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Abstract—In this article, an explicit characteristic-based
finite volume method (FVM) is presented for the numerical
solution of advection-diffusion-reaction equations (ADRE). The
method was applied to solve 1-D and 2-D water pollution
problems which can be modeled in terms of ADREs. The FVM
results were compared with numerical results obtained using
a finite difference method (FDM) with implicit forward time
central space (FTCS) scheme. For the 1-D ADRE, numerical
solutions from the two methods were also compared with the
exact solution. Good agreement was found between the FVM,
FDM and exact results for the 1-D ADRE. The FVM and FDM
methods were also used to obtain numerical solutions for 2-D
ADRE models for water pollution in reservoirs with one or
two entrance gates and one exit gate for low and high rates
of diffusion for three representative source terms. In general,
it was found that the FVM and FDM results were in good
agreement except for regions near the entrance and exit gates.

Index Terms—Water pollutant concentration, Finite volume
method, Finite difference method, Advection-diffusion-reaction
equation

I. INTRODUCTION

ACCURATE numerical solutions of advection-diffusion-
reaction equations (ADRE) play a vital role in the

modeling of physical processes as the equations are used
as models for many problems arising in applied mathe-
matics, science and engineering, for example, heat transfer,
water pollutant concentration, air pollutant concentration, etc.
Two important numerical methods that have been devel-
oped to solve ADREs are finite difference methods (FDM)
(see, e.g., [1]–[7]) and finite volume methods (FVM) (see,
e.g., [8]–[21]).

Many researchers have used finite difference methods to
numerically solve partial differential equations related to
ADREs. Some examples include the following. In 2013,
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Gurarslan et al. [2] published numerical solutions of contam-
inant transport problems written in terms of a 1-D advection-
diffusion equation by using a sixth-order compact finite
difference scheme in space and a fourth-order Runge-Kutta
scheme in time. This combined method was shown to give
very reliable and accurate solutions to these problems. In
2014, Qin et al. [3] proposed a non-standard finite difference
(NSFD) scheme to solve an advection-reaction equation with
a nonlinear reaction term. Qin et al. also used the new
scheme to construct numerical solutions of the advection-
reaction equations both with and without a diffusion term.
They showed that the NSFD scheme could preserve the
fixed points, the positivity, and the boundedness of the
solutions of the original equations. In 2017, Sanjaya and
Mungkasi [4] developed an explicit finite difference method
to obtain numerical solutions of a 1-D advection-diffusion
equation. In 2018, Putri et al. [5] used numerical simulations
to study an advection-diffusion equation for the Biochemical
Oxygen Demand (BOD) concentration in one flow direction
in waste stabilization ponds. The numerical simulations
were carried out using a finite difference method with a
forward time central space (FTCS) scheme. In 2020, Pananu
et al. [1] analyzed the convergence of a finite difference
method with an implicit forward time central space (FTCS)
scheme for numerical solution of a 2-D advection-diffusion-
reaction equation. Pananu et al. also applied the scheme to
a water pollutant dispersion problem with non-removal and
removal mechanisms in reservoirs with one and two entrance
gates. In 2020, Xu et al. [6] used a reduced sixth-order
compact finite difference scheme (R-CFDS6) to solve the
2-D Fisher-Kolmogorov equation and an extended Fisher-
Kolmogorov equation. Their scheme was based on proper
orthogonal decomposition (POD) and operator splitting (R-
CFDS6-OSM). In 2020, Timpitak and Pochai [7] published
numerical results which they obtained using forward time
central space and Saulyev finite difference techniques to
solve a 1-D model of groundwater pollution measurements
around heterogeneous soil landfills.

In recent years, many researchers have made detailed
studies of the finite volume method. Some examples include
the following. In 2014, Arachchige and Pettet [15] proposed
a new linearization technique, which they called the finite
volume method with linearization (FVML), for temporal
integration of nonlinear source terms in an ADRE . They
also applied the FVML to obtain numerical simulations of
a variety of 1-D ADREs. In 2015, Liu et al. [16] developed
a modified upwind finite volume element method to decom-
pose a nonlinear system into a smaller nonlinear system on a
coarse grid and a linear system on a fine grid. Liu et al. then
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applied their method to solve a system of coupled advection-
dominated diffusion reaction equations for the prevention of
groundwater contamination. In 2017, Yang and Tine [17]
proposed a hybrid finite volume scheme based on a flux
convex combination between the Anti-Dissipative Method
(ADM) [22] and the WENO5 method [23]. Yang and Tine
used their scheme to construct accurate numerical solutions
of transport type equations for discontinuous initial data. This
hybrid scheme was shown to be very suitable for deriving
long term asymptotic behavior of solutions of population
dynamic models. In 2018, Xu [18] proposed a modified
finite volume method (MFVM) in which the weights of
the upstream and downstream grid points were adjusted to
minimize the truncation errors. Xu showed that the MFVM
was much more accurate and stable than the conventional
FVM for convection/reaction-dominated problems and pro-
vided almost the same accuracy as the exact solution. In
addition, they showed that the MVFM did not induce any
unphysical oscillations for the 1-D case. In 2019, Lan et
al. [19] introduced a new finite volume scheme for 2-D
convection-diffusion equations on deformed meshes in which
the convective flux was approximated using the available
information on the diffusive flux. The scheme was shown to
be appropriate for cases in which the diffusion coefficients
were discontinuous and anisotropic. In addition, it was shown
that the scheme preserved the positivity of solutions, had
second-order accuracy, and did not require special slope-
limiting techniques. Hafsi and Taallah [20] used a finite vol-
ume method to obtain approximate solutions of the Signorini
problem for a deformed elastic solid in unilateral contact with
a rigid body. More recently, Hussain et al. [21] developed a
numerical scheme based on the upwind approach in the finite
volume method. They proposed new expressions for interface
flux approximations and showed that their proposed scheme
was unconditionally stable with second-order accuracy in
both space and time. Also, they obtained highly accurate
solutions for the convection-diffusion problem with a range
of values of convective velocity and diffusion coefficient.

