
Fast Genetic Algorithm for Long Short-Term

Memory Optimization

Abba Suganda Girsang and Daniel Tanjung

Abstract—This research aims to propose a version of Fast

Genetic Algorithm (FGA), namely Fitness Value Memoization

Genetic Algorithm (FVMGA). FVMGA uses the concept of

memoization to cache the fitness value of chromosomes that

have already been calculated before. It allows FVMGA to

bypass unnecessary computation for redundant chromosome

configurations, which is especially important when we use

expensive fitness functions. For benchmarking purposes, the

proposed FVMGA was compared to a traditional GA in the use

case of optimizing Long Short-Term Memory (LSTM)

hyperparameters for time-series forecasting. Four

hyperparameters were being optimized in this study with a total

of 38,000 possible combinations. However, the number was

drastically reduced to 1,000 with the use of GA. The final results

showed that FVMGA was able to compute up to 291% faster

than traditional GA while maintaining the quality of the

produced models.

Index Terms—genetic algorithm, hyperparameters, long

short-term memory, memoization

I. INTRODUCTION

T is impressive to see how much computational power

has grown to this day. It is just like what Gordon E.

Moore, the co-founder of Intel, had stated in 1965, that

the number of capacitors in a silicon chip would double every

two years [1]. This statement, known as Moore’s Law, had

been proven correct for about 50 years. Although Moore’s

Law had come to an end in the last few years, it tells just how

tremendous the growth of computational power is [2].

The significant increase in computational power brings

new possibilities. [3] noted that even in the 1980s, people had

known about the usefulness of neural networks and machine

learning. However, at that time, computers were very slow.

Many computations were too costly to be executed. Now that

computational power is abundant, many complex techniques

that were not possible in the 20th century have become

accessible by everyone. Practical techniques like machine

learning [4]–[9] and evolutionary algorithms [10]–[14] are

rising in popularity.

It is understandable why machine learning may not be that

popular decades ago as computational power and data used to

be scarce. Nowadays, we could find data everywhere since

everyone connects to the internet. However, not every record

in raw data is valuable.

Manuscript received January 17, 2021; revised November 22, 2021.

Abba Suganda Girsang is a lecturer at Computer Science Department,

BINUS Graduate Program-Master of Computer Science, Bina Nusantara

University, Jakarta, Indonesia 11480 (corresponding author, e-mail:

agirsang@binus.edu).

Daniel Tanjung is a master student at Computer Science Department, BINUS

Graduate Program-Master of Computer Science, Bina Nusantara University,

Jakarta, Indonesia 11480 (e-mail: daniel.tanjung@binus.ac.id).

Usually, there are many useless pieces of information

contained in the raw data. Thus, we need a tool that can

effectively extract useful information from the dump of data.

Machine learning was introduced to allow the computer to

learn from data and deduce crucial information with minimal

human intervention [15].

One of the most popular implementations of machine

learning is time-series forecasting. In the last decade, stock

trading is rising in popularity. However, the stock price is a

complex time-series with high volatility and is very

unpredictable [16]. Small things like daily news could easily

sway people’s sentiments [17], [18]. Studies found that fear

and anger very much affect people’s decision-making ability

[19], [20]. That is why people invest time and resources to

build a reliable machine learning model to predict the stock

market’s future values.

However, when creating a machine learning model, a set

of hyperparameters need to be defined before the training

begins. These hyperparameters are variables that need to be

assigned a value manually. They could significantly affect the

performance of the models being produced. Therefore,

searching for the optimal hyperparameters configuration has

been a task with significant importance to build great quality

models [21]

For the longest time, hyperparameter optimization or

hyperparameter tuning was done manually [22]. Manually

assigning a value for the hyperparameters is not an easy task

for non-experts. However, this problem could be addressed

by trying many combinations within a specified range. On the

other hand, trying out many combinations would mean higher

time and resource complexity.

Alternatively, heuristic search algorithms like Genetic

Algorithm (GA) could be used to search the optimal

hyperparameters configuration [23]–[26]. The purpose

behind heuristic searching algorithms’ existence is to find an

optimal solution for very complex problems that are not

possible or too expensive to solve using classical methods.

Fast Genetic Algorithm (FGA) is a term people used to

describe several modified GA versions that compute faster

than GA [27]–[30]. So, FGA is not a name designated for a

specific algorithm. Each one of FGA has a different approach

on how they achieve a faster computation. However, since

modifications were made, FGA usually has some limitations

and could only be used for specific optimization problems.

In this work, the author proposes a version of FGA that

could effectively deal with time-consuming fitness functions

like hyperparameter optimization. Sometimes, there are

duplicate entries of the chromosome when optimizing with

GA. It might not be a big problem if the fitness function does

not have an expensive time complexity. However, when

tuning hyperparameters, duplicate chromosomes lead to a

I

Engineering Letters, 30:2, EL_30_2_17

Volume 30, Issue 2: June 2022

__

significant waste of time and computing resources as the

fitness function is usually costly.

The proposed FGA, Fitness Value Memoization Genetic

Algorithm (FVMGA), uses the concept of memoization to

bypass the need to re-evaluate redundant chromosome

configurations, thus effectively reduces the time complexity.

Memoization is a type of caching method. It is not a strange

concept in the Computer Science field. However, there has

not been an attempt to integrate this clever concept into GA.

