use of the link between
the variables in the data and may be applied to a wider range
of datasets with different data distributions. Below is a list
of some of our most significant contributions:

1) The AP clustering algorithm is used for MVI. The
number of clusters does not need to be defined ahead
of time with this approach, and the clustering results
are more stable than with other clustering algorithms.

2) The similarity measurement method of discrete and
mixed data is added to the traditional AP clustering
algorithm. The improved AP clustering algorithm can
be applied to mixed types of data.

3) The FDs-based imputation algorithm is proposed. The
relationships between attributes are used in this tech-
nique to identify an imputation value that is near to or
even equal to the missing value, which increases the
accuracy of missing value imputation even further.

4) The proposed algorithm is compared to two commonly
used imputation algorithms, and a large number of
tests are conducted to demonstrate that the presented
algorithm performs well in MVI.

The rest of the paper is organized as follows. In Section
II, we overview the FUSAIN framework and then introduce
the concrete implementation of the algorithms in detail. We
report the experimental results in Section III, and finally,
conclude the paper in Section IV.

II. PROPOSED METHOD

In this work, we aim to apply both data distribution and
attribute dependencies to MVI. To achieve this goal, we pro-
pose a novel hybrid imputation algorithm, namely FUSAIN.
The FUSAIN algorithm combines FDs [40], improved AP
clustering, and the KNN algorithm. The FUSAIN algorithm’s
general architecture is shown in Fig 1. The structure of this
algorithm is briefly discussed below.

Firstly, the dataset is divided into complete datasets and
incomplete datasets with missing values based on whether the
tuple has missing values or not. An FD discovery algorithm
is used to discover the FDs between attributes in the complete
dataset. The obtained FDs are then used to identify the
complete tuples from the complete dataset that match the
currently missing tuples. If no tuples are matched, the com-
plete dataset is clustered using the improved AP clustering
algorithm, which produces many clusters. Using a mixed
similarity measure, the clusters that are closest to the missing
tuples are identified and the nearest-neighbor complete tuples
are determined from them. Finally, the complete tuples are
used to impute the missing values. The implementation of
the hybrid algorithm is detailed below.

A. Improved Affinity Propagation Clustering Algorithm

The AP clustering algorithm was proposed by Frey and
Dueck in 2007 [41]. It is particularly suitable for fast
clustering of high-dimensional, mixed data, and offers sub-
stantial improvements in terms of clustering performance and
efficiency compared to traditional clustering algorithms. It
is currently used mainly in the field of image processing,
with some early applications in semi-supervised clustering.
The AP clustering algorithm does not require the number of
clusters to be specified in advance, and the clustering results
are more stable than other clustering algorithms [42]. Based
on these advantages, we apply the AP clustering algorithm
to MVI. The core idea of the algorithm is to use all data
points as potential clustering centers. During the iterative
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Fig. 1. The overall architecture of the FUSAIN algorithm

process, representative and appropriate information between
data points is constantly updated to find the final cluster
centers, as well as the location and number of cluster centers.
Finally, the sum of the similarity of all data points to the
nearest cluster center is maximized [41].

As the traditional AP clustering algorithm uses Euclidean
distance to calculate similarity, it does not apply to mixed
data. Similarity measures for discrete and mixed data have
been added to the traditional AP clustering algorithm so
that the improved AP clustering algorithm can be applied to
mixed types of data. The improved AP clustering algorithm
is described in Algorithm 1.

Mixed data includes continuous variables and discrete vari-
ables. The number of continuous variables and the number
of discrete variables are represented Cn and Dn respectively.

The similarity between continuous variables is given by
Equation 1:

SC(Ri, Rj) =

√√√√ Cn∑
m=1

(Rm
i −Rm

j )2 (1)

Where Rm
i represents the attribute value of the record

Ri on the m-th continuous attribute, and Rm
j represents the

attribute value of the record Rj on the m-th continuous at-
tribute. It can be seen that the similarity between continuous
variables is calculated using the Euclidean distance.