In this article, advection-diffusion-reaction equations of
the following form are studied:

∂ϕ

∂t
+∇ · (vϕ− ε∇ϕ) + κϕ = q, (1)

where ϕ is a scalar quantity such as water pollutant concen-
tration or air pollutant concentration, the symbol ∇ repre-
sents the gradient operator, ε ≥ 0 is a diffusion coefficient,
v = v(x) is a given advection velocity vector, κ is a
reaction coefficient, q = q(x, t) is a prescribed source term,
x = (x1, x2, ..., xk)

T is a position vector of k components
and time t ∈ [0, T ], where T > 0.

The purpose of the current work is to develop an explicit
characteristic-based finite volume scheme [8]–[14] to obtain
numerical solutions of Eq. (1) for a model of water pollution
problems in a reservoir. The numerical simulations obtained
by the proposed finite volume method are compared with
the solutions reported in [1] that were obtained by a finite
difference method with an implicit forward time central
space (FTCS) scheme. The accuracy of the two numerical
methods will first be tested by applying them to a simple
one-dimensional water pollution problem for which an exact
solution is known. The two methods will then be used to

solve a two-dimensional water pollution problem for which
an exact solution is not known.

The present paper is organized as follows. In sec-
tion II, a summary is given of the finite difference method
with implicit FTCS scheme discussed in [1]. The explicit
characteristic-based finite volume method is then described
and its application to the solution of pure advection and
advection-dominated diffusion problems is summarized [8],
[9], [12], [13]. In section III, numerical solutions for the
1-D ADREs for the water pollution problems are obtained
using the two methods and compared with the exact solution.
Then, numerical solutions for the 2-D ADREs are obtained
using the two methods and extensive graphs are presented to
illustrate the numerical results. Finally, conclusions are given
in section IV.

II. NUMERICAL METHODS

In this section, the main properties of the finite differ-
ence method with implicit FTCS scheme and the explicit
characteristic-based finite volume method are summarized.

A. Finite difference method with implicit FTCS scheme
The finite difference method with the implicit FTCS

scheme for the 2-D version of the advection-diffusion-
reaction equation (1) is as follows [1]:

Lhϕ
h(x, t) ≡

ϕn+1
i,j − ϕn

i,j

∆t
+ ū

ϕn+1
i+1,j − ϕn+1

i−1,j

2∆x
+ v̄

ϕn+1
i,j+1 − ϕn+1

i,j−1

2∆y

−ε

[
ϕn+1
i+1,j − 2ϕn+1

i,j + ϕn+1
i−1,j

(∆x)2
+

ϕn+1
i,j+1 − 2ϕn+1

i,j + ϕn+1
i,j−1

(∆y)2

]
+ κϕn+1

i,j = qni,j ,
(2)

where Lh : Ωh → Hh is a difference operator acting from
the discrete function space Ωh to the discrete function space
Hh. The discretized function ϕh ∈ Ωh is written in terms
of the solution ϕ, where ϕh(x, t) = ϕn

i,j = ϕ(xi, yj , t
n) and

(i, j) ∈ J = {(i, j) | i = 0, 1, 2, ..., N1, j = 0, 1, 2, ..., N2}
are the space points and n ∈ K = {0, 1, 2, ..., N} are the
time points. The positive integers N1 and N2 are computed
via N1 = L1

∆x , N2 = L2

∆y , where L1, ∆x and L2, ∆y are
the side length of the considered region and the spatial step
sizes in x- and y-directions, respectively. The interval of
time [0, T ] is discretized as [0, T ]K , where tn, n ∈ K =
{0, 1, 2, ..., N} are the temporal grid points with step size
∆t = T/N for some positive integer N . The symbols ū and
v̄ are the average advection velocities in x- and y-directions,
respectively.

Pananu et al. [1] established that the scheme (2) is
convergent, i.e., consistent and stable, by Lax’s equivalence
theorem [24]. In particular, the magnitude of the eigenvalue
(λ) of the discretized solution ϕn

i,j for the homogeneous
scheme of (2) was shown to be given by [1]

|λ| = 1√[
1+γ

(
sin2 α

2
+ sin2 β

2

)
+κτ

]2
+[η (ū sinα+ v̄ sinβ)]2

,

≤ 1, (3)

where γ = 4ετ
h2 , η = τ

h and τ = ∆t, h = ∆x = ∆y. The
unconditional Von Neumann stability for the homogeneous
scheme can then be directly proved using the inequality (3).
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In addition, it can easily be shown that the 1-D homogeneous
scheme of (2), i.e., without v̄ and κ, is unconditionally stable.
For the nonhomogeneous case, the scheme (2) is stable if the
following hypothesis holds [1]:

(H1)

{
ū
[
ϕn+1
i∗−1,j∗ − ϕn+1

i∗+1,j∗

]
≤ 0,

v̄
[
ϕn+1
i∗,j∗−1 − ϕn+1

i∗,j∗+1

]
≤ 0,

(4)

where (i∗, j∗) are the smallest non-negative integers in J .

B. Explicit characteristic-based finite volume method

The idea of the method is to first derive a discrete
convection-diffusion-reaction equation along a characteristic
path and then to use the weighted residuals finite element
method to approximate the gradients on the cell faces [8],
[12], [13].

The derivation of the method for solving equation (1)
can be summarized as follows. Consider the initial-boundary
value problem for the ADRE consisting of the governing
equation (1), the initial condition

ϕ(x, 0) = ϕ0(x), x ∈ Ω, Ω ⊂ R2, (5)

and the Dirichlet and Neumann boundary conditions

ϕ(x, t) = gD on ∂ΩD,

ε
∂ϕ

∂n
= gN on ∂ΩN ,

(6)

where Ω is a bounded polygonal spatial domain with the
Lipschitz boundary, i.e., ∂Ω = ∂ΩD ∪ ∂ΩN and ∂ΩD ∩
∂ΩN = ∅, where ∂ΩD and ∂ΩN are the Dirichlet and
Neumann boundaries, respectively. In addition, gD and gN
are specified function spaces on ΩD and ΩN , respectively
and n is the unit outward normal vector.