II. LITERATURE REVIEW

A. Related Works

Hyperparameter optimization is a critical subject in

machine learning [21]. In the past, the task used to be done

manually [22]. However, nowadays, hyperparameter

optimization is done using automated alternatives, like

heuristic search algorithms [23]–[26], [31].

GA is one of the most popular choices of heuristic search

algorithms that people use to optimize hyperparameters. An

experiment was carried out to compare Grid Search (GS),

Random Search (RS), and GA for building Convolutional

Neural Networks (CNN) [25]. It was shown that GA

produced a great performing model with 86% accuracy.

Meanwhile, GS falls behind the other two with only 83%

accuracy.

In the field of Natural Language Processing (NLP), [24]

experimented with using GA for optimizing hyperparameters

of Artificial Neural Networks (ANNs). The results proved

that using heuristic search algorithms like GA for

hyperparameters optimization is very effective. The

optimized hyperparameters gave better results than following

the standard and recommended values that other people

suggested online.

[23] used GA to optimize the hyperparameters of CNN

with the use case of gravitational wave classification.

Comparisons were made between GA and Deep Filtering that

was introduced in [32]. It was shown that the GA-optimized

model has 79% fewer trainable parameters while its

classification accuracy is 11% higher compared to the Deep

Filtering model.

[26] made a summarization of hyperparameter tuning

techniques: GS, RS, Gradient-based models, Hyperband,

Bayesian Optimized variations, GA, and Particle Swarm

Optimization (PSO). It was described in detail that although

GA is not the fastest algorithm, it is flexible and efficient for

all types of hyperparameters. It also does not require careful

initialization, unlike some other algorithms where careful

initialization is needed.

Researchers had proposed variants of FGA to optimize

GA’s time complexity. [29] intended to cut computation time

by finding patterns in the chromosomes’ genes. Occasionally,

every chromosome’s genes will be checked, starting from the

first index until the last index. If an index of everybody’s

chromosome all have the same value, that index becomes

fixed. That chromosome index will not be included in future

calculations. This action eliminates portions of the solution

space and could make the algorithm converge faster. The

proposed algorithm, Pattern Reduction Enhanced Genetic

Algorithm (PREGA), was tested on Travelling Salesman

Problem (TSP) ranging from 574 to 2,152 cities. PREGA

achieved faster computation time from 28% up to 84%

compared to traditional GA.

 [28] also proposed a version of FGA that could converge

faster. The idea behind it has to do with the initialization of

the population at the algorithm’s start. While the standard GA

uses random initialization for its chromosomes, the proposed

algorithm uses a new Small Region Creation Method

(SRCM) method. SRCM divides the initial population evenly

across the solution space. Another notable modification is the

use of immune stochastic tournament selection. It adds the

concept of thickness into the selection operator, which was

inspired by the stimulative reaction and restraining reaction

in the immune system. The combined use of both methods is

believed can avoid premature convergence of the algorithm.

The results showed that the proposed FGA indeed leads to

faster convergence compared to standard GA.

 [30] took another approach in modifying GA to suit a

specific field of Orthogonal Frequency Division Multiplexing

(OFDM) based Cognitive Radio System. GA was used to

min-max radio channels’ usage between Primary Users (PU)

and Secondary Users (SU). The proposed GA removes the

crossover phase of traditional GA. Instead, it introduces a

repair phase that can repair chromosomes that did not meet

the selection criteria. At the end of the study, the performance

of the FGA was compared to two other algorithms,

Minimum-Interference Algorithm (MIA) and Minimum-

Power Algorithm (MPA). It was showed that the proposed

FGA does a better job than MIA and MPA.

Another proposition is to modify the mutation operator of

the algorithm [27]. Instead of using the usual recommended

mutation rate of p=1/n where n is the length of the

chromosome, it is changed into a random rate of p=α/n. The

value of α is chosen from a random number 𝛼 ∈ [1. . . 𝑛/2]

according to a power-law distribution 𝐷𝑛
−𝛽, where 𝛽 > 1.

After obtaining the value of α, it is just the usual mutation

with the rate of p=α/n. It was also found that smaller β values

like 1.5 produce better results than 2, 3, 4, and so on. This

proposition of using a heavy-tailed mutation operator proved

to be faster at finding global optimal compared to the one

using the standard mutation rate.

The author himself has another take on how to model an

FGA. The author wants to propose an FGA that suits

optimization problems with high time complexity, such as

optimizing machine learning models. The author realized that

sometimes when optimizing using GA, there are duplicate

chromosomes. These duplicate chromosomes are re-

evaluated every time they appear. The author proposed

Fitness Value Memoization Genetic Algorithm (FVMGA) as

a solution that can bypass the need to re-evaluate duplicate

chromosomes. Using the concept of memoization, we can

cache previously calculated individuals along with their

fitness values. The concept is straightforward but effective in

achieving its purpose.

B. Time-Series

Time-series is a sequence of data that is sorted by date. In

most cases, the data or records are recorded at a fixed interval,

like hourly, daily, weekly, monthly, yearly, and so forth.

When drawn in a graph, the x-axis would serve as the date. In

contrast, its y-axis represents the observed variables’ value or

any quantitative variables throughout the recording time. Fig.

Engineering Letters, 30:2, EL_30_2_17

Volume 30, Issue 2: June 2022

__

1 shows an example of a time-series when drawn in a line

graph.

Fig. 1. An example of a time-series.

In every time-series, there are vital components that data

analysts usually use to analyze the data. These key

components are the trend and seasonality of the data. Both

trend and seasonality can be found in many real case time-

series. They make up a large proportion of time-series

themselves. They can even be pretty much considered as the

time-series itself.