The similarity measure between discrete variables is given
by Equation 2:
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Algorithm 1 Improved AP Clustering Algorithm
Require: complete data set Dc; number of continuous

attributes conNum; number of discrete attributes
disNum; maximum iteration number maxIterNum;
damping coefficient λ;

Ensure: The number of clusters after clustering and the data
contained in each cluster;

1: iterNum = 0;
2: r(i, j) = 0;
3: a(i, j) = 0;
4: r(i, j)′ = 0;
5: a(i, j)′ = 0;
6: computeHybridF ieldsDistance();
7: while iterNum ≤ maxIterNum do
8: r(i, j) = computeResponsibility();
9: a(i, j) = computeAvailability();

10: r(r, j) + a(i, j) = computeRASum();
11: if r(i, j) + a(i, j) == r(i, j)′ + a(i, j)′ then break
12: end if
13: r(i, j) = updateResponsibility();
14: a(i, j) = updateAvailability();
15: end while

SD(Ri, Rj) =

Dn∑
m=1

s(Rm
i , Rm

j ) (2)

In Equation 2, s(Rm
i , Rm

j ) represents the similarity of the
m-th discrete attribute between Rm

i and Rm
j . The s(Rm

i , Rm
j )

is given by Equation 3:

s(Rm
i , Rm

j ) =

{
0 Rm

i = Rm
j

1 Rm
i ̸= Rm

j

(3)

The meaning expressed by Equation 3 is that when records
Ri and Rj have the same value on the corresponding m-
th discrete attribute, the two records are considered to be
similar in the dimension of the attribute. Otherwise, record
the similarity value of Ri and Rj in the attribute dimension
to 1.

The total similarity of the two records of Ri and Rj is
given by Equation 4:

s(Rm
i , Rm

j ) = α× SC(Ri, Rj) + βSD(Ri, Rj) (4)

α =
Cn

Cn +Dn
(5)

β =
Dn

Cn +Dn
(6)

Where α represents the ratio of the number of continuous
attributes to the number of all attributes, and β represents
the ratio of the number of discrete attributes to the number
of all attributes.

Clustering operations are performed on the complete data
set DC . In the cluster initialization phase, the complete data
set, the maximum number of iterations maxIterNum, and
the damping factor λ, the number of continuous and discrete
attributes will be entered into the algorithm as parameters. In
the initial phase of the algorithm, the similarity matrix S is
calculated using the method of computing similarity. After

that, the elements s(i, i) on the diagonal of the similarity
matrix S will be formed into a new matrix P . The element
P (i) in the matrix P represents the reference degree of the
AP clustering algorithm, that is, the reference degree of each
data point itself as a cluster centre. The larger the element
P (i) value, the more likely the data point i is to become the
cluster center.

The alternating process of the Responsibility matrix R
and the Availability matrix A is the core of the algorithm.
The elements in the matrix R are denoted as r(i, k), which
represents the degree to which the data point k is suitable as
the cluster center of the data point i. The elements in matrix
A are represented as a(i, k), which represents the suitability
of data point i to select data point k as its cluster center.

When the number of iterations is less than maxIterNum,
representative information r(i, j) and the suitable informa-
tion a(i, j) between data points are given by Equation 7 and
8.

r(i, k) = s(i, k)−max[a(i, k̇) + s(i, k′)], k′ ̸= k (7)

a(i, k) =


min(0, r(k, k) +

∑
i′ ̸=i

max(0, r(i′, k))) i ̸= k∑
i′ ̸=i

max(0, r(i′, k)) i = k

(8)
Then the sum of r(i, j) and a(i, j) is given by Equation 9.

Finally, the matrix R and A are updated alternately according
to Equation 10, 11 and damping coefficient λ.

r(i, k) + a(i, k) = s(i, k) + a(i, k)

−maxk′ ̸=k,k′ ̸=i[a(i, k
′) + s(i, k′)]

(9)

rt+1(i, k) = λ× rt(i, k) + (1− λ)× rt+1(i, k) (10)

at+1(i, k) = λ× at(i, k) + (1− λ)× at+1(i, k) (11)

The final cluster center of each cluster is achieved when
the sum of the two forms of information between the data
points is maximized and the iteration phase of the algorithm
is complete. In addition, the algorithm will stop iterating if
the number of iterations exceeds the maxIterNum value
provided.

B. Missing value imputation algorithm based on FD

FD represents the attribute association relationship in a
given relationship R [39]. An FD X→Y, over relation R,
where X, Y ⊂ R, states that if any two tuples in an instance
of R have equal X-values, then their Y-values should also be
identical. Such attribute dependencies can impute the missing
values by matching a complete tuple to the uncomplete
tuple. The FD-Based Missing Values Imputation Algorithm
is described in Algorithm 2.

