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Abstract—This research aims to propose a version of Fast 

Genetic Algorithm (FGA), namely Fitness Value Memoization 

Genetic Algorithm (FVMGA). FVMGA uses the concept of 

memoization to cache the fitness value of chromosomes that 

have already been calculated before. It allows FVMGA to 

bypass unnecessary computation for redundant chromosome 

configurations, which is especially important when we use 

expensive fitness functions. For benchmarking purposes, the 

proposed FVMGA was compared to a traditional GA in the use 

case of optimizing Long Short-Term Memory (LSTM) 

hyperparameters for time-series forecasting. Four 

hyperparameters were being optimized in this study with a total 

of 38,000 possible combinations. However, the number was 

drastically reduced to 1,000 with the use of GA. The final results 

showed that FVMGA was able to compute up to 291% faster 

than traditional GA while maintaining the quality of the 

produced models. 

 
Index Terms—genetic algorithm, hyperparameters, long 

short-term memory, memoization 

 

I. INTRODUCTION 

T is impressive to see how much computational power 

has grown to this day. It is just like what Gordon E. 

Moore, the co-founder of Intel, had stated in 1965, that 

the number of capacitors in a silicon chip would double every 

two years [1]. This statement, known as Moore’s Law, had 

been proven correct for about 50 years. Although Moore’s 

Law had come to an end in the last few years, it tells just how 

tremendous the growth of computational power is [2]. 

The significant increase in computational power brings 

new possibilities. [3] noted that even in the 1980s, people had 

known about the usefulness of neural networks and machine 

learning. However, at that time, computers were very slow. 

Many computations were too costly to be executed. Now that 

computational power is abundant, many complex techniques 

that were not possible in the 20th century have become 

accessible by everyone. Practical techniques like machine 

learning [4]–[9] and evolutionary algorithms [10]–[14] are 

rising in popularity. 

It is understandable why machine learning may not be that 

popular decades ago as computational power and data used to 

be scarce. Nowadays, we could find data everywhere since 

everyone connects to the internet. However, not every record 

in raw data is valuable.  
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Usually, there are many useless pieces of information 

contained in the raw data. Thus, we need a tool that can 

effectively extract useful information from the dump of data. 

Machine learning was introduced to allow the computer to 

learn from data and deduce crucial information with minimal 

human intervention [15]. 

One of the most popular implementations of machine 

learning is time-series forecasting. In the last decade, stock 

trading is rising in popularity. However, the stock price is a 

complex time-series with high volatility and is very 

unpredictable [16]. Small things like daily news could easily 

sway people’s sentiments [17], [18]. Studies found that fear 

and anger very much affect people’s decision-making ability 

[19], [20]. That is why people invest time and resources to 

build a reliable machine learning model to predict the stock 

market’s future values.  

However, when creating a machine learning model, a set 

of hyperparameters need to be defined before the training 

begins. These hyperparameters are variables that need to be 

assigned a value manually. They could significantly affect the 

performance of the models being produced. Therefore, 

searching for the optimal hyperparameters configuration has 

been a task with significant importance to build great quality 

models [21] 

For the longest time, hyperparameter optimization or 

hyperparameter tuning was done manually [22]. Manually 

assigning a value for the hyperparameters is not an easy task 

for non-experts. However, this problem could be addressed 

by trying many combinations within a specified range. On the 

other hand, trying out many combinations would mean higher 

time and resource complexity. 

Alternatively, heuristic search algorithms like Genetic 

Algorithm (GA) could be used to search the optimal 

hyperparameters configuration [23]–[26]. The purpose 

behind heuristic searching algorithms’ existence is to find an 

optimal solution for very complex problems that are not 

possible or too expensive to solve using classical methods.  

Fast Genetic Algorithm (FGA) is a term people used to 

describe several modified GA versions that compute faster 

than GA [27]–[30]. So, FGA is not a name designated for a 

specific algorithm. Each one of FGA has a different approach 

on how they achieve a faster computation. However, since 

modifications were made, FGA usually has some limitations 

and could only be used for specific optimization problems. 

In this work, the author proposes a version of FGA that 

could effectively deal with time-consuming fitness functions 

like hyperparameter optimization. Sometimes, there are 

duplicate entries of the chromosome when optimizing with 

GA. It might not be a big problem if the fitness function does 

not have an expensive time complexity. However, when 

tuning hyperparameters, duplicate chromosomes lead to a 
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significant waste of time and computing resources as the 

fitness function is usually costly.  

