
 

  

Abstract— The comparison of signed integers is needed in 

various applications such as signal processing, sorting and 

process control. However, sign detection is a complex operation 

in Residue Number System (RNS). The RNS magnitude 

comparison and sign detection algorithms can be categorized 

into two categories: Parity check-based algorithms and partial 

reverse conversion-based algorithms. This paper presents an 

effective method for RNS sign detection based on a new 

representation of negative numbers range in RNS. The 

proposed method is applied on a four-moduli set {22n, 2n-1, 

2n+1, 2n+1-1} which resulted in an efficient sign detector with 

power-consumption and area saving than conventional sign 

detectors. 

 
Index Term—partial reverse converter, RNS, sign detection, 

dynamic range partitioning 

 

 

I. INTRODUCTION 

esidue number system (RNS) is a non-weighted number 

system which can lead to parallel arithmetic [1]. The 

main advantage of this number system is that it offers the 

possibility of doing parallel and distributed calculations 

without dependence on carry bit propagation, which thus 

speeds up the calculation [2]-[3]. These advantages have led 

to various studies on this numerical system in the field of 

designing finite impulse response (FIR) filters as well as 

accelerators for deep learning [5], and other applications [8]. 

Beside the abovementioned advantages for residue number 

system, there are some limitations and problems for 

developing this system such as high complexity of sign 

detection, comparing the magnitude of numbers, overflow 

detection in calculations, and performing division [4]-[23]. 

Up to now, all of RNS sign detection algorithms have 

been based on dividing the dynamic range into two parts, 

and then comparing the operand with the half of dynamic 

range to determine each half it is placed to consequently 

determine the sign. [4]-[6]. 

Methods for sign detection and comparing the magnitude 

of numbers in residue number system fall into two general 
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categories: 

1- Methods using the parity bit [24] 

2- Partial reverse conversion-based methods [7]-[26] 

There are various studies and algorithms for RNS sign 

detection in each of these categories. In this regard, [9] 

considered Z=|X-Y|M as Z= (|2(x1-y1)-….-2(xN-yN)|MN). 

Then based on the final parity bit and whether Z is even or 

not, the numbers X and Y can be compared. 

In [10], an algorithm has been proposed to compare the 

unsigned numbers and signed ones based on extracting the 

sign of operands, and if signs are different then, the positive 

number will be greater. If operands have the same sign and 

are positive, algorithm [9] is used, and in the case where 

both are negative, their absolute values are calculated and 

then the algorithm mentioned in [9] will be used. It should 

be noted that in most of the algorithms which are based on 

the value of parity bit, an additional moduli 2 is used and if 

the examined number for moduli 2 is equal to zero, that 

number will be even. 

The algorithm of [4] falls into the partial reverse 

conversion-based category since Chinese remainder theorem 

2 (CRT-II) is used for sign detection and comparing the 

magnitude of numbers. However, it is limited to the 

common three moduli set {2n-1, 2n, 2n+1} which will have 

in turn a limited dynamic range. In [11] and [12], two 

algorithms have been presented for sign detection and 

magnitude comparison based on partial reverse conversion 

that uses CRT-II. 

In [13], a new method based on an optimized version of 

MRC on the three-moduli set {2n-1, 2n+x, 2n+1} has been 

presented which can be used for sign detection, magnitude 

comparison, and overflow detection. 

It should be noted that in some of these algorithms 

including [14], full reverse conversion has been used for 

converting a residue number into its binary equivalent as 

well as for comparing it to the half of dynamic range for 

sign detection. Therefore, [14] suffers from high energy 

consumption and delay due to the need for full reverse 

conversion 

 In [15] an algorithm based on mixed radix CRT is 

suggested for sign detection with assuming there based on 

an n-moduli set {x1,…., xN}, the weighted number X can be 

calculated using Mixed-Radix Conversion (MRC) formula 

and the last required coefficient (αN-1). As αjs are 

independent of each other in the process of calculating the 

values and coefficients of MRC, calculations can be done 

completely in parallel. On the other hand, [16] tried to find 

the weighted number equivalent of a residue number 

consisting of four moduli using CRT and CRT-II algorithms 

to detect the sign. In this algorithm, each of four residues 

has a role in the final sign detection. In [17], an algorithm 
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for general sign detection based on MRC-II and an 

optimized algorithm for sign detection based on specific 

moduli set, the last moduli of which must be even, are 

given. This algorithm, i.e. MRC-II, is similar to MRC and 

should be calculated parametrically. 