Every time-series in the world will have a trend. However,

some time-series may not have seasonality. While both

components are crucial, data analysts focus only on the trend

in most cases. This is because, often, the seasonality of a time-

series will hardly change at all. Thus, even people who are

not experts could analyze the seasonality of a time-series with

ease. The representation of trend and seasonality of time-

series can be seen in Fig. 2.

 Fig. 2. An example of a time-series decomposition.

As shown in Fig. 2, the trend of time-series describes the

change in the observed variables’ value within the range of

observation. A trend of a time-series could go upward,

downward, or just flat/stable. There is also another

component called the residual. Residual/Error is a component

within time-series that is neither trend nor seasonality. This

component is uncontrollable and erratic and can be

considered as interruptions from external factors, such as

nature. Also, in Fig. 2, there are grey rectangles on the right

side of the four components. Those are the scale of the height

of the components relative to each other. So, it does not mean

that the trend is curvy, but its height was scaled, making it

looks like that. The truth is, if every component uses the same

scale, then the trend component of that time-series would

look more like a straight line rather than curves.

Another critical part of building a model is to choose a

suitable range of records. Most data scientists like to use a

time-series with a larger number of records or data rows. This

is because the time-series would be most likely to be reliable.

Time-series with a low number of records will most likely

produce unreliable results. However, this does not mean that

a larger number of records will always produce better results.

Sometimes, time-series with many records can produce worse

results than time-series with a low number of records. It is the

job of data analysts to decide the ideal range of records to

design a model.

C. Time-Series Forecasting

Time-series forecasting is a field where people try to

predict future values of time-series data. Forecasting has

always been highly regarded in many fields, including

business, economics, government, politics, and

environmental science [33]. As the name suggests, a

prediction is only a guess that is based on experience or

knowledge. It will not have 100% accuracy. At best, it is only

better than a wild guess. Nevertheless, making predictions

helps in building a degree of confidence. It also helps in

planning and the making of critical decisions [34].

A vital part of time-series forecasting is to choose the

proper range of records. Most people like to use a time-series

with many records because time-series with a small number

of records are more likely to produce unreliable results.

However, a larger number of records is not necessarily better.

Almost every dataset in the world has some noise and

unwanted or low-quality records that could negatively impact

the forecast. Besides deciding the range of records, filtering

out the noise and low-quality records is also essential in time-

series forecasting.

D. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a part of machine

learning within the scope of neural networks. Because it is a

neural network, LSTM has an exceptional adaptation ability

to any problems. LSTM was made as a modification to

Recurrent Neural Network (RNN). [35] introduced LSTM as

an alternative to RNN, which has the problems of vanishing

gradient and exploding gradient. Both vanishing and

exploding gradients negatively affect the model. They hinder

the model from learning effectively from distant information

of the past. [36], [37] discussed RNN’s problems of vanishing

and exploding gradients in detail.

As an improved version of RNN, LSTM introduced three

additional gates for input to pass through: forget gate, input

gate, and output gate. The three gates help in regulating the

long-term memory state of the LSTM. The forget gate

decides which information will be removed from the cell state

that we got from the previous timestep. Then input gate

decides what new information from the current timestep that

we would want to store into the cell state. Lastly, the output

gate will filter the information and decide which information

will be passed to the next timestep.

As a part of deep learning, LSTM has advantages over

classical methods such as Auto-Regressive Integrated

Moving Average (ARIMA) in its flexibility. Meanwhile,

ARIMA, as one of the classical forecasting methods, is

limited to simple time-series. When forecasting complex

time-series like stock prices, classical methods like ARIMA

lose to neural networks like LSTM [9], [38].

Engineering Letters, 30:2, EL_30_2_17

Volume 30, Issue 2: June 2022

__

E. Hyperparameter Optimization

Hyperparameter optimization or hyperparameter tuning is

critical in building the best neural network models [21]. Many

machine learning models have a set of hyperparameters that

need to be appropriately configured before training. These

hyperparameters could affect the final model’s quality. So,

choosing the correct values for them is a vital task, although

it is not easy.

Hyperparameter tuning used to be a manual [22]. However,

even experts sometimes have a hard time tuning

hyperparameters. There are several methods that computers

could help us. One of the options computers could help us

optimize hyperparameters is using heuristic search

algorithms [23]–[26].

F. Genetic Algorithm

Genetic Algorithm (GA) has always been popular and

widely used ever since the 1980s [10], [11]. The idea behind

it was taken from Charles Darwin’s theory of survival of the

fittest. It is only expected that the fittest of all would survive

to the next generation in natural evolution. This theory of

natural evolution is easy to understand and is implemented in

GA. Fig. 3 describes how elements are represented in GA.

Population

 I1 3 10 20 90 0.1 individual

 I2 1 10 50 180 0.001 chromosome

 I3 2 10 5 360 0.1 gene

 1 1 5 90 0.001

values pool
 2 10 20 180 0.01
 3 100 50 270 0.1
 4 1000 360 0.5
 5

Fig. 3. GA representation.

In GA, there is a universe of discourse called population.

Within a population, several individuals are living in it. Each

individual has a sequence of a chromosome. Everybody’s

chromosome may contain several genes. Then, each index of

genes has its own values pool according to its index. A

chromosome is also often called a candidate solution.