The proposed FGA, Fitness Value Memoization Genetic 

Algorithm (FVMGA), uses the concept of memoization to 

bypass the need to re-evaluate redundant chromosome 

configurations, thus effectively reduces the time complexity. 

Memoization is a type of caching method. It is not a strange 

concept in the Computer Science field. However, there has 

not been an attempt to integrate this clever concept into GA. 

II. LITERATURE REVIEW 

A. Related Works 

Hyperparameter optimization is a critical subject in 

machine learning [21]. In the past, the task used to be done 

manually [22]. However, nowadays, hyperparameter 

optimization is done using automated alternatives, like 

heuristic search algorithms [23]–[26], [31]. 

GA is one of the most popular choices of heuristic search 

algorithms that people use to optimize hyperparameters. An 

experiment was carried out to compare Grid Search (GS), 

Random Search (RS), and GA for building Convolutional 

Neural Networks (CNN) [25]. It was shown that GA 

produced a great performing model with 86% accuracy. 

Meanwhile, GS falls behind the other two with only 83% 

accuracy. 

In the field of Natural Language Processing (NLP), [24] 

experimented with using GA for optimizing hyperparameters 

of Artificial Neural Networks (ANNs). The results proved 

that using heuristic search algorithms like GA for 

hyperparameters optimization is very effective. The 

optimized hyperparameters gave better results than following 

the standard and recommended values that other people 

suggested online. 

[23] used GA to optimize the hyperparameters of CNN 

with the use case of gravitational wave classification. 

Comparisons were made between GA and Deep Filtering that 

was introduced in [32]. It was shown that the GA-optimized 

model has 79% fewer trainable parameters while its 

classification accuracy is 11% higher compared to the Deep 

Filtering model. 

[26] made a summarization of hyperparameter tuning 

techniques: GS, RS, Gradient-based models, Hyperband, 

Bayesian Optimized variations, GA, and Particle Swarm 

Optimization (PSO). It was described in detail that although 

GA is not the fastest algorithm, it is flexible and efficient for 

all types of hyperparameters. It also does not require careful 

initialization, unlike some other algorithms where careful 

initialization is needed. 

Researchers had proposed variants of FGA to optimize 

GA’s time complexity. [29] intended to cut computation time 

by finding patterns in the chromosomes’ genes. Occasionally, 

every chromosome’s genes will be checked, starting from the 

first index until the last index. If an index of everybody’s 

chromosome all have the same value, that index becomes 

fixed. That chromosome index will not be included in future 

calculations. This action eliminates portions of the solution 

space and could make the algorithm converge faster. The 

proposed algorithm, Pattern Reduction Enhanced Genetic 

Algorithm (PREGA), was tested on Travelling Salesman 

Problem (TSP) ranging from 574 to 2,152 cities. PREGA 

achieved faster computation time from 28% up to 84% 

compared to traditional GA. 

 [28] also proposed a version of  FGA that could converge 

faster. The idea behind it has to do with the initialization of 

the population at the algorithm’s start. While the standard GA 

uses random initialization for its chromosomes, the proposed 

algorithm uses a new Small Region Creation Method 

(SRCM) method. SRCM divides the initial population evenly 

across the solution space. Another notable modification is the 

use of immune stochastic tournament selection. It adds the 

concept of thickness into the selection operator, which was 

inspired by the stimulative reaction and restraining reaction 

in the immune system. The combined use of both methods is 

believed can avoid premature convergence of the algorithm. 

The results showed that the proposed FGA indeed leads to 

faster convergence compared to standard GA. 

 [30] took another approach in modifying GA to suit a 

specific field of Orthogonal Frequency Division Multiplexing 

(OFDM) based Cognitive Radio System. GA was used to 

min-max radio channels’ usage between Primary Users (PU) 

and Secondary Users (SU). The proposed GA removes the 

crossover phase of traditional GA. Instead, it introduces a 

repair phase that can repair chromosomes that did not meet 

the selection criteria. At the end of the study, the performance 

of the FGA was compared to two other algorithms, 

Minimum-Interference Algorithm (MIA) and Minimum-

Power Algorithm (MPA). It was showed that the proposed 

FGA does a better job than MIA and MPA. 