This paper solves the problem of RNS sign detection by 

defining a new representation of signed numbers. Then, an 

efficient sign detector is proposed which can find sign 

efficiently based on the proposed representation. 

The remainder of this paper is organized as follows: In 

section II, the concepts of RNS will be explained and 

dynamic range partitioning will be described for displaying 

positive and negative numbers. In section III, the proposed 

representation for the new dynamic range partitioning will 

be explained. Besides, the proposed hardware architecture 

and its performance evaluation based on experimental 

results are presented in section IV. 
 

II.  BACKGROUND 

RNS is a non-weighted number system that is defined 

based on the moduli set {m1, m2, …. , mn} that includes co-

prime numbers. The representable numbers in any residue 

number system fall into the range of [0, M – 1], in which   

M=m1.m2…..mN and is called dynamic range. Each number 

in RNS has a specific representation, displayed as (x1, x2, 

…. , xn) where xi the smallest positive residue of X divided 

by mi and can be showed as xi=|X|mi. In addition, in order to 

convert the residue representation of a number (x1, x2, …. , 

xn) into an integer, a reverse converter is needed. The 

Chinese remainder theorem can be used as follows [18]: 

             𝑋 = |∑ 𝑀𝑖
𝑁
𝑖=1 ||𝑚𝑖

−1|
𝑚𝑖

𝑥𝑖|𝑚𝑖|𝑀                   (1) 

where Mi=M/mi and |mi
-1|mi is the multiplicative inverse of 

|Mi|mi. To avoid the large moduli operation for CRT 

calculations, a new CRT (CRT-II) can be used as below 

[19]: 

             𝑥𝑖𝑗 = 𝑥𝑖 + 𝑚𝑖 ||𝑚𝑖
−1|

𝑚𝑗
(𝑥𝑗 − 𝑥𝑖)|

𝑚𝑗
           (2) 

As can be seen, in CRT II each time pairs of (xi , xj) and 

their corresponding moduli (mi , mj) can be used, so that i≠j. 

Therefore Xij is created and this continues until the final 

number X is generated. Mixed-radix conversion is another 

technique used for designing reverse converters. In MRC, 

assuming having a moduli set such as {m1, m2, m3} and 

residue numbers such as (x1, x2, x3), the equivalent number 

X can be obtained as follows [25]. 

                       𝑋 =  𝑎3𝑚1𝑚2 + 𝑎2𝑚1 + 𝑎1               (3) 

Where ai (i=1, 2, 3) is as follows: 

                                     𝑎1 = 𝑥1                                  (4) 

                    𝑎2 = ((𝑥2 − 𝑎1) (
1

𝑚1
)

𝑚2

)
𝑚2

                (5) 

   𝑎3 = ((((𝑥3 − 𝑎1) (
1

𝑚1
)

𝑚3

)
𝑚3

− 𝑎2) (
1

𝑚2
)

𝑚3

)

𝑚3

(6) 

Note that, α = (
1

mi
)

mi

is multiplicative inverse, where 

(𝛼 × 𝑚𝑖) 𝑚𝑜𝑑 𝑚𝑖 = 1. To calculate X, first a2 and then a3 

are calculated and finally placed in (3). 

Signed integers can be represented in RNS, too, for which 

at first these numbers must be mapped as unsigned integers. 