If a moving coordinate x′ with a speed of v is assumed
along the path of the characteristic wave, then the change of
variable x to x′ is expressed by x′ = x - vt. Then, if ϕ =
ϕ(x′, t), the relation between the derivatives is as follows:

∂ϕ

∂t

∣∣∣∣
x=constant

= −v · ∇′ϕ+
∂ϕ

∂t

∣∣∣∣
x′=constant

, (7)

∇ϕ = ∇′ϕ, (8)
∇ · (ε∇ϕ) = ∇′ · (ε∇′ϕ). (9)

After substituting (7)-(9) into (1) and using the divergence
free assumption that ∇·v = 0, the advection term in Eq. (1)
disappears and Eq. (1) then becomes

∂ϕ

∂t
−∇′ · (ε∇′ϕ) + κϕ = q, (10)

where all terms are evaluated at x′=x′(t).
The next step is to discretize the computational domain

in time and space. The time interval [0, T ] is discretized
with a time step ∆t and then the time steps are tn =
n∆t, n = 0, 1, 2, . . . , N . Then, by carrying out a Taylor-
series expansion to second order in time, the advection term
reappears in the equation along with an additional second-
order term. This second-order term acts as a smoothing
operator that reduces the oscillations arising from the spatial
discretization of the advection term. For convenience, ∇ will
be used instead of ∇′ for the remaining steps. Then, the full

explicit characteristic advection-diffusion-reaction equation
is given by

ϕn+1 − ϕn = −∆t [(v · ∇ϕn)− ε∇ · ∇ϕn + κϕ− q]

+
(∆t)2

2
v · ∇ (v · ∇ϕn + κϕ− q) . (11)

Finally, using the divergence free assumption, Eq. (11) can
be written in the conservation form:

ϕn+1 − ϕn = −∆t [∇ · (vϕn − ε∇ϕn) + κϕ− q]

+
(∆t)2

2
∇ · [v (v · ∇ϕn + κϕ− q)] . (12)

The computational domain for space is discretized into a
collection of non-overlapping control volumes Ωi ⊂ Ω, i =
1, ..., N, that completely cover the domain Ω such that Ω =
∪N
i=1Ωi, Ωi ̸= ∅ and Ωi ∩ Ωj = ∅ if i ̸= j. Then, to obtain

the finite volume equation, Eq. (12) is integrated over each
control volume Ωi to yield∫
Ωi

(
ϕn+1 − ϕn

)
dx =

∫
Ωi

(
−∆t [∇ · (vϕn − ε∇ϕn)

+ κϕ− q] +
(∆t)2

2
∇ · [v (v · ∇ϕn + κϕ− q)]

)
dx. (13)

Then applying the divergence theorem to the spatial terms, a
fully explicit characteristic-based scheme for solving Eq. (12)
is obtained in the form

ϕn+1
i = ϕn

i −∆t (κϕn
i − qni )

− ∆t

| Ωi |

Nf∑
j=1

| Γij | n̂ij ·
[ (

vn
ijϕ

n
ij − ε∇ϕn

ij

)
−∆t

2
vn
ij (v

n
i · ∇ϕn

i + κϕn
i − qni )

]
, (14)

where Nf is the number of adjacent cell faces, |Ωi| is the
measure of Ωi, Γij is the segment of the boundary ∂Ωi

between the two adjacent control volumes Ωi and Ωj , which
is defined by

∂Ωi =

Nf∪
j=1

Γij and Γij = ∂Ωi ∩ ∂Ωj , (15)

and |Γij | is the measure of Γij . In Eq. (14), the quanti-
ties with the subscripts i and ij are evaluated inside the
volume Ωi and at the segment Γij , respectively. Further,
ϕn
i = ϕi(t

n), ϕn
ij = ϕij(t

n), qni = qi(t
n), vn

ij = vij(t
n)

and vn
i = vj(t

n). The value of ϕn
i is then computed using

the volume average

ϕn
i =

1

|Ωi|

∫
Ωi

ϕ(x, tn)dx. (16)

For the 1-D case of Eq. (14), let xij = xi± 1
2

for j = i ± 1
and define

∇ϕn
i :=

ϕn
i+1 − ϕn

i−1

xi+1 − xi−1
, ∇ϕn

ij :=
ϕn
j − ϕn

i

xj − xi
. (17)

Finally, the scalar quantities at the cell faces, ϕn
ij , are

approximated by applying a Taylor-series expansion in space
such that

ϕn
ij = ϕn

i + (xij − xi) · ∇ϕn
i , (18)

and for the opposite direction of velocity, the values of ϕn
ji

can be computed from Eq.(19) below, by using the values
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from the neighboring volumes according to the upwinding
direction,

ϕn
ji = ϕn

j + (xji − xj) · ∇ϕn
j . (19)

Finally, the gradient term, ∇ϕn
ij , is approximated by the

weighted residuals method which is commonly used in the
finite element technique [25]. For the case of triangular
control volumes, the stability of a numerical scheme on
the triangular grid requires that a Courant-Friedrichs-Lewy
(CFL)-like stability criterion must be satisfied. Hence, the
time-step within each control volume i for Eq. (14) is
determined from [8], [9]

∆t = Cmin
i

(
| Ωi |

maxj=1,...,Nf
| vn

ij |
,
| Γc

i |2

2ε

)
, (20)

where vn
ij is the scaled normal velocity at Γij , | Γc

i | is the
characteristic length of cell i and 0 < C ≤ 1.

III. NUMERICAL RESULTS

In this section, numerical simulations obtained using the
explicit characteristic-based finite volume method are given
for water pollution problems in a reservoir modeled using
first a 1-D and then a 2-D ADRE of the form in Eq. (1). In
addition, the results obtained for the proposed finite volume
method are compared with the results of [1] obtained using
the finite difference with implicit FTCS scheme.