The algorithm takes three parameters: the complete dataset
Dcomplete, the missing tuples Tmissing , and the missing
attribute Attr. First, the current complete dataset is processed
using the FDs discovery algorithm, and then all the obtained
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Algorithm 2 FD-Based Missing Values Imputation Algorith-
m
Require: Complete data set Dcomplete; a tuple Tmissing

with missing values; a missing attribute Attr;
Ensure: BoolV alue indicating whether missing value im-

putation is completed.;
1: FDSet = HY FD(Dcomplete);
2: BoolV alue = False;
3: FDList = newList;
4: for fd ∈ FDSet do
5: if fd satisfies Attr ∈ RHSoffd then
6: FDList.append(fd);
7: end if
8: end for
9: Sort the FD in FDList according to the size of LHS

of the FD in ascending order;
10: for fd ∈ FDSet do
11: if fd can match to the complete tuple

corresponding to Tmissing then flag =
MissingV alueImputationByFD(fd,Dcomplete);

12: if flag == True then
13: boolV alue = True;
14: break;
15: end if
16: break;
17: end if
18: end for

FDs are stored in the set FDSet. Here, the HYFD algorithm
is used to find FDs. HYFD is a hybrid FD discovery
algorithm that is faster than state-of-the-art algorithms and
can handle larger datasets [43], [44].

Then, iterate through all the FDs in the set FDSet and
store all the FDs that satisfy the Attr ∈ EHS condition in
the list FDList. The RHS represents the set of attributes
to the right of the FDs. The LHS represents the set of
attributes to the left of the FDs. Of the FDs contained in the
list FDList, the fewer the number of attributes contained in
LHS, the stronger the correlation between the left and right
attribute sets of the FD. Therefore, to improve the accuracy
of missing value imputation, the FD with a small number
of attributes in LHS is preferred to impute missing values.
Sort the FDs of FDList in ascending order according to
the number of attributes in LHS. Then, take the first FD
in FDList and determine if that FD can find a complete
tuple Tcomplete that matches the missing tuple Tmissing in
the complete dataset Dcomplete. If it can be found, fill the
missing tuple Tmissing with the value of the Attr attribute
in the complete tuple Tcomplete. The algorithm then returns
True, indicating that the imputation of the value of the Attr
attribute is complete. If none are found, then subsequent
FDs in the FDList are traversed in turn. if all FDs in
the FDList cannot match the complete tuple Tcomplete, the
algorithm returns False, indicating that the attribution of the
Attr attribute value is not complete.

C. FUSAIN Algorithm

The FUSAIN algorithm is divided into two parts. In the
first part, the whole dataset is clustered and the clustering
index is calculated. In the second part, the process of the

imputation of missing values is completed using FDs and
KNN algorithms. The FUSAIN Algorithm is described in
Algorithm 3. The flow of the FUSAIN algorithm is described
in detail in the following sections.

Algorithm 3 FUSAIN Algorithm
Require: The dataset Dinput for MVI;
Ensure: Completed dataset Doutput;

1: Dinput = ReadFile(FileName);
2: while GetDataNum(Dmissing) > 0 do
3: Dcomplete = GetComPleteData(Dinput);
4: Dmissing = GetMissingData(Dinput);
5: FDSet = HY FD(Dcomplete);
6: Tmissing = GetF irstTuple(Dmissing);
7: MissingAttrList = GetMissingAttr(Tmissing);
8: for attr ∈ MissingAttrList do
9: Flag = False;

10: if there is an FD that satisfies attr ∈ RHS of
FD then

11: PartFDs = GetSatisfiedFD(FDSet);
12: SortFD(PartFDs);
13: for fd ∈ PartFDs do
14: if fd can match to the complete tuple

corresponding to Tmissing then
15: Flag = True;
16: MV IByFD(fd, attr);
17: break;
18: end if
19: end for
20: end if
21: if Flag == False then
22: ClusterCenters =

ImpovedAPCluster(Dcomplete);
23: Cluster =

GetNearestNeighborCluster(Tmissing);
24: KNNImputation(Tmissing, attr);
25: end if
26: end for
27: end while

The algorithm first requires an incomplete dataset Dinput

from the file. The dataset Dinput is divided into a com-
plete data subset Dcomplete and an incomplete data subset
Dmissing , depending on whether the tuple contains missing
values. Then, the complete subset of data Dcomplete is
processed using the HYFD algorithm to obtain a set FDSet
containing all FDs. A tuple Tmissing containing missing
values is extracted from the incomplete dataset Dmissing .
Then, the tuple Tmissing is processed to obtain all missing
attributes and stored in the MissingAttrList. The missing
attributes in MissingAttrList will be estimated according
to the following procedure.