For this purpose the following relation is used: 

                         �̃� ≡ |𝑥 + ⌊
𝑀

2
⌋|

𝑀
 ‒ ⌊

𝑀

2
⌋                       (7) 

X̃ here represents the signed integer. In  RNS, the 

dynamic range is divided into lower and upper half ranges, 

with the former and the latter displaying positive and 

negative numbers, respectively. Depending on whether the 

value of M is even or odd, the division of dynamic range 

and the exact determination of the range of positive and 

negative numbers differ; provided that M is even, its residue 

representation will fall into the range of [0, (M/2) − 1], and 

when M is odd, it will fall into the range of [0, (M − 1)/2], 
when x̃ ≥ 0  . On the other hand, its RNS representation will 

fall into the range of [M/2, M − 1], when x̃ < 0  and  M is 

even and when M is odd, it will fall into the range of 

[(M + 1)/2, M − 1] [20]. In other words, the sign detection 

of X̃ and its place in dynamic range will be carried out by 

the examination of the magnitude of the number resulted 

from (x1, x2, … , xN) and according to the cases below, 

respectively. 

when M is even, 

          𝑆𝑖𝑔𝑛(�̃�) = {
 0  𝑖𝑓 𝑥 ∈ [0, (𝑀/2) − 1]
1  𝑖𝑓 𝑥 ∈ [𝑀/2, 𝑀 − 1]

            (8) 

when M is odd, 

          𝑆𝑖𝑔𝑛 (�̃�) = {
0  𝑖𝑓 𝑥 ∈ [0, (𝑀‒ 1)/2]            

1  𝑖𝑓 𝑥 ∈ [(𝑀 + 1)/2, 𝑀 − 1]
   (9) 

Some moduli in RNS such as 2n – 1 can ease modular 

calculation results in an efficient hardware implementation. 
 

Property 1: 

The multiplication of an n-bit number X by 2 to the 

power of k in the moduli 2n – 1 can be computed by k bit 

circular left shift of X [21]. 

                            |2𝑘𝑥|2𝑛−1 = 𝐶𝐿𝑆𝑛(𝑋, 𝐾)              (10) 
 

Property 2: 

This feature is a result of Property 1 [7]. 

       |−2𝑘  𝑋|2𝑛−1 = |2𝑘(2𝑛 − 1 − 𝑋)|2𝑛−1             (11) 

            = |2𝑘  �̅�|2𝑛−1 = 𝐶𝐿𝑆𝑛(�̅�, 𝑘) 

 

III. THE PROPOSED METHOD 

In this section, a new algorithm is presented for the sign 

detection of signed integers in RNS. The proposed algorithm 

consists of two parts: the first part determines the range of 

positive and negative numbers in dynamic range and the 

second part expresses the algorithm of sign detection on the 

new dynamic range partitioning. 
 

A. New dynamic range partitioning 

As it was explained in part 2, in all existing residue 

number systems which can work with signed integers, the 

dynamic range falls into two lower and upper half ranges 

that respectively display positive numbers and negative 

numbers (Fig. 1). 

Engineering Letters, 30:2, EL_30_2_19

Volume 30, Issue 2: June 2022

 
______________________________________________________________________________________ 



 

Fig. 1. Conventional dynamic range splitting. 

In this partitioning as there is an even moduli in most 

moduli sets, the value of M is even and the dynamic range is 

divided into two equal halves. Assuming that there is a 

moduli set of (m1, m2, …. , mN), this paper now divides 

dynamic range into mN parts in each of which there will be 

S=m1.m2….mN-1 numbers. Now considering that mN is one 

of the odd moduli of the set, the value of S will certainly 

yield an even value (since one of its covered moduli is 

even), which will surely allow its division into two equal 

parts. After the partitioning is done, each S-member set is 

divided into two equal parts the lower part of which displays 

positive numbers and the upper part displays negative 

numbers (Fig. 2). 

 

 
Fig. 2. Suggested dynamic range splitting. 

 

In the light of addition being one of the most important 

and widely used arithmetic operations required for most 

calculative applications, we've examined whether and how it 

is possible to do this operation in the new dynamic range 

partitioning, with the conducted investigations showing that 

it is possible to do addition in all three possible modes 

(addition of two positive numbers, the addition of two 

negative numbers, the addition of one positive number with 

one negative number) and based on a certain model. The 

major advantages of this partitioning for the sign detection 

are: 

 

1. Lack of mid-range in the process of sign detection 

In the common process of dynamic range partitioning and 

its division into a number of subcategories, there will be a 

mid-range for recalculations and to determine the exact 

place of the number for the sign detection. However, in the 

new partitioning presented in this paper and given that each 

subcategory will have an independent role in sign detection, 

there will be no difference between the numbers existing in 

the mid-range and those in other subcategories, as a result 

there will be no need to do extra calculations if the 

examined number falls into any of these subcategories. 