Each candidate solution has a fitness value. The fitness

value could be found as an output from inputting the

candidate solution to a fitness function. There should only be

one fitness function that can process every candidate solution

within the population for one problem. The calculation made

within the function could be anything. The overall flowchart

of GA is shown in Fig. 4.

After obtaining the fitness value of each candidate solution,

then it goes to the selection phase. In the selection phase, the

fittest individual will be chosen to inherit offspring to the next

generation. In the crossover phase, two chromosomes from

two different individuals are used. Some of the genes will be

swapped between the two chromosomes, resulting in two new

individuals. The two new individuals would then enter the

mutation phase.

Within the mutation phase, the two individuals will

experience mutation in some of their genes. A mutation

changes the said gene’s value to another value within the said

index’s values pool. Since there are two new individuals, the

current population has exceeded the limit, and two

individuals must leave the population. The technique to

choose who leaves and who stays may vary depending on the

model. Finally, check if the algorithm should stop or continue

to loop to the selection phase.

Fig. 4. The flowchart of GA.

The first important thing to do when using GA would be to

define its structure. For example, the number of the gene, the

values pool, the number of individuals within a population,

how many would be selected as parents, the method of parent

selection, the method of crossover, the method of mutation,

etc. After that, the flow of a traditional Genetic Algorithm

would be like this:

1. Calculate the population’s fitness.

2. Selection Phase: select individuals from within the

population to be parents.

3. Crossover Phase: swap genes between 2 parents to

produce children.

4. Mutation Phase: change the value of some gene at the

given probability.

5. Repeat from (1) until it satisfies the stop criteria.

III. PROPOSED METHOD

The core idea of the algorithm is to remove redundancy

from the Genetic Algorithm process. Usually, GA needs to

re-evaluate each duplicate chromosome configuration

because it does not recognize them. This issue is what the

author wants to address by introducing FVMGA. Note that in

Fig. 5, the same chromosome configuration was trained twice

on two different LSTM models. For example, if training one

LSTM model takes 160 seconds, re-evaluate it the second

time would mean wasting another 160 seconds.

Fig. 5. Traditional GA re-evaluates duplicate chromosomes.

Engineering Letters, 30:2, EL_30_2_17

Volume 30, Issue 2: June 2022

__

Re-evaluating duplicate chromosomes would not be a big

problem when the fitness function could be executed in a

concise amount of time. However, even a simple LSTM takes

time to train, not to mention one with a complex structure

with more layers. Fig. 6 shows how the memoization concept

could cut time when dealing with redundancy.

Fig. 6. FVMGA bypasses duplicate chromosomes.

Fig. 7. The flowchart of FVMGA-LSTM.

Fig. 7 describes the flowchart of FVMGA for the use case

of optimizing LSTM hyperparameters. The evaluation phase

is the only difference that FVMGA has over GA. Instead of

directly evaluating every chromosome, an additional

algorithm searches whether the chromosome is a duplicate.

The duplicate chromosomes will not be re-evaluated, thanks

to the memoization concept.

Memoization is one type of caching technique that stores

up results from expensive function calls [39]. Memoization

could bypass wasteful redundant computation because it

remembers results from previous operations. We implement

the memoization concept to enable GA to remember every

chromosome that had been processed, along with their fitness

value. So, when a duplicate appears, the algorithm could skip

the fitness function entirely. It only needs to look up the

memo dictionary to find the corresponding chromosome’s

fitness value. The simplified flow of FVMGA is:

1. Evaluate the population’s fitness with the help of the

fitness value memoization (FVM) algorithm.

2. Selection phase

3. Crossover phase

4. Mutation phase

5. Repeat from (1) until it satisfies stop criteria.

The only difference between FVMGA and GA lies in the

evaluation phase (i.e., step 1). In the evaluation phase of

FVMGA, there is an additional algorithm called fitness value

memoization (FVM). It keeps track of which chromosomes

had been calculated before and their fitness value. The flow

of the FVM algorithm is:

1. Generate a key based on each chromosome configuration.

2. If the key exists in the dictionary, go to (5); otherwise, go

to (3).

3. Calculate the fitness value of the given chromosome

configuration using the fitness function.

4. Insert the key into the dictionary and set its value to what

was returned from the fitness function.

5. Return the value of the key.

IV. EXPERIMENTAL RESULTS

A. Dataset

Several datasets were used in this research to have a better

quality of evaluation. All the datasets used in this work,

including all the graphs presented in the previous sections of

this thesis, were collected for free from various sources such

as R language’s dataset package, Kaggle, and Wikipedia.

Table I listed the four datasets used in this research.

TABLE II

DATASET USED IN THE EXPERIMENT

Code Description Range # of Rows

DS1 Daily records of the

average temperature in

Delhi, India

1 January 2013 –

24 April 2017

1575

DS2 Monthly records of the

number of observed

sunspots

1749 – 1983 2820

DS3 Daily records of the number

of views of

https://en.wikipedia.org/

1 July 2015 – 31

March 2020

1736

DS4 Daily records of the

exchange rate of EUR-IDR

4 January 1999 –

20 April 2020

5451

The four datasets vary in context: DS1 and DS2 are about

environmental science, DS3 is about business, and DS4 is

about investment. Further details regarding each dataset

could be seen in Table II.