Another proposition is to modify the mutation operator of 

the algorithm [27]. Instead of using the usual recommended 

mutation rate of p=1/n where n is the length of the 

chromosome, it is changed into a random rate of p=α/n. The 

value of α is chosen from a random number 𝛼 ∈ [1. . . 𝑛/2] 

according to a power-law distribution 𝐷𝑛
−𝛽, where 𝛽 > 1. 

After obtaining the value of α, it is just the usual mutation 

with the rate of p=α/n. It was also found that smaller β values 

like 1.5 produce better results than 2, 3, 4, and so on. This 

proposition of using a heavy-tailed mutation operator proved 

to be faster at finding global optimal compared to the one 

using the standard mutation rate. 

The author himself has another take on how to model an 

FGA. The author wants to propose an FGA that suits 

optimization problems with high time complexity, such as 

optimizing machine learning models. The author realized that 

sometimes when optimizing using GA, there are duplicate 

chromosomes. These duplicate chromosomes are re-

evaluated every time they appear. The author proposed 

Fitness Value Memoization Genetic Algorithm (FVMGA) as 

a solution that can bypass the need to re-evaluate duplicate 

chromosomes. Using the concept of memoization, we can 

cache previously calculated individuals along with their 

fitness values. The concept is straightforward but effective in 

achieving its purpose. 

B. Time-Series 

Time-series is a sequence of data that is sorted by date. In 

most cases, the data or records are recorded at a fixed interval, 

like hourly, daily, weekly, monthly, yearly, and so forth. 

When drawn in a graph, the x-axis would serve as the date. In 

contrast, its y-axis represents the observed variables’ value or 

any quantitative variables throughout the recording time. Fig. 
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1 shows an example of a time-series when drawn in a line 

graph.  

 

 
Fig. 1.  An example of a time-series. 

 

In every time-series, there are vital components that data 

analysts usually use to analyze the data. These key 

components are the trend and seasonality of the data. Both 

trend and seasonality can be found in many real case time-

series. They make up a large proportion of time-series 

themselves. They can even be pretty much considered as the 

time-series itself.  

Every time-series in the world will have a trend. However, 

some time-series may not have seasonality. While both 

components are crucial, data analysts focus only on the trend 

in most cases. This is because, often, the seasonality of a time-

series will hardly change at all. Thus, even people who are 

not experts could analyze the seasonality of a time-series with 

ease. The representation of trend and seasonality of time-

series can be seen in Fig. 2. 

 
 Fig. 2.  An example of a time-series decomposition. 

 

As shown in Fig. 2, the trend of time-series describes the 

change in the observed variables’ value within the range of 

observation. A trend of a time-series could go upward, 

downward, or just flat/stable. There is also another 

component called the residual. Residual/Error is a component 

within time-series that is neither trend nor seasonality. This 

component is uncontrollable and erratic and can be 

considered as interruptions from external factors, such as 

nature. Also, in Fig. 2, there are grey rectangles on the right 

side of the four components. Those are the scale of the height 

of the components relative to each other. So, it does not mean 

that the trend is curvy, but its height was scaled, making it 

looks like that. The truth is, if every component uses the same 

scale, then the trend component of that time-series would 

look more like a straight line rather than curves. 

Another critical part of building a model is to choose a 

suitable range of records. Most data scientists like to use a 

time-series with a larger number of records or data rows. This 

is because the time-series would be most likely to be reliable. 

Time-series with a low number of records will most likely 

produce unreliable results. However, this does not mean that 

a larger number of records will always produce better results. 

Sometimes, time-series with many records can produce worse 

results than time-series with a low number of records. It is the 

job of data analysts to decide the ideal range of records to 

design a model. 

C. Time-Series Forecasting 

Time-series forecasting is a field where people try to 

predict future values of time-series data. Forecasting has 

always been highly regarded in many fields, including 

business, economics, government, politics, and 

environmental science [33]. As the name suggests, a 

prediction is only a guess that is based on experience or 

knowledge. It will not have 100% accuracy. At best, it is only 

better than a wild guess. Nevertheless, making predictions 

helps in building a degree of confidence. It also helps in 

planning and the making of critical decisions [34]. 

A vital part of time-series forecasting is to choose the 

proper range of records. Most people like to use a time-series 

with many records because time-series with a small number 

of records are more likely to produce unreliable results. 

However, a larger number of records is not necessarily better. 