 

2. Doing the operation of sign detection without the need 

for all moduli and residue numbers 

In all sign detection algorithms which suggested for RNS 

whose dynamic range is divided into two parts, all residues 

and their corresponding moduli have been used for sign 

detection [2]-[7]. But using the new dynamic range 

partitioning, in a RNS with an assumed set of 4 moduli {m1, 

m2, m3, m4} and 4 residue numbers (x1, x2, x3, x4) ،  it is 

possible to use only 3 moduli and 3 residue numbers for the 

sign detection of the examined number, which leads to a 

large reduction in calculations and subsequently a simpler 

hardware implementation. How this algorithm is done and 

calculated is explained in the next section. 

 

B. New sign detection algorithm 

In all common sign detection algorithms, all moduli of an 

examined set and their corresponding residue numbers are 

used for the sign detection, which causes an increase in the 

required calculations, hardware capacity and thus a delay in 

sign detection.  

This section deals with the new sign detection algorithm, 

and shows that in a 4-moduli set, the sign can be detected 

using 3 moduli and 3 residue numbers. The examined 

moduli set is {22n, 2n-1, 2n+1, 2n+1-1} where m1= 22n, m2= 2n 

‒1, m3= 2n +1, m4= 2n+1 ‒1, and the residue numbers are (x1, 

x2, x3, x4). Regarding methods of sign detection, this 

algorithm is based on partial reverse conversion. This 

method uses dynamic range, classifying it into m4 ranges 

each of which will have S=m1.m2.m3 numbers. Now that 

there is a moduli with an even value, S also has an even 

value that can be divide into two equal parts. In this method 

first two pairs of (m2 , m3) and (x2 , x3) are used and then 

using CRT a residue number equal to (Px) and a new moduli 

equal to (DR2 =m2. m3) will be calculated. 

 

Equations for calculating Px 

As mentioned earlier, using CRT and two pairs of (m2, 

m3) and (x2, x3) Px can be calculated as follows: 

                              𝑃𝑥 = |𝑋|𝑚2.𝑚3                            (12) 

= |𝑚3. |𝑚3
−1|

2
. 𝑥2 + 𝑚2. |𝑚2

−1|
𝑚3

. 𝑥3|
𝑚2.𝑚3

 

Which |𝑚2
−1|

𝑚3
= |𝑚3

−1|
𝑚2

= 2𝑛−1 

Proof: |𝑚3
−1|

𝑚2
= 2𝑛−1 

|𝑚3
−1|

𝑚2
= |(2𝑛 + 1)−1|2𝑛−1 

               = |𝑘 × (2𝑛 + 1)|2𝑛−1 

               = |𝑘 × 2|2𝑛−1 = 1 → 𝑘 = 2𝑛−1 

 

Proof: |𝑚2
−1|

𝑚3
= 2𝑛−1 

|𝑚2
−1|

𝑚3
 = |(2𝑛‒ 1)−1|2𝑛+1 

                  = |(2𝑛 + 1 − 1 − 1) × 2𝑛−1|2𝑛+1 

                  = |−2 × 2𝑛−1|2𝑛+1 

            = |−(2𝑛 + 1 − 1)|2𝑛+1 = 1 → 𝑘 = 2𝑛−1 

 

Equations for calculating Qx 

Assuming that DR2=m2.m3 and S=DR2.m1  and thus 

having two pairs of (Px, x1) and (DR2, m1), Qx can be 

calculated using CRT II. This section will show that Qx will 

determine the exact place of the number X in a subcategory 

of dynamic range partitioning. 