A. One dimensional advection-diffusion equation

Using Eq. (1) with a zero reaction term, the 1-D advection-
diffusion initial-boundary value problem for water pollutant
concentration at the release point of the polluted water can
be shown to be [1], [26],

∂C

∂t
+ ū

∂C

∂x
−Df

∂2C

∂x2
= 0, 0 < x < 1, 0 < t ≤ 1

(21)

with the initial condition

C(x, 0) = exp

(
− (x+ 0.5)2

0.00125

)
, 0 < x < 1, (22)

and the boundary conditions

C(0, t) =
0.025√

0.000625 + 0.02t
exp

[
− (0.5− t)2

(0.00125 + 0.04t)

]
,

0 < t ≤ 1,
(23)

C(1, t) =
0.025√

0.000625 + 0.02t
exp

[
− (1.5− t)2

(0.00125 + 0.04t)

]
,

0 < t ≤ 1.
(24)

The dependent variable C(x, t) in (21) is the water pollutant
concentration (kg/m3) averaged in depth at longitudinal dis-
tance along the stream x at time t, ū is the water flow velocity
in the x-direction and Df is the dispersion coefficient.
From [1], [26], [27] the exact solution of problem (21)-(24)
with ū = 1 and Df = 0.01 is

C(x, t) =
0.025√

0.000625 + 0.02t
exp

[
− (x+ 0.5− t)2

(0.00125 + 0.04t)

]
.

(25)

The graph of the exact solution (25) on the given domain is
given in Fig. 1 of [1].

The discrete numerical schemes that were used to solve
the 1-D system (21)-(24) were as follows. The spatial domain
0 ≤ x ≤ 1 was discretized with ∆x = 0.025 and the time
domain 0 ≤ t ≤ 1 with ∆t = 0.002. Next, the fully explicit
characteristic-based finite volume method of (14) was used
with the following values of parameters: Nf = 3, |Γij | = 1,
vn
ij = ūij = ū, vn

i = ūi = ū, n̂ij = î for j = i ± 1. The
discretized system for (21)-(24) was then as follows:

Cn+1
i = Cn

i − ∆t

| Ωi |

3∑
j=1

(
ūijC

n
ij −Df

∂Cn
ij

∂x

)

+
(∆t)2

2 | Ωi |

3∑
j=1

ūij

(
ūi

∂Cn
i

∂x

)
, (26)

where i = 0, 1, ..., 40 and n = 0, 1, ..., 499. Finally, sub-
stituting the initial and boundary conditions in (22)-(24)
into (26) and carrying out the numerical computations, the
results shown in Fig.1 were obtained for the water pollutant
concentration C(x, t) on the discretized domain.

For the FDM with implicit FTCS, the 1-D scheme of (2)
for solving problem (21)-(24) can be written in the form

Cn+1
i − Cn

i

∆t
+ ū

Cn+1
i+1 − Cn+1

i−1

2∆x

−Df

(
Cn+1

i+1 − 2Cn+1
i + Cn+1

i−1

(∆x)2

)
= 0, (27)

where i = 1, ..., 39 and n = 0, 1, ..., 499 and the diffusion
coefficient ε is denoted by Df . The solution of (27) obtained
using the FDM with implicit FTCS with ∆x = 0.025,∆t =
0.002 has been given as a 3-D graph in Fig. 2 of [1]. This
graph is very similar to Fig. 1.

A comparison of the results for the pollutant concentra-
tions obtained from the exact solution (25) and the numerical
schemes in (26) and (27) are shown in Fig. 2 and Table I
for t = 1 and 0 ≤ x ≤ 1. It can be seen that the maximum
value of C(x, 1) is approximately 0.1741 at x = 0.5 for the
exact solution and that the numerical simulations are in good
agreement with the exact result since the maximum values of
C(x, 1) obtained using the FVM and FDM are 0.1745 and
0.1688 at x = 0.5, respectively. Also, the maximum absolute
errors between the numerical and exact solutions at t = 1
are 5.38× 10−3 for the FVM at x = 0.775 and 7.24× 10−3

for the FDM at x = 0.55.
A comparison of the exact and numerical values of C(x, t)

for x = 0.5 and 0 ≤ t ≤ 1 are shown in Fig. 3 and Table II.
It can be seen that both the FVM and FDM give accurate
results in the region 0 ≤ t < 0.65, Then, in the region
0.65 < t < 0.9, the FDM values are more accurate than
the FVM values and, in the region 0.9 < t < 1, the FVM
values are more accurate. From calculus, it was found that
the exact solution (25) of C(0.5, t) has the maximum value
of 0.1745 at t = 0.99005. In comparison, the maximum
values of C(0.5, t) obtained from the FVM and the FDM
were 0.1745 at t = 1 and 0.1688 at t = 0.996, respectively.
At x = 0.5, it was found that the maximum absolute error for
the FVM was approximately 6.34 × 10−3 at t = 0.766 and
the maximum absolute error for the FDM was 7.24× 10−3

at t = 0.942.
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From the results in Tables I and II, it can be seen that
the numerical results are in good agreement with the exact
solution evaluated on the same discretized grid.
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Fig. 1. 3-D graph of the FVM numerical solution of C(x, t) for the initial-
boundary value problem of (21) and (22)-(24) for ∆x = 0.0250,∆t =
0.0020.

Fig. 2. Comparison of the numerical solutions from FVM and FDM with
the exact solution of the test problem (21)-(24) for t = 1 for step sizes
∆x = 0.0250,∆t = 0.0020.

Fig. 3. Comparison of the numerical solutions from FVM and FDM with
the exact solution of the test problem (21)-(24) for x = 0.5 for step sizes
∆x = 0.0250,∆t = 0.0020.

TABLE I
COMPARISON OF NUMERICAL SOLUTIONS OF EQUATIONS (21)-(24)

OBTAINED USING THE FVM AND FDM WITH THE EXACT SOLUTION FOR
t = 1.