First, select one of the missing attributes Attr from the
MissingAttrList as the attribute that currently needs to be
imputed. Iterate through all the FDs in the set FDSet and
store all the FDs that satisfy the condition Attr ∈ RHS of
the FD in the list PartFDs. Sort the FDs in the PartFDs
in ascending order according to the number of attributes
in the LHS. Then iterate through the FDs in PartFDs in
turn. Find the complete tuple matching the missing tuple
Tmissing from the complete dataset D according to the FDs.

Engineering Letters, 30:2, EL_30_2_15

Volume 30, Issue 2: June 2022

 
______________________________________________________________________________________ 



If the tuple Tcomplete can be found, the value corresponding
to the missing attribute Attr in Tcomplete is directly used
to impute Tmissing , and then continue to impute the next
missing attribute.

If the tuple Tcomplete does not exist, the KNN algorithm is
used to complete the imputation of missing values. First, the
complete array Dcomplete is clustered using the improved AP
clustering algorithm and the index of the cluster centers is
obtained. According to Equation 4, the similarity of the tuple
Tmissing to all clusters is calculated, and then the Nearest
Neighbor Cluster(NNC) of the cluster center that is most
similar to the tuple Tmissing is obtained. The continuous
attribute value corresponding to the whole data subset in the
NNC cluster is used to complete the missing value imputation
operation for continuous attribute missing values. This is
done by calculating the similarity of the tuple Tmissing to
each complete tuple in the NNC, denoted as s(inc, cp), and
then calculating the corresponding missing values according
to Equation 5.

x =

∑q
p=1

1
s(inc,cp)2

× Vcp corr∑q
p=1

1
s(inc,cp)2

(12)

In Equation 12, the value of the continuous attribute cor-
responding to the complete tuple in the NNC is represented
by Vcp corr. The number of complete tuples in NNC is
denoted by q. It avoids artificially setting the value of K
and also reduces the effect of less similar complete tuples
on imputation results by using frac[1][s(inc, cp) ∗ 2].

For discrete attributes, the algorithm uses the complete
tuple in the NNC for statistical analysis, and then uses the
statistics to estimate the missing values.

III. EXPERIMENTAL RESULTS

In order to illustrate the performance of the FUSAIN
algorithm proposed, a series of experiments will be carried
out in this section and the experimental results will be
analyzed. The main contents of the experiment are described
below.

A. Datasets

This experiment was conducted on five datasets from Uni-
versity of California (UCI) Repository of Machine Learning
Databases. The five datasets are Energy Efficiency datasets,
Yeast datasets and Banknote authentication datasets. The
information of the datasets are described in Table I.

Since the initial datasets do not contain missing values,
to conduct experiments, the MCAR method is used to deal
with the initial datasets and got missing datasets with missing
rates of 10%, 15%, 20%, 25%, and 30% respectively.

TABLE I
THE INFORMATION OF THE DATASETS FOR EXPERIMENTATION

Dataset Name No.of records No.of attributes

Energy Efficiency 768 10
Yeast 1484 9

Banknote authentication 1372 5

B. Evaluation measures

In order to evaluate the missing value imputation per-
formance of the algorithm, it is necessary to evaluate the
experimental results using the appropriate evaluation metrics.
In this paper, the Root Mean Square Error (RMSE) and
Mis-Classification Rate (MCR) are used to measure errors
for continuous and discrete attributes respectively. For con-
tinuous attributes, the RMSE is relativised in this paper to
eliminate the effect of different attribute dimensions. The
RMSE is given by Equation 13:

RMSE =

√∑C
j=1 (

xfilled−xorigin

xorigin
)2

C
(13)

where xfilled is the estimated value corresponding to
the missing attribute in the incomplete tuple, xfilled is the
original value of the missing attribute in the incomplete tuple,
and C is the number of consecutive attributes missing in the
incomplete tuple.

For discrete variables, the MCR is given by Equation 14:

MCR =

∑D
j=1 δ(xfilled − xorigin)

D
(14)

δ(xfilled − xorigin) =

{
1 xfilled ̸= xorigin

0 xfilled = xorigin

(15)

Where xfilled is the estimated value corresponding to
the discrete attribute in the incomplete tuple, xorigin is the
original value of the corresponding discrete attribute, and
D is the number of missing discrete attribute values in the
incomplete tuple.