             𝑄𝑥 = 𝑥1 + 𝑚1 ||𝑚1
−1|

𝐷𝑅2
. (𝑃𝑥 − 𝑥1)|

𝐷𝑅2
    (13) 

which will be |𝑚1
−1|

𝐷𝑅2
= 1. 

It should be noted that |(22𝑛)−1|22𝑛−1 = 1 since 

|(22𝑛) × 1|22𝑛−1 = |22𝑛 +  1 − 1|22𝑛−1 = 1 → 𝑘 =
1. 

Now three moduli and three residue numbers have been 

used, the value of Qx has been obtained and we know that 

the final value of X can be calculated using two pairs of (Qx, 

x4) and (S, m4) and CRT II as below: 

          𝑋 = ||𝑆−1|𝑚4. (𝑥4 − 𝑄𝑥)|𝑚4. 𝑆 + 𝑄𝑥             (14) 
Thus by comparing the above expression with 

X=Rx.S+Qx, we will realize that Qx is an indicator of the 
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place of the examined number in its related subcategory, 

which, considering the dynamic range partitioning explained 

above, allows determining the examined number using Qx 

without inserting the values of m4 and x4 into calculations, 

because as shown in (14), m4 and x4 are used for 

determining exactly the number of the examined number's 

subcategory, and how negative numbers are represented in 

the new dynamic range partitioning. It should be noted that 

there will be no need to know the place and number of the 

examined number's subcategory and to insert m4 and x4 into 

the calculations for the sign detection (Fig. 3). This will 

significantly reduce delay in sign detection and decrease the 

required hardware. 

 

 
Fig. 3. Determining the sign of number using the same Qx. 

 

As the figure above shows, a number with Qx=20 will 

certainly be a positive number and one with  Qx=70 will 

surely be a negative one. Without knowing the exact number 

of its subcategory (that is, without inserting m4 and x4 into 

the calculations and determining the value of Rx); with the 

calculation of Qx and comparing it to S, sign detection can 

be done. In summary: 

                     Sign (𝑥) = {
1   𝑖𝑓 𝑄𝑥 ≥ 𝑆/2
0   𝑖𝑓 𝑄𝑥 < 𝑆/2

                (15) 

 

C. Numerical example 

In the moduli set {22n, 2n-1, 2n+1, 2n+1-1} and assuming 

n=2, we will have m1=16, m2=3, m3=5 and m4=7 which 

S=m1.m2.m3=240. The full dynamic range consists of 7 

partitions where each one includes 240 numbers. 

According to the partitioning done on the dynamic range, 

it is clear that the number X= ‒300 will be equal to 660 on 

the dynamic range and as S=240, the value of X=660 will be 

calculated based on the formula X=Rx×S +Qx as below: 

As 660=2×240+180, Qx=180, based on the value of 

S=240 it will be clear that the number 660 with Qx=180 will 

fall into the second half of the related subcategory and will 

be a negative number (Fig. 4). 

 

 
Fig. 4. Numerical example. 

 

In the next section and after describing the necessary 

hardware units for implementing the above equations, the 

numerical example on the presented hardware will be 

described with detail. 

 

D. The proposed hardware architecture 

The proposed architecture for the sign detection can be 

divided into three general parts. The first and second parts 

use 3 residue numbers to produce Qx and Px and the third 

part uses the produced Qx and compares it to S/2 to 

determine the sign for the examined number (Fig. 5). 

 

 
Fig. 5. Architecture of the proposed algorithm. 

 

The hardware needed for Px can be designed and 

implemented by placing |m2
-1|m3=|m3

-1|m2=2n-1 in (12) and 

calculating its final equation. 

 𝑃𝑥 = |𝑚3. |𝑚3
−1|

𝑚2
. 𝑥2 + 𝑚2. |𝑚2

−1|
𝑚3

. 𝑥3|
𝑚2.𝑚3

  (16) 

     = |(2𝑛 + 1)(2𝑛−1)𝑥2 + (2𝑛 − 1)(2𝑛−1)𝑥3|22𝑛−1 

   = |2𝑛−1𝑥2 + 22𝑛−1𝑥2 − 2𝑛−1𝑥3 + 22𝑛−1𝑥3|22𝑛−1 

The above expression results in two independent terms 

called K1 and K2 based on the factors X2 and X3. Let 𝐾1 =
|22𝑛−1𝑥2 + 2𝑛−1𝑥2|22𝑛−1 and 𝐾2 = |−2𝑛−1𝑥3 +
 22𝑛−1𝑥3|22𝑛−1. 