TABLE II

SUMMARY OF DATASET

Code Min Max Mean
Standard

Deviation

DS1 6 38.714 25.231 7.337

DS2 0 253.8 51.265 43.448

DS3 2.028e+08 3.122e+08 2.524e+08 1.559e+07

DS4 6707.81 18239.61 12563.342 2680.091

B. Dataset Splitting

In this experiment, the datasets were split into three

categories: training, validation, and testing. The training

Engineering Letters, 30:2, EL_30_2_17

Volume 30, Issue 2: June 2022

__

dataset was used to train the LSTM models. Then, the fitness

value of the LSTM models was evaluated using the validation

dataset. Meanwhile, the testing dataset was not used in the

optimization process. It was used later on after the

optimization process was done to evaluate the eight final

LSTM models (the best models that GA and FVMGA found

for the four datasets). The splitting percentages for the

datasets are shown in Fig. 8. The sizes of training, validation,

and testing data are 80%, 10% and 10 %, respectively.

Training
 (80%)

Validation
(10%)

Testing
(10%)

Fig. 8. Dataset splitting percentages

C. Chromosome Representation

In this study, we want to compare FVMGA to GA by using

them to optimize LSTM hyperparameters. The author

decided to use four hyperparameters for this experiment. We

used an array to represent each chromosome. So, each

hyperparameter or gene represents an index within the array.

Thus, each chromosome would contain four genes (i.e., the

array has a length of four). Table III lists the four

hyperparameters used in the experiment. The combination of

the four hyperparameters results in 38,000 total possible

combinations.
TABLE III

LIST OF OPTIMIZED HYPERPARAMETERS

Hyperparameter Range Values Explanation

Sliding window 10 to 100 Interval of 5

Dropout (d) 0.01 to 0.5 Interval of 0.01

LSTM units (u) 10 to 100 Interval of 10

Batch size 16, 32, 64, 128 -

Batch size is a crucial hyperparameter that would almost

always be used in every neural network. It defines the number

of samples that got through the network in one batch. For

example, a dataset of 500 records was trained using a batch

size of 128. That would mean that the algorithm will divide

the dataset into four mini-batches with a length of 128, 128,

128, and 116. The first advantage of using mini-batches is

that the training process requires less memory than using all

of the samples all at once. The second advantage is that

training using mini-batches is usually faster than using full-

batch. However, training with a batch size that is too small

can negatively impact the performance of the model because

the training process becomes ineffective. So, choosing the

suitable value for the batch size is critical.

A sliding window is another important hyperparameter in

machine learning. It defines the size or window of past

information that should be taken into account. For example,

in time-series forecasting using LSTM, if we tell the LSTM

to learn from today’s temperature to predict tomorrow’s

temperature, it means that we use a sliding window of 1.

However, sometimes we need more than one record of past

information. For example, if we want to predict the traffic on

a specific road, we might use the last entire week’s

information (i.e., the past seven days instead of just

yesterday).

 LSTM units are the number of hidden units within each

LSTM cell. Deciding on how many LSTM units are used for

each LSTM cell is also important. Using a larger number of

LSTM units usually results in better training accuracy.

However, the training process also becomes much slower.

Also, using a number that is too big can result in over-fitting.

Thus, we have to decide the number of LSTM units we use

carefully.

 A dropout is a regularization that randomly shuts down or

excludes some inputs from going to the next layer. Adding

dropout is a way to prevent the model from over-fitting.

Dropout value is the percentage of how many inputs will be

excluded (e.g., a dropout value of 0.2 means 20% of the

inputs are shut down). However, a dropout value that is too

high can hinder the model performance as the learning

process become inefficient. Deciding the right amount of

dropout value is essential in fighting over-fitting while

maintaining the model’s performance.

D. Parameters

With the use of GA, the complexity of the problem was

reduced from 38,000 combinations to 1,000 combinations.

These 1000 combinations are divided into 100 generations,

with each generation having ten individuals. It was also

decided that each chromosome will have four genes. These

parameters and the other ones used for both LSTM and GA

are listed in Table IV.
TABLE IV

LIST OF OTHER PARAMETERS

Parameter Usage Value

Epoch LSTM 10

Loss LSTM Mean Squared Error

Optimizer LSTM Adam

Max generation GA 100

Population size GA 10

Number of gene (n) GA 4

Elites GA 2

Selection method GA Roulette

Crossover method GA Single point

Crossover rate GA 0.7

Mutation rate GA 1/4 (1/n)

There is one more crucial thing to note: LSTM uses some

randomization within its architecture. So, training two LSTM

models using the same parameters could yield different

results. Of course, this is not a good thing when we want to

optimize hyperparameters. To optimize the hyperparameters,

we must evaluate the fitness of each chromosome using

LSTM. However, the randomness of LSTM makes it hard to

evaluate them correctly.

The author decided to train multiple LSTM models for

every chromosome configuration to counter the problem. For

each chromosome, we trained 100 models using the training

dataset. We used the validation dataset for every model to

evaluate them, resulting in 100 validation losses (i.e., error

percentage). The error values from the LSTM model will then

got converted to fitness value. Of course, this is 100 times

more expensive in both time and resources. However, doing

this helps in finding more consistency, although not perfect.

We cannot correctly optimize the hyperparameters if each

chromosome’s fitness value continually changes.

E. Environment

The experiment was done using Python, as it is an excellent

choice for machine learning activities. We used Keras library,

0

80 90 100

Engineering Letters, 30:2, EL_30_2_17

Volume 30, Issue 2: June 2022

__

which makes building LSTM easier. CUDA technology from

NVIDIA was also used to help speed up the training process

of the LSTM models. Table V listed the environment settings

used in this experiment.