Almost every dataset in the world has some noise and 

unwanted or low-quality records that could negatively impact 

the forecast. Besides deciding the range of records, filtering 

out the noise and low-quality records is also essential in time-

series forecasting. 

D. Long Short-Term Memory 

Long Short-Term Memory (LSTM) is a part of machine 

learning within the scope of neural networks. Because it is a 

neural network, LSTM has an exceptional adaptation ability 

to any problems. LSTM was made as a modification to 

Recurrent Neural Network (RNN). [35] introduced LSTM as 

an alternative to RNN, which has the problems of vanishing 

gradient and exploding gradient. Both vanishing and 

exploding gradients negatively affect the model. They hinder 

the model from learning effectively from distant information 

of the past. [36], [37] discussed RNN’s problems of vanishing 

and exploding gradients in detail. 

As an improved version of RNN, LSTM introduced three 

additional gates for input to pass through: forget gate, input 

gate, and output gate. The three gates help in regulating the 

long-term memory state of the LSTM. The forget gate 

decides which information will be removed from the cell state 

that we got from the previous timestep. Then input gate 

decides what new information from the current timestep that 

we would want to store into the cell state. Lastly, the output 

gate will filter the information and decide which information 

will be passed to the next timestep. 

As a part of deep learning, LSTM has advantages over 

classical methods such as Auto-Regressive Integrated 

Moving Average (ARIMA) in its flexibility. Meanwhile, 

ARIMA, as one of the classical forecasting methods, is 

limited to simple time-series. When forecasting complex 

time-series like stock prices, classical methods like ARIMA 

lose to neural networks like LSTM [9], [38]. 
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E. Hyperparameter Optimization 

Hyperparameter optimization or hyperparameter tuning is 

critical in building the best neural network models [21]. Many 

machine learning models have a set of hyperparameters that 

need to be appropriately configured before training. These 

hyperparameters could affect the final model’s quality. So, 

choosing the correct values for them is a vital task, although 

it is not easy.  

Hyperparameter tuning used to be a manual [22]. However, 

even experts sometimes have a hard time tuning 

hyperparameters. There are several methods that computers 

could help us. One of the options computers could help us 

optimize hyperparameters is using heuristic search 

algorithms [23]–[26]. 

F. Genetic Algorithm 

Genetic Algorithm (GA) has always been popular and 

widely used ever since the 1980s [10], [11]. The idea behind 

it was taken from Charles Darwin’s theory of survival of the 

fittest. It is only expected that the fittest of all would survive 

to the next generation in natural evolution. This theory of 

natural evolution is easy to understand and is implemented in 

GA. Fig. 3 describes how elements are represented in GA. 

 

Population      

 I1 3 10 20 90 0.1  individual 

         

 I2 1 10 50 180 0.001  chromosome 

         

 I3 2 10 5 360 0.1  gene 

  1 1 5 90 0.001  
 

values pool 
  2 10 20 180 0.01 
  3 100 50 270 0.1 
  4 1000  360 0.5 
  5     

Fig. 3.  GA representation. 

 

In GA, there is a universe of discourse called population. 

Within a population, several individuals are living in it. Each 

individual has a sequence of a chromosome. Everybody’s 

chromosome may contain several genes. Then, each index of 

genes has its own values pool according to its index. A 

chromosome is also often called a candidate solution. 

Each candidate solution has a fitness value. The fitness 

value could be found as an output from inputting the 

candidate solution to a fitness function. There should only be 

one fitness function that can process every candidate solution 

within the population for one problem. The calculation made 

within the function could be anything. The overall flowchart 

of GA is shown in Fig. 4.  

After obtaining the fitness value of each candidate solution, 

then it goes to the selection phase. In the selection phase, the 

fittest individual will be chosen to inherit offspring to the next 

generation. In the crossover phase, two chromosomes from 

two different individuals are used. Some of the genes will be 

swapped between the two chromosomes, resulting in two new 

individuals. The two new individuals would then enter the 

mutation phase. 

Within the mutation phase, the two individuals will 

experience mutation in some of their genes. A mutation 

changes the said gene’s value to another value within the said 

index’s values pool. Since there are two new individuals, the 

current population has exceeded the limit, and two 

individuals must leave the population. The technique to 

choose who leaves and who stays may vary depending on the 

model. Finally, check if the algorithm should stop or continue 

to loop to the selection phase. 

 

 
Fig. 4.  The flowchart of GA. 
 

