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Abstract—This article discusses the spread of infectious
diseases using the multi-state SVIRS model with the assump-
tion that a discrete-time Markov chain (DTMC) occurs in a
closed population that is regularly examined. This article aims
to generate transition probabilities, which are then used to
predict the number of confirmed cases in the next period. The
multi-state SVIRS model uses four states, namely susceptible,
vaccinated, infected, and recovered, followed by calculating the
probabilities of each transition between states that are different
from the compartment model. The model was applied to the
COVID-19 data in Indonesia, which was analyzed using the
statistical software R. The result showed that the transition
probability of a person being infected according to the multi-
state model with the assumption of DTMC SVIRS on the
COVID-19 data was around 25.38% including those with and
without vaccination. In comparison, the probability of being
recovered was about 92.34%. Then this transition probability
was used to predict the confirmed cases of COVID-19 in the
next few days. The prediction results were highly accurate
with a MAPE value less than 10%. The main contribution
of this research is the use of the DTMC assumption, which
is a stochastic model in determining the parameters of the
differential equation formed by the compartment model and
adding the vaccinated state in the model. The vaccinated cases
in this article used the proportion of the efficacy of each vaccine
used by several susceptible individuals, which, according to
WHO recommendations, should be given in two doses. The
multi-state model with the assumption of DTMC can model
chronic diseases and infectious diseases. This can be seen from
the results of the analysis of the COVID-19 data in Indonesia,
in which the short-term prediction results had a high level of
accuracy.

Index Terms—multi-state model, SVIRS, Markov chain,
discrete-time, COVID-19.

I. INTRODUCTION

EPIDEMIOLOGICAL models are divided into deter-
ministic and stochastic models [1]. The deterministic

model is formulated in an ordinary differential equation,
consequently predicting the same dynamics for an infection
process with the same initial conditions. Meanwhile, the
stochastic model is a more realistic model because the
outbreak does not involve or infect the same person simulta-
neously, and the uncertainty must be included in the model
[2].
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In a deterministic model, the basic reproduction number
(R0) can be used to determine the extinction of an epidemic
[3], [4]. Usually, from the deterministic model, the stochastic
model inherits the basic reproductive number. However, [5],
[6] explains that the Markov chain model in stochastic
epidemics has spread of disease with two different possible
random variables (i.e., the population transmissions number
and the exact reproduction number) provide accurate mea-
surements of disease reach at the beginning of an epidemic
or any point during the epidemic process.

A stochastic process can be used to interpret the SVIRS
epidemic model. Set of random variables {Yw : w ∈ T}
where each state Y is a function of time w, i.e., number Yw

is observed at any time w is called the stochastic process
[7]. The set T denotes the range of observable times for the
system. Stochastic processes model how random variables
change over time. When sets T can be computed and are
equidistant, the stochastic process is a discrete-time process
whereas if set T has different distances, it is called a
continuous-time process.
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Fig. 1. Discrete-time stochastic process

A basic example of a stochastic process is given in Fig.
1 for discrete times where the state space is determined by
the value obtained from a process. The state space depicts
the locations where stochastic processes can be detected. The
state space in infectious illness modelling is typically limited.
The state space of the SVIRS model consists of susceptible,
vaccinated, infected, and recovered states.

More discrete-time Markov models have been developed
in recent years, including the [8], [9] research which consid-
ered a discrete-time model to investigate disease transmission
in organized populations. In addition, the next generation
matrix method was implemented by [10], [11] to measure
the basic reproduction numbers of several models related to
the spread of a disease. The authors introduced probabilities
in [12] in the models of SI and SIS epidemics of the discrete-
time to formulate mortality and cure rates. Disadvantages of
the models of SI and SIS epidemics with vertical transmis-
sion in discrete time were defined by [13]. In addition, the
vaccination discrete-time SIS model was also discussed by
[14]. The effect of vaccination on the risk of infection can
also be analyzed in the discrete time SIR model [15]. The
SEIR and SEIHR epidemic model was developed by [16],
[17], a more complex model. Previous research on the SVIR
model was carried out by [18], [19] but it was still limited
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in deterministic models.
This article discusses the SVIRS stochastic epidemic

model with the assumption of discrete-time Markov chains,
which describe the spread of COVID-19 where infected
people can still be reinfected, regardless of whether they
have been vaccinated. It was then followed by predicting
confirmed COVID-19 in a short time. In a previous study,
we have carried out a long-term prediction of COVID-19
with the Richards curve model [20]. It has been estimated
that the transmission of the disease depends on the number
of infected individuals, who have been vaccinated with the
second dose according to the WHO recommendation and the
recovery of the person depends on the cure rate of γ. The
rate or severity of each event gives the average number of
events per unit of time. Therefore, in the case of recovery,
1
γ represents the mean time of infection. Populations can be
observed at fixed intervals, to control the spread of disease.

This paper aims to model the spread of COVID-19 with a
discrete-time SVIRS model and then predict the next few pe-
riods using a transition matrix. We used discrete-times, which
are analogous to extinction times that describe the length
of an epidemic process. Many papers have concentrated on
the moment of extinction. Many of them focus on deciding
moments, and some even on the distribution of the whole.
In this sense, we assume that the mean time of extinction is
not affected by the time of birth and death and establishes
that the time of extinction follows a simple exponential
distribution [21] when the initial distribution is equal to the
quasi-stationary distribution. The predicted length of [22],
[23] was tested numerically for the models of SI and SIS
epidemics of the discrete-time. It is possible to predict the
peak and end of an epidemic by predicting COVID-19 using
a transition matrix [24] and using a phenomenological model
[25].