C(x, t) Exact FVM FDM

C(0.4, t) 0.1366 0.1454 0.1381

C(0.5, t) 0.1741 0.1745 0.1688

C(0.6, t) 0.1366 0.1292 0.1303

C(0.7, t) 0.0660 0.0547 0.0666

C(0.8, t) 0.0196 0.0112 0.0234

C(0.9, t) 0.0036 0.0006 0.0059

TABLE II
COMPARISON OF NUMERICAL SOLUTIONS OF EQUATIONS (21)-(24)

OBTAINED USING THE FVM AND FDM WITH THE EXACT SOLUTION FOR
x = 0.5.

C(x, t) Exact FVM FDM

C(x, 0.65) 0.0024 0.0001 0.0042

C(x, 0.70) 0.0095 0.0032 0.0129

C(x, 0.75) 0.0271 0.0159 0.0309

C(x, 0.80) 0.0582 0.0442 0.0601

C(x, 0.90) 0.1401 0.1307 0.1340

C(x, 1) 0.1741 0.1745 0.1688

B. Two dimensional advection-diffusion-reaction model

In this section, numerical results are presented and com-
pared for 2-D advection-diffusion-reaction models for water
pollutant concentration in reservoirs with one or two entrance
gates and one exit gate.

Using Eq. (1) with a nonzero reaction term, the advection-
diffusion-reaction initial-boundary value problem for the
water pollutant concentration can be written in the following
form [1], [28], [29]:

∂C

∂t
+ ū

∂C

∂x
+ v̄

∂C

∂y
−Df

(
∂2C

∂x2
+

∂2C

∂y2

)
+RC = Q(x, y, t),

(28)

where C(x, y, t) denotes the averaged water pollutant con-
centration (kg/m3) at the point x = (x, y) at time t, ū and
v̄ are the average velocity components (m/s) in x− and
y−directions, respectively, Df is the pollutant dispersion
coefficient (m2/s), R ≥ 0 is the decay rate of water pollutant
(s−1), and Q(x, y, t) is a source term for the water pollutant
concentration (kg/m3·s). The initial and boundary conditions
for the reservoirs will be described in later sections.

In the numerical simulations, it was assumed that the
spatial domain was a square with sides of length 2000 m
and that the square 0 ≤ x, y ≤ 2000 was discretized with
∆x = ∆y = 31.25. It was also assumed that the time domain
in seconds was 0 ≤ t ≤ 100 and that it was discretized
with ∆t = 1 if the source term Q was a constant and with
∆t = 0.01 if Q was time dependent.

The explicit characteristic-based finite volume scheme for
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solving (28) can then be written as follows:

Cn+1
i = Cn

i − ∆t

| Ωi |

3∑
j=1

[
(ūijnx + v̄ijny)C

n
ij

−Df

(
nx

∂Cn
ij

∂x
+ ny

∂Cn
ij

∂y

)]

+
(∆t)2

2 | Ωi |

3∑
j=1

[
(ūijnx + v̄ijny)

(
ūi

∂Cn
i

∂x
+ v̄i

∂Cn
i

∂y

)

+RCn
i −Qn

i

]
−∆t (RCn

i −Qn
i ) , (29)

where i = 0, 1, ..., 64 and n = 0, 1, ..., 99.
The implicit FTCS scheme for solving (28) is [1]

Cn+1
i,j − Cn

i,j

∆t
+ ū

Cn+1
i+1,j − Cn+1

i−1,j

2∆x
+ v̄

Cn+1
i,j+1 − Cn+1

i,j−1

2∆y

−Df

[
Cn+1

i+1,j − 2Cn+1
i,j + Cn+1

i−1,j

(∆x)2
(30)

+
Cn+1

i,j+1 − 2Cn+1
i,j + Cn+1

i,j−1

(∆y)2

]
+RCn+1

i,j = Qn
i,j ,

where i, j = 1, ..., 63 and n = 0, 1, ..., 99.
In the numerical simulations, the water pollutant concen-

trations C(x, y, t) were computed for changes in the number
of entrance gates in the reservoir, changes in the values of
the diffusion coefficient Df and changes in the values of the
source terms Q(x, y, t). The values of the parameters that
were used in the simulations are listed in Table III [1], [29].

TABLE III
VALUES OF PARAMETERS

Parameter Definition Value Units

ū Average u velocity −0.002461 m· s−1

v̄ Average v velocity 0.04527 m· s−1

R Decay rate 10−7 s−1

Df Dispersion coeffs. 50, 200 m2· s−1

Q(x, y, t) Source terms 0,−0.01,−e−t kg· m−3· s−1

1) Reservoir with one entrance gate: The first model
considered was the reservoir with one entrance gate and one
exit gate shown in Fig. 4.

Fig. 4. The initial and boundary conditions for the reservoir with one
entrance gate and one exit gate.

It was assumed that the initial conditions for the numerical

simulations were

C(x, y, 0) = c0 ; 0 ≤ x ≤ 2000, 0 ≤ y ≤ 2000, (31)

and that the boundary conditions were

C(0, y, t) = c1 ; 843.75 ≤ y ≤ 1156.25,

∂C

∂x
(0, y, t) = 0 ; 0 ≤ y < 843.75 and 1156.25 < y ≤ 2000,

∂C

∂x
(2000, y, t) = −c2 ; 843.75 ≤ y ≤ 1156.25,

∂C

∂x
(2000, y, t) = 0 ; 0 ≤ y < 843.75 and (32)

1156.25 < y ≤ 2000,

∂C

∂y
(x, 0, t) = 0 ; 0 < x < 2000,

∂C

∂y
(x, 2000, t) = 0 ; 0 < x < 2000,

where the initial concentration in the reservoir was c0 = 1.5
kg/m3, the concentration at the entrance gate was c1 = 10
kg/m3 and the concentration flow rate at the exit gate was
c2 = −0.001 kg/m4.