The first important thing to do when using GA would be to 

define its structure. For example, the number of the gene, the 

values pool, the number of individuals within a population, 

how many would be selected as parents, the method of parent 

selection, the method of crossover, the method of mutation, 

etc. After that, the flow of a traditional Genetic Algorithm 

would be like this: 

1. Calculate the population’s fitness. 

2. Selection Phase: select individuals from within the 

population to be parents. 

3. Crossover Phase: swap genes between 2 parents to 

produce children. 

4. Mutation Phase: change the value of some gene at the 

given probability. 

5. Repeat from (1) until it satisfies the stop criteria. 

III.  PROPOSED METHOD 

The core idea of the algorithm is to remove redundancy 

from the Genetic Algorithm process. Usually, GA needs to 

re-evaluate each duplicate chromosome configuration 

because it does not recognize them. This issue is what the 

author wants to address by introducing FVMGA. Note that in 

Fig. 5, the same chromosome configuration was trained twice 

on two different LSTM models. For example, if training one 

LSTM model takes 160 seconds, re-evaluate it the second 

time would mean wasting another 160 seconds. 

 

 
 
Fig. 5.  Traditional GA re-evaluates duplicate chromosomes. 
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Re-evaluating duplicate chromosomes would not be a big 

problem when the fitness function could be executed in a 

concise amount of time. However, even a simple LSTM takes 

time to train, not to mention one with a complex structure 

with more layers. Fig. 6 shows how the memoization concept 

could cut time when dealing with redundancy. 

 

 
Fig. 6.  FVMGA bypasses duplicate chromosomes. 

 

 

Fig. 7.  The flowchart of FVMGA-LSTM. 

 

Fig. 7 describes the flowchart of FVMGA for the use case 

of optimizing LSTM hyperparameters. The evaluation phase 

is the only difference that FVMGA has over GA. Instead of 

directly evaluating every chromosome, an additional 

algorithm searches whether the chromosome is a duplicate. 

The duplicate chromosomes will not be re-evaluated, thanks 

to the memoization concept. 

Memoization is one type of caching technique that stores 

up results from expensive function calls [39]. Memoization 

could bypass wasteful redundant computation because it 

remembers results from previous operations. We implement 

the memoization concept to enable GA to remember every 

chromosome that had been processed, along with their fitness 

value. So, when a duplicate appears, the algorithm could skip 

the fitness function entirely. It only needs to look up the 

memo dictionary to find the corresponding chromosome’s 

fitness value. The simplified flow of FVMGA is: 

1. Evaluate the population’s fitness with the help of the 

fitness value memoization (FVM) algorithm.  

2. Selection phase  

3. Crossover phase 

4. Mutation phase 

5. Repeat from (1) until it satisfies stop criteria. 

The only difference between FVMGA and GA lies in the 

evaluation phase (i.e., step 1). In the evaluation phase of 

FVMGA, there is an additional algorithm called fitness value 

memoization (FVM). It keeps track of which chromosomes 

had been calculated before and their fitness value. The flow 

of the FVM algorithm is: 

1. Generate a key based on each chromosome configuration.  

2. If the key exists in the dictionary, go to (5); otherwise, go 

to (3). 

3. Calculate the fitness value of the given chromosome 

configuration using the fitness function.  

4. Insert the key into the dictionary and set its value to what 

was returned from the fitness function. 

5. Return the value of the key. 

IV. EXPERIMENTAL RESULTS 

A.  Dataset 

Several datasets were used in this research to have a better 

quality of evaluation. All the datasets used in this work, 

including all the graphs presented in the previous sections of 

this thesis, were collected for free from various sources such 

as R language’s dataset package, Kaggle, and Wikipedia. 

Table I listed the four datasets used in this research. 
 

TABLE II 

DATASET USED IN THE EXPERIMENT 

Code Description Range # of Rows 

DS1 Daily records of the 

average temperature in 

Delhi, India 

1 January 2013 – 

24 April 2017 

1575 

DS2 Monthly records of the 

number of observed 

sunspots 

1749 – 1983 2820 

DS3 Daily records of the number 

of views of 

https://en.wikipedia.org/ 

1 July 2015 – 31 

March 2020 

1736 

DS4 Daily records of the 

exchange rate of EUR-IDR 

4 January 1999 – 

20 April 2020 

5451 

 

The four datasets vary in context: DS1 and DS2 are about 

environmental science, DS3 is about business, and DS4 is 

about investment. Further details regarding each dataset 

could be seen in Table II. 
 