Now following property 1 and property 2 as previously 

presented, K1 and K2 can be calculated exactly. 

𝐾1 = |𝐶𝐿𝑆2𝑛(𝑥2, 2𝑛‒ 1) + 𝐶𝐿𝑆2𝑛(𝑥2, 𝑛 − 1)|22𝑛−1   (17) 
Besides, since x2 has n bits, which must increase to 2n bits 

according to the (17), n-bit zeros will be added to its left 

side and then a circular left shift will be applied. 

K1 = | x2,0  00…..….00   x2,n-1............x2,1   + 

 

                       n bit                  n-1 bit 

          0  x2,n-1……..x2,0   00…….…00  | 22n
-1 

 

                      n bit                 n-1 bit 

     = x2,0 x2,n-1……..x2,0  x2,n-1............x2,1 

 

                   n bit                  n-1 bit 

Moreover: 

𝐾2 = |𝐶𝐿𝑆2𝑛(𝑥3, 2𝑛 − 1) + 𝐶𝐿𝑆2𝑛(�̅�3, 𝑛 − 1)|22𝑛−1  (18) 
Since x3 has n+1 bit and must increase to 2n bits 

according to the (18), (n – 1) zero bits will be added to its 

left side and circular left shift will be applied. 

K2 = | x3,0  00…00   x3,n….x3,1  +  x̄3,n… x̄3,0   11…..11   |22n
-1 

 

                  n-1 bit      n bit            n+1 bit      n-1 bit 

Now by examining x3 bits and given that when its (n + 1) 

bit has a value of 1, the rest of its bits will be zero and while 

x3,n =1, the above expression can be added and a constant 
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value can be obtained as:      

L =    00.…00  1  00.…00   +   0  11.…11   
 

             n bit          n-1 bit             2n-1 bit 

=  1  00.…00   11….11 
 

            n bit        n-1 bit  

Thus based on the value of x3, n bit, the expression Px can be 

defined as a bi-conditional expression: 

      𝑃𝑥 = {
|𝐾1 + 𝐿|22𝑛−1                𝑖𝑓 𝑥3,𝑛 = 1

|𝐾1 + 𝐾3 + 𝐿|22𝑛−1      𝑖𝑓 𝑥3,𝑛 = 0
          (19) 

Where K3 = x3,0 x̅3,n−1 … … . . x̅3,0  x3,n−1 … … . . x3,1. 
As the above calculations and results show, there is no 

need for a complex hardware architecture. The proposed 

hardware implements the above expression and using only 

bit inversion and reshuffling, the concerned results can be 

obtained and then reach the value of Px, and n modified full 

adders (MFA) can be used [21] where each of them includes 

two modified half adders called MHA1 and MHA2 and its 

internal structure is shown in Fig. 6. Fig. 6 shows that the 

inputs of MFA are x2 and x3 bits. Using MHA1 a range of 

vectors including x3,i and x2,i per (i ∈ [1, n − 1]) , a 

constant vector with the value of 1 can be accumulated. 

Similarly, using MHA2, two vectors of x2,i and (x̅3,i. x̅3,n) 

per i ∈ [0, n − 1] will be accumulated. Finally, MFAs with 

a little sorting will generate two 2n-bit vectors of Sum and 

Carry called g and f which will be used for calculating Qx. 
 

Fig. 6. Circuit architecture of MFA. 