Applying the schemes (29) and (30) to the problem
consisting of equation (28) and conditions (31) and (32),
numerical results were obtained for the three different
functions for the source terms Q(x, y, t) and the parameter
values listed in Table III.

(a) Q(x,y, t) = 0: Fig. 5 shows a comparison of the 2-D
graphs obtained from the FVM and FDM for the distribution
of the water pollutant concentration C(x, y, t) at y = 1000
m and the final time t = 100 s. In particular, Fig. 5 (a)
shows the results for the dispersion coefficient Df = 50 and
Fig. 5 (b) shows the results for Df = 200. It can be seen
that the value of C(x, y, t) has reduced from its value of 10
(kg/m3) at the entrance gate to the initial concentration in
the reservoir of 1.5 (kg/m3) after x = 300 m for Df = 50
and after x = 600 m for Df = 200. It can also be seen that
C(x, y, t) eventually decreases to 1.4243 (kg/m3) at the exit
gate for Df = 50 and to 1.3606 (kg/m3) for Df = 200. The
numerical values of C(x, y, t) for Df = 50 and Df = 200
are shown in Table IV for a range of values of x.

(b) Q(x,y, t) = −0.01: Fig. 6 shows a comparison of
the 2-D graphs obtained from the FVM and FDM for the
distribution of the water pollutant concentration C(x, y, t)
at y = 1000 m and the final time t = 100 s. In particular,
Fig. 6 (a) shows the results for the dispersion coefficient
Df = 50 and Fig. 6 (b) shows the results for Df = 200. It
can be seen that the value of C(x, y, t) has reduced from
its value of 10 (kg/m3) at the entrance gate to the initial
concentration in the reservoir of 0.5 (kg/m3) after x = 400
m for Df = 50 and after x = 600 m for Df = 200. It
can also be seen that C(x, y, t) eventually decreases to
0.4243 (kg/m3) at the exit gate for Df = 50 and to 0.3606
(kg/m3) for Df = 200. The numerical values of C(x, y, t)
for Df = 50 and Df = 200 are shown in Table V for a
range of values of x.

(c) Q(x,y, t) = −e−t: Fig. 7 shows a comparison of
the 2-D graphs obtained from the FVM and FDM for the
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distribution of the water pollutant concentration C(x, y, t)
at y = 1000 m and the final time t = 100 s. In particular,
Fig. 7 (a) shows the results for the dispersion coefficient
Df = 50 and Fig. 7 (b) shows the results for Df = 200. It
can be seen that the value of C(x, y, t) has reduced from
its value of 10 (kg/m3) at the entrance gate to the initial
concentration in the reservoir of 0.5 (kg/m3) after x = 350
m for Df = 50 and after x = 600 m for Df = 200. It
can also be seen that C(x, y, t) eventually decreases to
0.4248 (kg/m3) at the exit gate for Df = 50 and to 0.3609
(kg/m3) for Df = 200. The numerical values of C(x, y, t)
for Df = 50 and Df = 200 are shown in Table VI for a
range of values of x.

From the above numerical results, it can be seen that
the values computed from the FVM and FDM are in good
agreement for all cases. It can also be seen that the higher
value of the diffusion coefficient Df = 200 gives a more
gradual change in the concentration C(x, y, t) than the lower
value Df = 50 for the same value of the source term Q.

An example of the the 3-D distribution of the water
pollutant concentration C(x, y, t) and its contour at t = 100
s obtained using the FVM is shown in Fig. 8 for Q(x, y, t) =
−0.01 and Df = 200.

TABLE IV
NUMERICAL SOLUTIONS OF THE PROBLEM CONSISTING OF (28), (31)
AND (32) FOR THE ONE ENTRANCE GATE RESERVOIR FOR Q = 0 AT

y = 1000, t = 100.

C(x, y, t)
Df = 50 Df = 200

FVM FDM FVM FDM

C(0, y, t) 10 10 10 10

C(125, y, t) 3.2580 3.2416 5.4336 5.4883

C(250, y, t) 1.6026 1.6164 2.8848 2.9198

C(500, y, t) 1.4999 1.5000 1.5714 1.5784

C(1000, y, t) 1.4999 1.4999 1.4999 1.4999

C(1750, y, t) 1.4996 1.4992 1.4848 1.4827

C(1875, y, t) 1.4893 1.4864 1.4465 1.4422

C(2000, y, t) 1.4243 1.4048 1.3606 1.3450

TABLE V
NUMERICAL SOLUTIONS OF THE PROBLEM CONSISTING OF (28), (31)

AND (32) FOR THE ONE ENTRANCE GATE RESERVOIR FOR Q = −0.01 AT
y = 1000, t = 100.

C(x, y, t)
Df = 50 Df = 200

FVM FDM FVM FDM

C(0, y, t) 10 10 10 10

C(125, y, t) 2.3398 2.3294 4.7309 4.7924

C(250, y, t) 0.6047 0.6196 1.9529 1.9919

C(500, y, t) 0.4999 0.5000 0.5730 0.5805

C(1000, y, t) 0.4999 0.4999 0.4999 0.4999

C(1750, y, t) 0.4996 0.4992 0.4848 0.4827

C(1875, y, t) 0.4893 0.4864 0.4465 0.4422

C(2000, y, t) 0.4243 0.4048 0.3606 0.3450

2) Reservoir with two entrance gates: In this section,
the problem of water pollutant dispersion in the reservoir
with two entrance gates and one exit gate shown in Fig. 9
is discussed. Numerical solutions of the water pollutant
dispersion problem in the reservoir were obtained for the

TABLE VI
NUMERICAL SOLUTIONS OF THE PROBLEM CONSISTING OF (28), (31)

AND (32) FOR THE ONE ENTRANCE GATE RESERVOIR FOR Q = −e−t AT
y = 1000, t = 100.