TABLE V

ENVIRONMENT SETTINGS

Environment Settings

CPU Ryzen 3700X

GPU NVIDIA GTX 970

CUDA 10.1

CUDNN 8.3

Python 3.7.7

Tensorflow 2.20

Keras 2.4.3

F. Evaluation

The FVMGA will be tested and compared against TGA

using the case of optimizing LSTM for time-series

forecasting. Several datasets were prepared in the hope of

having a better quality analysis. The evaluation comprises a

comparison in both time and quality aspects of both

algorithms. We make sure to set the environment as fair as

possible, using precisely the same machine and tools for both

of them. The only difference between the two is that the

FVMGA uses an additional algorithm to check each

chromosome configuration and skip redundant or repeating

ones.

G. Performance Metrics

As this work revolves around the Fast Genetic Algorithm,

it only fits to say that the primary metric is the total

computation time. FVMGA, as an FGA, is expected to be

faster than traditional GA. Therefore, along with total

computation time, we also provide the speed improvement

percentage. However, although FVMGA has to be fast, it

cannot compromise the quality of the models produced. After

all, a heuristic search algorithm aims to find the optimal

solution to problems. To compare the performance of the

models that FVMGA and GA optimized, we used four

performance metrics mentioned in Table VI.

TABLE VI

PERFORMANCE METRICS

Metric Formula

Time (seconds) 𝑓𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 − 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒

Improvement %
(

𝑡𝑖𝑚𝑒𝐹𝑉𝑀𝐺𝐴

𝑡𝑖𝑚𝑒𝐺𝐴
− 1) × 100%

RMSE

√
∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖)2𝑛

𝑖=1

𝑛

MAE ∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖|𝑛
𝑖=1

𝑛

MAPE ∑ |
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖

𝑎𝑐𝑡𝑢𝑎𝑙𝑖
|𝑛

𝑖=1

𝑛

R2 Score
1 −

∑ (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖)2𝑛
𝑖=1

∑ (𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙)2𝑛
𝑖=1

H. Experiment Result

FVMGA is proposed as a way to bypass duplicate

chromosomes. When optimizing LSTM hyperparameters, it

means that FVMGA could skip the need to train an LSTM

model for duplicate chromosomes. Instead, FVMGA could

retrieve the fitness value from the dictionary. So, we start the

experiment by comparing the time it takes to train an LSTM

model and look up the dictionary.

TABLE VII

TIME-COMPLEXITY COMPARISON BETWEEN TRAINING AN LSTM MODEL

AND LOOKING UP THE DICTIONARY

Action Average Execution Time

(milliseconds)

Training an LSTM model 160,000.0

Looking up the dictionary 0.5

Fig. 9. Fitness Value Convergence of the Optimization Process (DS1).

The LSTM models were trained using the training dataset.

They were then evaluated using the validation dataset, thus

producing the validation loss as the fitness value. Fig. 9, 10,

11, and 12 show the best individual’s fitness value over the

100 generations of the four datasets’ optimization process.

This experiment was done ten times, and the average time

difference was described in Table VII.

Fig. 10. Fitness Value Convergence of the Optimization Process (DS2).

Engineering Letters, 30:2, EL_30_2_17

Volume 30, Issue 2: June 2022

__

Fig. 11. Fitness Value Convergence of the Optimization Process (DS3).

Fig. 12. Fitness Value Convergence of the Optimization Process (DS4).

The optimization process ended when the algorithms reached

the 100th generation. The algorithms will then output the

best-performing individual from the last generation. There

are eight final LSTM models produced from the optimization

process, two models for each dataset. One model was

optimized using GA, and the other one was optimized using

FVMGA.

For the final experiment, we must test eight LSTM models

with the best chromosome configuration using the testing

dataset. Remember that we have not used the testing dataset

so far. That is because the testing dataset will be used to do

the final testing for the eight models that had been optimized.

Table VIII summarizes the final results of both GA-LSTM

and FVMGA-LSTM for all datasets, with the better values

being written in a bold font.

TABLE VIII

EXPERIMENTAL RESULTS

Code Method
Performance/Quality

RMSE* MAE* MAPE* R2**

DS1 GA 1.744 1.402 7.247 0.91692

FVMGA 1.732 1.402 7.285 0.91277

DS2 GA 16.740 12.603 30.113 0.88346

FVMGA 16.814 12.689 31.088 0.88243

DS3 GA 8,761,847 6,856,679 2.64653 0.67246

FVMGA 8,700,089 6,792,297 2.62022 0.67714

DS4 GA 174.995 128.254 1.57295 0.96098

FVMGA 170.965 122.391 1.50362 0.96390

*lower value is better

**higher value is better

Fig. 13 shows that the difference in time-complexity

between the two algorithms is huge. Table IX explores further

the details regarding the significant improvement gained from

using FVMGA.

Time is the most important point of comparison between

traditional GA and FVMGA. After all, the most significant

advantage that FVMGA has over GA is its speedy execution.

Fig. 13 shows the total time that GA and FVMGA needed to

optimize each model.

Fig. 13. The execution time of GA and FVMGA.

TABLE IX

SPEED IMPROVEMENT AND THE NUMBER OF DUPLICATE CHROMOSOMES

Code Method Time

(seconds)

Improvement % Duplicate

Chromosomes

(out of 1,000)

DS1 GA 323,410 0% 572

FVMGA 111,818 +189% 560

DS2 GA 412,490 0% 530

FVMGA 120,711 +241% 575

DS3 GA 334,521 0% 558

FVMGA 85,530 +291% 594

DS4 GA 713,395 0% 599

FVMGA 185,231 +285% 602

Table IX shows that around 500-600 out of 1,000

chromosomes were duplicates (i.e., around 50% to 60%).