 

Now by placing m1 = 22n , |m1
−1|

DR2
= 1 and Px =

|f + g|22n−1 in (13), the value of Qx is obtained as below: 

𝑄𝑥 = |1 × (𝑓 + 𝑔 − 𝑥1)|22𝑛−1. 22𝑛 + 𝑥1 = 𝑥1 + 22𝑛. 𝑍  (20) 

Comparing the two sides of the equation will give: 

                   𝑍 = |1 × (𝑓 + 𝑔 − 𝑥1)|22𝑛−1              (21) 

                       = | 𝑓 + 𝑔 − 𝑥1|22𝑛−1 

                   = |ᵶ1 + ᵶ2 + ᵶ3|22𝑛−1 

As it was shown, the factor Z is obtained from the modulo 

sum of 3 vectors to the moduli 22n -1, where z1+z2+z3 is 

calculated as below: 

                                  ᵶ1 = 𝑓                                     (22) 
                           ᵶ1 = 𝑓2𝑛−1 … … … … … … 𝑓0 

                                  ᵶ2 = 𝑔                                     (23) 
                         ᵶ2 = 𝑔2𝑛−1 … … … … … … 𝑔0 

                                  ᵶ3 = −𝑥1 = �̅�1                       (24) 

                              ᵶ3 = �̅�1,2𝑛−1 … … … . … . . �̅�1,0 

Now according to (21), the final value of Z can be 

calculated using a carry-save adder (CSA) and a modular 

adder by the moduli 22n – 1. On the other hand, as 𝑥1 ∈
[0, 22n) and will have 2n-bits, and in the (20), Z has a 

coefficient of 22n, it is possible to calculate the value of Qx 

without extra hardware with the help of concatenation as 

below (the hardware implementation is shown in Fig. 7). 

Qx =  Z2n-1……….…Z0   x1,2n-1……………x1,0    . 

 

                   2n bit                       2n bit 

After calculating Qx as previously explained, its 

comparison with the value of S/2 will allow us to determine 

the examined sign; if Qx is in the lower half of S, the 

number will be positive and if it is in the upper half, it will 

be negative (Fig. 8). 
 

 
Fig. 7. Circuit architecture of Qx generator. 

 

 
Fig. 8. Hardware implementation of sign detector unit. 
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After calculating Qx as previously explained, its 

comparison with the value of S/2 will allow us to determine 

the examined sign; if Qx is in the lower half of S, the 

number will be positive and if it is in the upper half, it will 

be negative (Fig. 8). 

 
E. Example 

Consider the moduli m1= 22n, m2= 2n ‒ 1, m3= 2n+1 and 

m4= 2n+1 ‒ 1, and assuming n=2, we will have: m1=16, 

m2=3, m3=5 and m4=7. Now with the aim of investigating 

the sign of the number X=−300 and the division of dynamic 

range according to Fig. 4, we must address the sign of the 

number 660 that is equal to −300. After computing the 

residues, we will have: x1=4=0100, x2=0=00, x3=0=000 and 

x4=2=010, and by applying them to Fig. 7, the calculations 

will be done. 

Given the hypothesis n=2, there will be two numbers of 

MFA, which considering the values of x2 and x3 bits, two 2 

n-bit vectors with the values of (1111) and (0000) that are 

respectively called f and g, will be generated. These vectors 

along with the vector Z3= x̅1= (1011) will act as the inputs 

of 2n-bit CSA with EAC. Next, the outputs of sum and carry 

will have the values of (1011) and (0100) respectively and 

will enter the modular adder as the inputs of the next level 

so that the final value of Px =1011 is obtained. As the Fig. 7 

shows, the value of the final output of Qx will be obtained 

from the concatenation of Px and x1 and be equal to 

(10110100). As the final output shows, Qx=10110100=180 

which, with the calculation of the value Qx, will be equal to 

the numerical example mentioned previously. Now 

considering Fig. 8, the negativity of the investigated number 

will be clear by applying the value Qx to this circuit and that 

the bit MSB=1. 
 

IV. PERFORMANCE EVALUATION 

In this section, the performance proposed algorithm is 

evaluated based on the 4-moduli set {22n,2n-1,2n+1,2n+1-1} 

and the obtained results are compared with one of the latest 

existing algorithms presented in [7] when k=n. 

To compare the results, at first, the codes related to 

producing a hardware model of sign detection in [7] and the 

proposed algorithm are written using VHDL, and then their 

performance is evaluated and confirmed using Modelsim. 