C(x, y, t)
Df = 50 Df = 200

FVM FDM FVM FDM

C(0, y, t) 10 10 10 10

C(125, y, t) 2.4371 2.4563 4.8889 4.9689

C(250, y, t) 0.6278 0.6322 2.0426 2.0961

C(500, y, t) 0.4998 0.5050 0.5821 0.5906

C(1000, y, t) 0.4997 0.5049 0.4999 0.5049

C(1750, y, t) 0.4993 0.5043 0.4848 0.4877

C(1875, y, t) 0.4890 0.4914 0.4467 0.4471

C(2000, y, t) 0.4248 0.4097 0.3609 0.3498

Fig. 9. The initial and boundary conditions for the reservoir with two
entrance gates and one exit gate.

governing equation (28) with the initial conditions in (31)
and the boundary conditions in (33).

C(0, y, t) = c1 ; 437.5 ≤ y ≤ 562.5 and
1437.5 ≤ y ≤ 1562.5,

∂C

∂x
(0, y, t) = 0 ; 0 ≤ y < 437.5, 562.5 < y < 1437.5

and 1562.5 < y ≤ 2000,

∂C

∂x
(2000, y, t) = −c2 ; 843.75 ≤ y ≤ 1156.25,

∂C

∂x
(2000, y, t) = 0 ; 0 ≤ y < 843.75 and

1156.25 < y ≤ 2000,

∂C

∂y
(x, 0, t) = 0 ; 0 < x < 2000,

∂C

∂y
(x, 2000, t) = 0 ; 0 < x < 2000. (33)

Applying the FVM in (29) and the FDM in (30),
numerical results were computed for the reservoir for the
parameter values and the three values for the source term
Q(x, y, t) given in Table III.

(a) Q(x,y, t) = 0: Figs. 10 (a)-(b) show plots of the water
pollutant concentration C(x, y, t) at the final time t = 100 s
at the midpoint of the first gate (y = 500 m) for Df = 50
and Df = 200, respectively. As in the one entrance gate
case, it can be seen that the concentration of C(x, y, t) of 10
(kg/m3) at an entrance gate has reduced faster to the initial
concentration in the reservoir of 1.5 (kg/m3) for Df = 50
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Fig. 5. Numerical comparisons of the problem consisting of (28), (31) and (32) for the one entrance gate reservoir using the FVM (solid line) and FDM
(asterisk) for Q = 0 and y = 1000, t = 100, ∆t = 1: (a) Df = 50, (b) Df = 200.
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Fig. 8. Numerical solutions of the water pollutant concentration C(x, y, t) for the one entrance gate reservoir evaluated at t = 100 using the FVM for
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than for Df = 200. Further, there is very good agreement
between the FVM and FDM results.

Figs. 10 (c)-(d) show plots of C(x, y, t) at t = 100 s at
the midpoint of the reservoir’s vertical side (y = 1000 m) for
Df = 50 and Df = 200, respectively. For Df = 50, there is
good agreement between the FVM and FDM results with the
initial concentration C(x, 1000, t) at x = 0 being equal to
the initial concentration in the reservoir of 1.5 (kg/m3) before
it begins to decay at approximately x = 1800 m to a final
concentration of 1.4243 (kg/m3) at the exit gate. However,
for Df = 200 there are appreciable differences between the
FVM and FDM results near the midpoint of the entrance
gate at x = 0 and the exit gate at x = 2000. For the FVM,
the concentration is 1.6133 (kg/m3) at x = 0, y = 1000
and 1.3606 (kg/m3) at x = 2000, y = 1000 compared with
1.5875 (kg/m3) and 1.3450 (kg/m3) for the FDM.

Since the reservoir has two symmetric entrance gates, the
numerical results will be symmetric about y = 1000 m.

The values of the concentration C(x, y, t) at different
values of x for y = 1000 m and t = 100 s are shown in
Table VII.

Figs. 11 (a) and (b) show the concentrations at x = 0 for
t = 100 s for Df = 50 and Df = 200, respectively. It can
be seen that the FVM and FDM results are in quite good
agreement, but with the FVM concentrations being slightly
higher than the FDM concentrations. Figs. 11 (c) and (d)
show the concentrations at x = 2000 m for t = 100 s for
Df = 50 and Df = 200, respectively. In both cases, the
results for the FVM and FDM show large differences near
the center of the exit gate with the FVM giving appreciably
higher values than the FDM.

(b) Q(x,y, t) = −0.01: The results for this case are
shown in Figs. 12 (a)-(d) and Figs. 13 (a)-(d). In general,
it can be seen that the patterns are the same as for the
Q(x, y, t) = 0 case, but with some differences in detail. In
particular, the initial concentration in the reservoir is 0.5
(kg/m3) in this case compared with 1.5 (kg/m3) for case
(a). The values of the concentration C(x, y, t) at different
values of x for y = 1000 m and t = 100 s are shown in
Table VIII.

(c) Q(x,y, t) = −e−t: The results for this case are
shown in Figs. 14 (a)-(d) and Figs. 15 (a)-(d). It can
again be seen that the patterns are the same as for the
Q(x, y, t) = 0 and Q(x, y, t) = −0.01 cases, but with some
differences in detail. In particular, there is a much larger
difference between the FVM and FDM concentrations at the
midpoint of the entrance gates (y = 1000 m) in Fig. 14 (c)
than in Figs 10 (c) and 12 (c). There is also a much larger
difference between the FVM and FDM concentrations at
x = 2000 m in Figs. 15 (c) and (d) than in Figs 11 (c)
and (d) and 13 (c) and (d). The values of the concentration
C(x, y, t) at different values of x for y = 1000 m and
t = 100 s are shown in Table IX.

An example of the 3-D distribution of the water pollutant
concentration C(x, y, t) and its contour at t = 100 s obtained
using the FVM for the two entrance gates reservoir is shown
in Fig. 16 for Q(x, y, t) = −e−t and Df = 200.