That was a significant number of duplicate chromosomes.

The model produced by FVMGA is slightly 291% better than

the original of method GA. From the results obtained, it is

clear that the proposed algorithm, Fitness Value Memoization

Genetic Algorithm (FVMGA), is a success and could be

considered as one of Fast Genetic Algorithm (FGA).

V. CONCLUSION

Often, in the process of finding the optimal solution, GA

has to deal with duplicate chromosomes. A traditional GA

cannot recognize whether a chromosome is a duplicate or not.

GA will constantly naively re-evaluate those duplicate

chromosomes’ fitness value. Depending on how complex the

fitness function is, this could lead to a considerable waste of

323.410

412.490

334.521

713.395

111.818

120.711

85.530

185.231

0 200.000 400.000 600.000 800.000

DS1

DS2

DS3

DS4

Time (seconds)

D
at

as
et

Execution Time (Lower is Better)

GA FVMGA

Engineering Letters, 30:2, EL_30_2_17

Volume 30, Issue 2: June 2022

__

time. However, this problem could be addressed by caching

every chromosome that had been evaluated before.

FVMGA uses the concept of memoization to cache the

results from expensive fitness functions. Before we send the

chromosome to the fitness function, we first check whether

the chromosome is a duplicate or not. If it is, then we only

need to fetch the cached value. If it is not a duplicate, then we

evaluate the chromosome using the fitness function as usual.

REFERENCES

[1] G. E. Moore, “Lithography and the future of Moore’s law,” in

Integrated Circuit Metrology, Inspection, and Process Control IX,

1995, vol. 2439, p. 2, doi: 10.1117/12.209195.

[2] M. M. Waldrop, “More than Moore,” Nature, vol. 530, no. 7589. pp.

144–147, 2016, doi: 10.1038/530144a.

[3] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality

of data with neural networks,” Science (80-.)., vol. 313, no. 5786, pp.

504–507, 2006, doi: 10.1126/science.1127647.

[4] A. A. Adebiyi, A. O. Adewumi, and C. K. Ayo, “Comparison of

ARIMA and Artificial Neural Networks models for stock price

prediction,” J. Appl. Math., vol. 2014, 2014, doi:

10.1155/2014/614342.

[5] K. Chen, Y. Zhou, and F. Dai, “A LSTM-based method for stock

returns prediction: A case study of China stock market,” in Proceedings

- 2015 IEEE International Conference on Big Data, IEEE Big Data

2015, 2015, pp. 2823–2824, doi: 10.1109/BigData.2015.7364089.

[6] Y. Kara, M. Acar Boyacioglu, and Ö. K. Baykan, “Predicting direction

of stock price index movement using Artificial Neural Networks and

Support Vector Machines: The sample of the Istanbul Stock

Exchange,” Expert Syst. Appl., vol. 38, no. 5, pp. 5311–5319, 2011,

doi: 10.1016/j.eswa.2010.10.027.

[7] R. Fu, Z. Zhang, and L. Li, “Using LSTM and GRU neural network

methods for traffic flow prediction,” in Proceedings - 2016 31st Youth

Academic Annual Conference of Chinese Association of Automation,

YAC 2016, 2017, pp. 324–328, doi: 10.1109/YAC.2016.7804912.

[8] Z. C. Lipton, D. C. Kale, C. Elkan, and R. Wetzel, “Learning to

diagnose with LSTM recurrent neural networks,” in 4th International

Conference on Learning Representations, ICLR 2016 - Conference

Track Proceedings, 2016.

[9] S. McNally, J. Roche, and S. Caton, “Predicting the price of Bitcoin

using machine learning,” in Proceedings - 26th Euromicro

International Conference on Parallel, Distributed, and Network-Based

Processing, PDP 2018, 2018, pp. 339–343, doi:

10.1109/PDP2018.2018.00060.

[10] J. H. Holland, Adaptation in natural and artificial systems. 2019.

[11] M. Mitchell, An introduction to Genetic Algorithms, vol. 32, no. 6.

1996.

[12] V. Roberge, M. Tarbouchi, and G. Labonte, “Comparison of parallel

Genetic Algorithm and Particle Swarm Optimization for real-time

UAV path planning,” IEEE Trans. Ind. Informatics, vol. 9, no. 1, pp.

132–141, 2013, doi: 10.1109/TII.2012.2198665.

[13] B. Saeidian, M. S. Mesgari, and M. Ghodousi, “Evaluation and

comparison of Genetic Algorithm and Bees Algorithm for location-

allocation of earthquake relief centers,” Int. J. Disaster Risk Reduct.,

vol. 15, pp. 94–107, 2016, doi: 10.1016/j.ijdrr.2016.01.002.

[14] G. A. E.-N. A. Said, A. M. Mahmoud, and E.-S. M. El-Horbaty, “A

Comparative Study of Meta-heuristic Algorithms for Solving

Quadratic Assignment Problem,” Int. J. Adv. Comput. Sci. Appl., vol.

5, no. 1, 2014, doi: 10.14569/ijacsa.2014.050101.

[15] A. T. Kolokouris, “Machine learning,” Byte, vol. 11, no. 12, pp. 225–

226, 228, 1986, doi: 10.4018/ij3dim.2017070101.