TABLE II 

SUMMARY OF DATASET 

Code Min Max Mean 
Standard 

Deviation 

DS1  6 38.714 25.231 7.337 

DS2 0 253.8 51.265 43.448 

DS3 2.028e+08 3.122e+08 2.524e+08 1.559e+07 

DS4 6707.81 18239.61 12563.342 2680.091 

B. Dataset Splitting 

In this experiment, the datasets were split into three 

categories: training, validation, and testing. The training 
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dataset was used to train the LSTM models. Then, the fitness 

value of the LSTM models was evaluated using the validation 

dataset. Meanwhile, the testing dataset was not used in the 

optimization process. It was used later on after the 

optimization process was done to evaluate the eight final 

LSTM models (the best models that GA and FVMGA found 

for the four datasets). The splitting percentages for the 

datasets are shown in Fig. 8. The sizes of training, validation, 

and testing data are 80%, 10% and 10 %, respectively. 

 

Training 
 (80%) 

Validation 
(10%) 

Testing 
(10%) 

Fig. 8.  Dataset splitting percentages 

 

C. Chromosome Representation 

In this study, we want to compare FVMGA to GA by using 

them to optimize LSTM hyperparameters. The author 

decided to use four hyperparameters for this experiment. We 

used an array to represent each chromosome. So, each 

hyperparameter or gene represents an index within the array. 

Thus, each chromosome would contain four genes (i.e., the 

array has a length of four). Table III lists the four 

hyperparameters used in the experiment. The combination of 

the four hyperparameters results in 38,000 total possible 

combinations. 
TABLE III 

LIST OF OPTIMIZED HYPERPARAMETERS 

Hyperparameter Range Values Explanation 

Sliding window 10 to 100 Interval of 5 

Dropout (d) 0.01 to 0.5 Interval of 0.01 

LSTM units (u) 10 to 100 Interval of 10 

Batch size 16, 32, 64, 128 - 

 

Batch size is a crucial hyperparameter that would almost 

always be used in every neural network. It defines the number 

of samples that got through the network in one batch. For 

example, a dataset of 500 records was trained using a batch 

size of 128. That would mean that the algorithm will divide 

the dataset into four mini-batches with a length of 128, 128, 

128, and 116. The first advantage of using mini-batches is 

that the training process requires less memory than using all 

of the samples all at once. The second advantage is that 

training using mini-batches is usually faster than using full-

batch. However, training with a batch size that is too small 

can negatively impact the performance of the model because 

the training process becomes ineffective. So, choosing the 

suitable value for the batch size is critical. 

A sliding window is another important hyperparameter in 

machine learning. It defines the size or window of past 

information that should be taken into account. For example, 

in time-series forecasting using LSTM, if we tell the LSTM 

to learn from today’s temperature to predict tomorrow’s 

temperature, it means that we use a sliding window of 1. 

However, sometimes we need more than one record of past 

information. For example, if we want to predict the traffic on 

a specific road, we might use the last entire week’s 

information (i.e., the past seven days instead of just 

yesterday). 

 LSTM units are the number of hidden units within each 

LSTM cell. Deciding on how many LSTM units are used for 

each LSTM cell is also important. Using a larger number of 

LSTM units usually results in better training accuracy. 

However, the training process also becomes much slower. 

Also, using a number that is too big can result in over-fitting. 

Thus, we have to decide the number of LSTM units we use 

carefully. 

 A dropout is a regularization that randomly shuts down or 

excludes some inputs from going to the next layer. Adding 

dropout is a way to prevent the model from over-fitting. 

Dropout value is the percentage of how many inputs will be 

excluded (e.g., a dropout value of 0.2 means 20% of the 

inputs are shut down). However, a dropout value that is too 

high can hinder the model performance as the learning 

process become inefficient. Deciding the right amount of 

dropout value is essential in fighting over-fitting while 

maintaining the model’s performance. 

D. Parameters 

With the use of GA, the complexity of the problem was 

reduced from 38,000 combinations to 1,000 combinations. 