The FVM and FDM were used to compute the changes
in the pollutant concentration as a function of time at the
center of an entrance gate for the one entrance gate reservoir
for Df = 50 and Df = 200 for three different values of
Q(x, y, t). Comparisons of the results for the FVM and FDM
at x = 250 m and y = 1000 m are shown in Fig. 17 (a) for
Df = 50 and in Fig. 18 (a) for Df = 200. It can be seen
that there is good agreement between the FVM and FDM
concentrations in all cases. It can also be seen that there are
big differences between the three Q(x, y, t) cases for both
Df = 50 and Df = 200. For Df = 50, the concentration is
constant for most of the time for the Q = 0 case, but with a
very slow increase near t = 100 s. For the Q = −0.01 case,
there is a linear decrease in concentration with time. Finally,
for the Q = −e−t case, there is an initial rapid decrease in
concentration followed by a very slow increase with time. For
Df = 200, the concentration steadily increases with time, for
the Q = −0.01 case the concentration first decreases slowly
and then increases slowly, and, finally, for the Q = −e−t

case there is initially a rapid decrease followed by a steady
increase at a similar rate to the Q = 0 case.

The FVM and FDM were also used to compute the
changes in the pollutant concentration as a function of time
at the midpoint between the two gates of the two entrance
gate reservoir for Df = 50 and Df = 200 for three different
values of Q(x, y, t). Comparisons of the results for the FVM
and FDM at x = 250 m and y = 1000 m are shown in Fig.17
(b) for Df = 50 and in Fig.18 (b) for Df = 200. It can be
seen that there is again good agreement between the FVM
and FDM concentrations in all cases and there are again
big differences between the three Q(x, y, t) cases for both
Df = 50 and Df = 200. A comparison of the results for
Df = 50 in Figs. 17 (a) and (b) shows that the behavior for
different Q values are similar for the center of one entrance
gate and the midpoint of two entrance gates. However, a
comparison of the results for Df = 200 in Figs. 18 (a) and
(b) shows that the behavior for the three Q cases are different
for the two reservoirs. In fact, the results in Fig. 18 (b) show
similar behavior for the three Q cases with the behavior in
Figs. 17 (a) and (b) for Df = 50.

TABLE VII
NUMERICAL SOLUTIONS OF THE PROBLEM CONSISTING OF (28), (31)
AND (33) FOR THE TWO ENTRANCE GATES RESERVIOR FOR Q = 0 AT

y = 1000, t = 100.

C(x, y, t)
Df = 50 Df = 200

FVM FDM FVM FDM

C(0, y, t) 1.5000 1.5000 1.6133 1.5875

C(125, y, t) 1.5000 1.5000 1.5893 1.5732

C(250, y, t) 1.4999 1.4999 1.5446 1.5386

C(500, y, t) 1.4999 1.4999 1.5020 1.5032

C(1000, y, t) 1.4999 1.4999 1.4999 1.4999

C(1750, y, t) 1.4996 1.4992 1.4848 1.4827

C(1875, y, t) 1.4893 1.4864 1.4465 1.4422

C(2000, y, t) 1.4243 1.4048 1.3606 1.3450
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Fig. 16. Numerical plots of the water pollutant concentration C(x, y, t) for the two entrance gates reservoir at t = 100 using the FVM for Q(x, y, t) =
−0.01 and Df = 200: (a) 3-D graph, (b) contour graph.

TABLE VIII
NUMERICAL SOLUTIONS OF THE PROBLEM CONSISTING OF (28), (31)

AND (33) FOR THE TWO ENTRANCE GATES RESERVIOR FOR Q = −0.01
AT y = 1000, t = 100.

C(x, y, t)
Df = 50 Df = 200

FVM FDM FVM FDM

C(0, y, t) 0.5000 0.5001 0.6162 0.5899

C(125, y, t) 0.5000 0.5000 0.5915 0.5751

C(250, y, t) 0.4999 0.4999 0.5455 0.5395

C(500, y, t) 0.4999 0.4999 0.5032 0.5033

C(1000, y, t) 0.4999 0.4999 0.4999 0.4999

C(1750, y, t) 0.4996 0.4992 0.4848 0.4827

C(1875, y, t) 0.4893 0.4864 0.4465 0.4422

C(2000, y, t) 0.4243 0.4048 0.3606 0.3450

TABLE IX
NUMERICAL SOLUTIONS OF THE PROBLEM CONSISTING OF (28), (31)

AND (33) FOR THE TWO ENTRANCE GATES RESERVIOR FOR Q = −e−t

AT y = 1000, t = 100.

C(x, y, t)
Df = 50 Df = 200

FVM FDM FVM FDM

C(0, y, t) 0.4999 0.5050 0.6286 0.6005

C(125, y, t) 0.4999 0.5050 0.6020 0.5846

C(250, y, t) 0.4998 0.5050 0.5518 0.5464

C(500, y, t) 0.4998 0.5050 0.5040 0.5082

C(1000, y, t) 0.4998 0.5050 0.5000 0.5050

C(1750, y, t) 0.4993 0.5043 0.4848 0.4877

C(1875, y, t) 0.4890 0.4914 0.4467 0.4471

C(2000, y, t) 0.4248 0.4097 0.3609 0.3498

IV. CONCLUSION

An explicit characteristic-based finite volume method
(FVM) has been applied to obtain numerical solutions
for advection-diffusion-reaction equations (ADREs). The
method has been applied to solve 1-D and 2-D water pol-
lution problems which can be modeled in terms of ADREs.
The FVM results have been compared with numerical re-
sults obtained using a finite difference method (FDM) with
implicit forward time central space (FTCS) scheme [1]. For
the 1-D ADRE, numerical solutions from the two methods
have also been compared with the exact solution. The results
show that, in general, the FVM and FDM errors were of

similar magnitude for the step sizes used. For the 2-D case,
detailed numerical simulations have been carried out for
square reservoirs with either one or two entrance gates and
one exit gate for polluted water for high and low values of
the diffusion coefficient and for three representative source
terms. The results show that, in general, the FVM and FDM
results were in good agreement except for some appreciable
differences in the calculated concentrations near the entrance
and exit gates.
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