[16] Y.-F. Huang and R. Startz, “Improved Recession Forecasts considering

stock market volatility,” SSRN Electron. J., 2018, doi:

10.2139/ssrn.3297949.

[17] B. J. Vanstone, A. Gepp, and G. Harris, “Do news and sentiment play

a role in stock price prediction?,” Appl. Intell., vol. 49, no. 11, pp.

3815–3820, 2019, doi: 10.1007/s10489-019-01458-9.

[18] B. J. Vanstone, A. Gepp, and G. Harris, “The effect of sentiment on

stock price prediction,” in Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2018, vol. 10868 LNAI, pp. 551–

559, doi: 10.1007/978-3-319-92058-0_53.

[19] E. Gilbert and K. Karahalios, “Widespread worry and the stock

market,” in ICWSM 2010 - Proceedings of the 4th International AAAI

Conference on Weblogs and Social Media, 2010, pp. 58–65.

[20] J. S. Lerner and D. Keltner, “Fear, anger, and risk,” J. Pers. Soc.

Psychol., vol. 81, no. 1, pp. 146–159, 2001, doi: 10.1037/0022-

3514.81.1.146.

[21] M. Claesen and B. De Moor, “Hyperparameter search in machine

learning,” pp. 10–14, 2015, [Online]. Available:

http://arxiv.org/abs/1502.02127.

[22] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, “Collaborative

hyperparameter tuning,” in 30th International Conference on Machine

Learning, ICML 2013, 2013, no. PART 2, pp. 858–866.

[23] D. S. Deighan, S. E. Field, C. D. Capano, and G. Khanna, “Genetic-

Algorithm-optimized neural networks for gravitational wave

classification,” arXiv. 2020.

[24] N. Gorgolis, I. Hatzilygeroudis, Z. Istenes, and L. N. G. Gyenne,

“Hyperparameter optimization of LSTM network models through

Genetic Algorithm,” in 10th International Conference on Information,

Intelligence, Systems and Applications, IISA 2019, 2019, doi:

10.1109/IISA.2019.8900675.

[25] P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random Search,

Genetic Algorithm: A big comparison for NAS,” arXiv. 2019.

[26] L. Yang and A. Shami, “On hyperparameter optimization of machine

learning algorithms: Theory and practice,” Neurocomputing, vol. 415,

pp. 295–316, 2020, doi: 10.1016/j.neucom.2020.07.061.

[27] B. Doerr, R. Makhmara, H. P. Le, and T. D. Nguyen, “Fast Genetic

Algorithms,” in GECCO 2017 - Proceedings of the 2017 Genetic and

Evolutionary Computation Conference, 2017, pp. 777–784, doi:

10.1145/3071178.3071301.

[28] W. Gao, “Study on improved Fast Immunized Genetic Algorithm,” in

Proceedings - 2nd International Conference on Genetic and

Evolutionary Computing, WGEC 2008, 2008, pp. 55–58, doi:

10.1109/WGEC.2008.67.

[29] S. P. Tseng, C. W. Tsai, M. C. Chiang, and C. S. Yang, “Fast Genetic

Algorithm based on pattern reduction,” in Conference Proceedings -

IEEE International Conference on Systems, Man and Cybernetics,

2008, pp. 214–219, doi: 10.1109/ICSMC.2008.4811277.

[30] M. Yuan, S. Wang, and S. Du, “Fast Genetic Algorithm for bits

allocation in OFDM based Cognitive Radio Systems,” in WOCC2010

Technical Program - The 19th Annual Wireless and Optical

Communications Conference: Converging Communications Around

the Pacific, 2010, doi: 10.1109/WOCC.2010.5510609.

[31] J. T. Tsai, J. H. Chou, and T. K. Liu, “Tuning the structure and

parameters of a neural network by using hybrid Taguchi-Genetic

Algorithm,” IEEE Trans. Neural Networks, vol. 17, no. 1, pp. 69–80,

2006, doi: 10.1109/TNN.2005.860885.

[32] D. George and E. A. Huerta, “Deep neural networks to enable real-time

multimessenger astrophysics,” arXiv. 2016.

[33] L. Seymour, P. J. Brockwell, and R. A. Davis, “Introduction to time

series and forecasting.,” J. Am. Stat. Assoc., vol. 92, no. 440, p. 1647,

1997, doi: 10.2307/2965440.

[34] D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to

time series analysis and forecasting. Hoboken: John Wiley & Sons,

Inc., 2008.

[35] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”

Neural Comput., vol. 9, no. 8, pp. 1735–1780, 1997, doi:

10.1162/neco.1997.9.8.1735.

[36] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term

dependencies with Gradient Descent is difficult,” IEEE Trans. Neural

Networks, vol. 5, no. 2, pp. 157–166, 1994, doi: 10.1109/72.279181.

[37] J. F. Kolen and S. C. Kremer, “Gradient Flow in Recurrent Nets: The

difficulty of learning long-term dependencies,” in A Field Guide to

Dynamical Recurrent Networks, 2010.

[38] A. Azari, “Bitcoin price prediction: An ARIMA approach,” arXiv,

2019, [Online]. Available: http://arxiv.org/abs/1904.05315.

[39] D. Michie, “‘Memo’ functions and machine learning,” Nature, vol.

218, no. 5136, pp. 19–22, 1968, doi: 10.1038/218019a0.

Engineering Letters, 30:2, EL_30_2_17

Volume 30, Issue 2: June 2022

__