These 1000 combinations are divided into 100 generations, 

with each generation having ten individuals. It was also 

decided that each chromosome will have four genes. These 

parameters and the other ones used for both LSTM and GA 

are listed in Table IV. 
TABLE IV 

LIST OF OTHER PARAMETERS 

Parameter Usage Value 

Epoch LSTM 10 

Loss LSTM Mean Squared Error 

Optimizer LSTM Adam 

Max generation GA 100 

Population size GA 10 

Number of gene (n) GA 4 

Elites GA 2 

Selection method GA Roulette 

Crossover method GA Single point 

Crossover rate GA 0.7 

Mutation rate GA 1/4 (1/n) 

 

There is one more crucial thing to note: LSTM uses some 

randomization within its architecture. So, training two LSTM 

models using the same parameters could yield different 

results. Of course, this is not a good thing when we want to 

optimize hyperparameters. To optimize the hyperparameters, 

we must evaluate the fitness of each chromosome using 

LSTM. However, the randomness of LSTM makes it hard to 

evaluate them correctly.  

The author decided to train multiple LSTM models for 

every chromosome configuration to counter the problem. For 

each chromosome, we trained 100 models using the training 

dataset. We used the validation dataset for every model to 

evaluate them, resulting in 100 validation losses (i.e., error 

percentage). The error values from the LSTM model will then 

got converted to fitness value. Of course, this is 100 times 

more expensive in both time and resources. However, doing 

this helps in finding more consistency, although not perfect. 

We cannot correctly optimize the hyperparameters if each 

chromosome’s fitness value continually changes. 

E. Environment 

The experiment was done using Python, as it is an excellent 

choice for machine learning activities. We used Keras library, 

0 

80 90 100 
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which makes building LSTM easier. CUDA technology from 

NVIDIA was also used to help speed up the training process 

of the LSTM models. Table V listed the environment settings 

used in this experiment. 

 
TABLE V 

ENVIRONMENT SETTINGS 

Environment Settings 

CPU Ryzen 3700X 

GPU NVIDIA GTX 970 

CUDA 10.1 

CUDNN 8.3 

Python 3.7.7 

Tensorflow 2.20 

Keras 2.4.3 

F. Evaluation 

The FVMGA will be tested and compared against TGA 

using the case of optimizing LSTM for time-series 

forecasting. Several datasets were prepared in the hope of 

having a better quality analysis. The evaluation comprises a 

comparison in both time and quality aspects of both 

algorithms. We make sure to set the environment as fair as 

possible, using precisely the same machine and tools for both 

of them. The only difference between the two is that the 

FVMGA uses an additional algorithm to check each 

chromosome configuration and skip redundant or repeating 

ones. 

G. Performance Metrics 

As this work revolves around the Fast Genetic Algorithm, 

it only fits to say that the primary metric is the total 

computation time. FVMGA, as an FGA, is expected to be 

faster than traditional GA. Therefore, along with total 

computation time, we also provide the speed improvement 

percentage. However, although FVMGA has to be fast, it 

cannot compromise the quality of the models produced. After 

all, a heuristic search algorithm aims to find the optimal 

solution to problems. To compare the performance of the 

models that FVMGA and GA optimized, we used four 

performance metrics mentioned in Table VI.   

 
TABLE VI 

PERFORMANCE METRICS 

Metric Formula 

Time (seconds) 𝑓𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 

Improvement % 
(

𝑡𝑖𝑚𝑒𝐹𝑉𝑀𝐺𝐴

𝑡𝑖𝑚𝑒𝐺𝐴
− 1) × 100% 

RMSE 

√
∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖)2𝑛

𝑖=1

𝑛
 

MAE ∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖|𝑛
𝑖=1

𝑛
 

MAPE ∑ |
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖

𝑎𝑐𝑡𝑢𝑎𝑙𝑖
|𝑛

𝑖=1

𝑛
 

R2 Score 
1 −

∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖)2𝑛
𝑖=1

∑ (𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙)2𝑛
𝑖=1

 

H. Experiment Result 

FVMGA is proposed as a way to bypass duplicate 

chromosomes. When optimizing LSTM hyperparameters, it 

means that FVMGA could skip the need to train an LSTM 

model for duplicate chromosomes. Instead, FVMGA could 

retrieve the fitness value from the dictionary. So, we start the 

experiment by comparing the time it takes to train an LSTM 

model and look up the dictionary. 

 
TABLE VII 

TIME-COMPLEXITY COMPARISON BETWEEN TRAINING AN LSTM MODEL 

AND LOOKING UP THE DICTIONARY 

Action Average Execution Time 

(milliseconds) 

Training an LSTM model 160,000.0 

Looking up the dictionary 0.5 

 

 
Fig. 9.  Fitness Value Convergence of the Optimization Process (DS1). 