The written codes are assessed on the above moduli set and 

for n=4,8,10,12,16,20, and then every design is synthesized 

using Synopsys design compiler version C-2009.06 using 

SC_TSMC 180 nm technology standard cell library. The 

hardware efficiency between the proposed design and [7] 

can also be analyzed at a component level. The comparison 

of the hardware gates required for the proposed work and 

the algorithm in [7], as shown in Table I, reveal that in the 

proposed design with a decline by half in the hardware 

required for [7], we will expect a 50% reduction in some 

factors of the circuit such as area and critical path delay, 

with the results of the synthesis demonstrating it well. 

The measured area in µm2 and the critical path delay in ns 

of each design are obtained for a different n and plotted in 

Figs. 9 and 10. In addition, the total power consumption in 

mW and the leakage power in µW are plotted in Figs. 11 

and 12. 

TABLE I 

EVALUATION OF RNS SIGN DETECTION ARCHITECTURE 

Item [7] Proposed 

MFA Yes Yes 
Bit rewiring 2 levels 1 level 

Bit inversion Yes Yes 

Circular left shift 1 level No 
2n bit CSA with EAC 1 level 1 level 

Mod 22n ‒ 1 adder 1 level 1 level 

(n+1)bit CSA with EAC  2 or 3 levels No 
Circular right shift 1 level No 

CSA with EAC tree Yes No 

Mod 2n+1 ‒ 1 adder 1 level No 

 

 
Fig. 9. Comparison of area of the proposed design with the sign detector 

based on [7] with n=4, 8, 10, 12, 16, 20. 

 

 
Fig. 10. Comparison of delay of the proposed design with the sign detector 

based on [7] with n=4, 8, 10, 12, 16, 20. 

 

Fig. 9 shows the proposed design is 69% smaller than the 

design presented in [7] on average. Also according to the 

information given in Fig. 10, the average critical path delay 

in the proposed design is 52.5% better than the one in [7]. 

 

 
Fig. 11. Comparison of total power of the proposed design with the sign 

detector based on [7] with n=4, 8, 10, 12, 16, 20. 

 

Figs. 11 and 12 show reductions in the average power 

consumption and the average leakage power by 86.2% and 
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70.4%, respectively. Besides, Figs. 9, 11 and 12 show that 

the rate of improvement in all three parameters of area, 

power consumption and leakage power rises with the 

increase in the value of n. 

 

 
Fig. 12. Comparison of  leakage power of the proposed design with the sign 

detector based on [7] with n=4, 8, 10, 12, 16, 20. 

 

As explained earlier, whatever the number of moduli is 

greater and the dynamic range is larger, then the number of 

numbers that can be displayed in that system will be higher. 

In the following, we compare the proposed algorithm 

with dynamic range 5n to each one of the presented methods 

in [15], [17] and [22], that each of them has a dynamic range 

of 3n. As shown in Figs. 13 and 14, the results of the 

proposed algorithm in terms of area and power are  better 

than the results of [15], [17] and [22], which shows the 

superiority of the proposed algorithm. 

 

 
Fig. 13. Comparison of area of the proposed design with the sign detectors 

based on [15], [17] and [22] with n=4, 8, 12, 16, 20. 

 

 
Fig. 14. Comparison of total power of the proposed design with the sign 

detectors based on [15], [17] and [22] with n=4, 8, 12, 16, 20. 

 

V.  CONCLUSION 

This paper presents a new method for the effective sign 

detection on the 4-moduli set {22n, 2n-1, 2n+1, 2n+1-1}. In the 

proposed algorithm, the dynamic range partitioning has been 

changed than previous works that allowed us to use only 3 

residue numbers and 3 moduli out of 4 residue numbers and 

4 moduli to determine the sign of the examined number. 

Given that one residue number and one moduli do not enter 

the computations of the sign detection, a considerable 

decrease in the parameters of the circuits is achieved. The 

experimental results show that on average 69%, 52.5%, 

86.2% reductions are obtained in area, critical path delay, 

and power consumption. 
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