C. Experimental results

To prove the performance of the FUSAIN algorithm pro-
posed in this paper, two comparison imputation algorithms
are added in the experiment. The following are the two
contrast imputation algorithms:

1) Mean/Mode
Simple, easy-to-understand, and statistically-based impu-

tation algorithm. Its operation is straightforward: for contin-
uous missing values, the average of the missing attributes
is used to replace the missing values; for discrete missing
values, the most frequent value is used to replace the missing
values.

2) KNN Imputation (k = 3)
The KNNI method is a machine learning-based imputation

algorithm that is widely used and effective. To impute
missing data, use the KNN method with k equal to 3. The
attribute value from the three complete tuples closest to the
incomplete tuple is imputed for each missing value.

At the beginning of the experiment, the random missing
algorithm was applied to original complete datasets, and
incomplete datasets with missing rates of 10%, 15%, 20%,
25%, and 30% were obtained. The missing value imputation
algorithm is then applied to datasets with different missing
rates, and the performance of each approach is assessed
using the evaluation metrics. As the missing treatments are
randomized, the 20 experimental groups are performed for
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(d) discrete data in the Banknote Authentication dataset
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(e) discrete data in the Yeast dataset

Fig. 2. Performance comparison of the imputation algorithm on the continuous and discrete attribute
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each missing rate in the dataset and the final assessment is
the average of the results of the 20 experimental groups.

The imputation results of all approaches for continuous
data are displayed in Fig 2(a) through Fig 2(c). When com-
paring the FUSAIN method to the KNNI and Mean/Mode
algorithms, it can be seen that the FUSAIN algorithm has the
best imputation performance for continuous attributes. As the
missing rate rises, the performance of all techniques wors-
ens, especially Mean/Mode. The imputation performance of
Mean/Model in Fig 2(b) and Fig 2(c) is much inferior to other
approaches due to the substantial variation of the Energy
Efficiency and Yeast datasets.

Figures 2(d) and 2(e) illustrate the imputation results for
all methods for discrete data. The MCR values for the
FUSAIN algorithm are lower overall than the other two
methods, but it is not significantly better than the KNNI
algorithm. Compared to the KNNI method, the FUSAIN
algorithm performs better when the missing rate is between
20% and 30%. As the missing rate rises, the imputation
performance of all methods fluctuates up and down due to
the uneven distribution of discrete data.

Table II and Table III respectively indicate the average
performance improvement of the FUSAIN algorithm for
discrete and continuous data. On real datasets with different
missing rates, the FUSAIN algorithm showed good imputa-
tion performance, with an average imputation performance
improvement of 11.39% and 33.37% compared to the KNNI
and Mean/Mode algorithms, respectively. For the imputation
of continuous data, the imputation performance fluctuates up
and down, which may be caused by the uneven distribution of
discrete data. There is a good improvement in the imputation
performance of the FUSAIN algorithm when the missing
rate is 10%, 20%, and 30%. The attribution performance
of the FUSAIN algorithm decreases when the missing rate
is 15% and 25%. Overall, the FUSAIN algorithm improved
the imputation performance by 2.86% and 39.63% compared
to the KNNI and Mean/Mode methods, respectively. From
the experimental results, it can be seen that the FUSAIN
algorithm outperforms the KNNI and Mean/Mode algorithms
in terms of overall subsumption performance.

TABLE II
THE AVERAGE PERFORMANCE IMPROVEMENT OF THE FUSAIN

ALGORITHM FOR CONTINUOUS ATTRIBUTES

Missing Rate KNNI Mean/Mode

10% 14.01% 34.00%
15% 11.18% 34.09%
20% 12.79% 36.05%
25% 8.98% 31.30%
30% 10.01% 31.41%
avg 11.39% 33.37%

IV. CONCLUSION

In the paper, a novel missing values imputation algorithm
is proposed, which combines FDs, improved AP clustering,
and KNN algorithm, namely FUSAIN. We compare the
FUSAIN algorithm with two other efficient existing algo-
rithms, KNNI and Mean/Mode. The experiment is conducted
on three real datasets from the UCI. Using the evaluation
criteria of RMSE and MCR, the effectiveness of the proposed

TABLE III
THE AVERAGE PERFORMANCE IMPROVEMENT OF THE FUSAIN

ALGORITHM FOR DISCRETE ATTRIBUTES

Missing Rate KNNI Mean/Mode

10% 12.60% 33.08%
15% -12.65% 36.74%
20% 14.36% 49.49%
25% -7.06% 36.19%
30% 7.03% 42.64%
avg 2.86% 39.63%

algorithm is judged in terms of both continuous and discrete
attributes imputation. From the experimental results, the
proposed algorithm achieves good imputation performance.
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