 

The LSTM models were trained using the training dataset. 

They were then evaluated using the validation dataset, thus 

producing the validation loss as the fitness value. Fig. 9, 10, 

11, and 12 show the best individual’s fitness value over the 

100 generations of the four datasets’ optimization process. 

This experiment was done ten times, and the average time 

difference was described in Table VII. 

 
 

Fig. 10.  Fitness Value Convergence of the Optimization Process (DS2). 
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Fig. 11.  Fitness Value Convergence of the Optimization Process (DS3). 

 

 
Fig. 12.  Fitness Value Convergence of the Optimization Process (DS4). 

 

The optimization process ended when the algorithms reached 

the 100th generation. The algorithms will then output the 

best-performing individual from the last generation. There 

are eight final LSTM models produced from the optimization 

process, two models for each dataset. One model was 

optimized using GA, and the other one was optimized using 

FVMGA. 

For the final experiment, we must test eight LSTM models 

with the best chromosome configuration using the testing 

dataset. Remember that we have not used the testing dataset 

so far. That is because the testing dataset will be used to do 

the final testing for the eight models that had been optimized. 

Table VIII summarizes the final results of both GA-LSTM 

and FVMGA-LSTM for all datasets, with the better values 

being written in a bold font. 

 
TABLE VIII 

EXPERIMENTAL RESULTS 

Code Method 
Performance/Quality 

RMSE* MAE* MAPE* R2** 

DS1 GA 1.744 1.402 7.247 0.91692 

FVMGA 1.732 1.402 7.285 0.91277 

DS2 GA 16.740 12.603 30.113 0.88346 

FVMGA 16.814 12.689 31.088 0.88243 

DS3 GA 8,761,847 6,856,679 2.64653 0.67246 

FVMGA 8,700,089 6,792,297 2.62022 0.67714 

DS4 GA 174.995 128.254 1.57295 0.96098 

FVMGA 170.965 122.391 1.50362 0.96390 

*lower value is better 

**higher value is better 

 

Fig. 13 shows that the difference in time-complexity 

between the two algorithms is huge. Table IX explores further 

the details regarding the significant improvement gained from 

using FVMGA.  

Time is the most important point of comparison between 

traditional GA and FVMGA. After all, the most significant 

advantage that FVMGA has over GA is its speedy execution. 

Fig. 13 shows the total time that GA and FVMGA needed to 

optimize each model. 

 

 
Fig. 13.  The execution time of GA and FVMGA. 

 

 
TABLE IX 

SPEED IMPROVEMENT AND THE NUMBER OF DUPLICATE CHROMOSOMES 

Code Method Time 

(seconds) 

Improvement % Duplicate 

Chromosomes 

(out of 1,000) 

DS1 GA 323,410 0% 572 

FVMGA 111,818 +189% 560 

DS2 GA 412,490 0% 530 

FVMGA 120,711 +241% 575 

DS3 GA 334,521 0% 558 

FVMGA 85,530 +291% 594 

DS4 GA 713,395 0% 599 

FVMGA 185,231 +285% 602 

 

Table IX shows that around 500-600 out of 1,000 

chromosomes were duplicates (i.e., around 50% to 60%). 

That was a significant number of duplicate chromosomes. 

The model produced by FVMGA is slightly 291% better than 

the original of method GA. From the results obtained, it is 

clear that the proposed algorithm, Fitness Value Memoization 

Genetic Algorithm (FVMGA), is a success and could be 

considered as one of Fast Genetic Algorithm (FGA). 

V. CONCLUSION 

Often, in the process of finding the optimal solution, GA 

has to deal with duplicate chromosomes. A traditional GA 

cannot recognize whether a chromosome is a duplicate or not. 

GA will constantly naively re-evaluate those duplicate 

chromosomes’ fitness value. Depending on how complex the 

fitness function is, this could lead to a considerable waste of 
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time. However, this problem could be addressed by caching 

every chromosome that had been evaluated before. 

FVMGA uses the concept of memoization to cache the 

results from expensive fitness functions. Before we send the 

chromosome to the fitness function, we first check whether 

the chromosome is a duplicate or not. If it is, then we only 

need to fetch the cached value. If it is not a duplicate, then we 

evaluate the chromosome using the fitness function as usual. 
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