COVID-19 has caused anxiety among many people. Ac-
cording to experts, a small percentage of people may ex-
perience long-term mental health issues that outlast the
pandemic. The prolonged duration of quarantine causes anx-
iety, boredom, and frustration. This is followed by a lack
of supply, confusing and uncertain data and information,
financial losses, and mental stigma that have an impact on
the symptoms of stress and psychological disorders [26].
In Indonesia itself, a large-scale social restriction scheme
was implemented but still hopes that economic activities will
continue with a number of restrictions to prevent the spread
of COVID-19.

This study used transition probabilities with the assump-
tion of DTMC which is a stochastic model in determining
the parameters of a differential equation formed by the
compartment model. It also added a vaccinated state in the
multi-state model. The vaccinated cases in this article used
the proportion of the efficacy of each vaccine used by a
number of susceptible individuals which, according to the
recommendations of the World Health Organization (WHO),
should be given in two doses. The vaccines used consisted of
five vaccines, namely Sinovac, Sinopharm, Pfizer/BionTech,
Moderna, and AstraZeneca/Oxford Vaccine; the Johnson and
Johnson vaccine was not included in this study because it
requires one dose only.

At each level or checkpoint, we modelled the outbreak
with the DTMC SVIRS based on the number of infected

individuals, individuals who had been vaccinated with the
second dose, and individuals who recovered. This article
is structured as follows. We presented the DTMC models
and SVIRS epidemic models in Section II that explains the
evolution of the epidemic. The recursive results were then
presented and an algorithmic scheme for the distribution
of the random variable was created to reflect the number
of inspections to find an active epidemic phase. In Section
III, we determine the transition probabilities then estimate
the parameters using the maximum likelihood method and
provide the procedures for DTMC SVIRS model. Then, we
apply the DTMC SVIRS model to the simulation data and
COVID-19 data in Indonesia in Section IV and predicted
the accuracy of the next few days by calculating the MAPE
value. Finally, in Section V, we give a conclusion. The
difference between the DTMC SVIRS compartment model
and the multi-state DTMC SVIRS was that the modelling
between states changed, i.e., the compartment model used
differential equations while the multi-state used transition
probability.

II. SVIRS EPIDEMIC MODELS USING DISCRETE-TIME
MARKOV CHAIN

A. Discrete-time Markov Chain Model

Let {Yw : w ∈ T} be a random variable showing the state
of the system at time w ∈ T = {0,∆w, 2∆w, . . . } with
discrete state space

{k0, k∆w, k2∆w, . . . , kw−∆w, k, l} = S ⊂ {0, 1, 2, . . . , N}

If the stochastic process satisfies the required (1), it is a
discrete-time Markov chain.

Pr[Yw+∆w = l|Yw = k, . . . , Y∆w = k∆w, Y0 = k0]

= Pr[Yw+∆w = l|Yw = k]

= pkl(∆w) (1)

If at time w, the state of w + ∆w only depends on the
previous state, then this discrete-time process satisfies the
Markov property so that a process that occurs no longer
requires past events to determine the probability of the next
transition. pkl(∆w) is the transition probability from state k
at time w to state l at time w+∆w. In this case the transition
probability is homogeneous with respect to time.

Pr[Yw+∆w = l|Yw = k] = Pr[Y∆w = l|Y0 = k]

= pkl(∆w) (2)

The transition from state k to state l in the period ∆w is
called a one-step transition probability which can be written
as pkl(∆w). Meanwhile, if it occurs in n-steps, then the
transition from state k to state l in the period n∆w is given
as follows.

Pr[Yw+n∆w = l|Yw = k] = p
(n)
kl (n∆w) (3)

Probability pkl(∆w) may sometimes be zero.
In a discrete-time Markov chain, transition probability

matrix P(∆w) is used to characterize all the possible one-
step transitions. Because the state might vary between 0 and
N , P(∆w) is the (N + 1) × (N + 1) matrix. The P(∆w)
matrix is shown below.

P(∆w) = (pkl)k, l ∈ S
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or

P(∆w) =



p00 p01 · · · p0l · · · p0N

p10 p11 · · · p1l · · · p1N
...

...
. . .

...
. . .

...
pk0 pk1 · · · pkl · · · pkN

...
...

. . .
...

. . .
...

pN0 pN1 · · · pNl · · · pNN


The number of rows in the matrix P (∆w) is always equal

to 1, so it can be written as (4). Whereas each element of
the P (∆w) matrix represents a transition between states. For
example, the pkl element represents the probability that an
individual in state k will transition to state l.

N∑
k=0

pkl(∆w) = 1 (4)

The states in the Markov chain are categorized according
to their types, namely transient, recurrent, and absorbing
state. A state is called transient state if after entering the
state k, the process never returns to the state k again. While
a state is called recurrent state if after entering the state k, the
process will definitely return to the state k again. Therefore,
the state k is called a recurrent if and only if it is not a
transient. For processes that start from state k and will return
to state k defined with fkk =

∑∞
n=1 f

n
kk = f1

kk + f2
kk + . . . .

fkk indicates the probability that, processes starting from
state k will re-enter to state k. The state k is called recurrent
state if fkk = 1 and transient state if fkk < 1. A state is
called absorbing state if after entering the state k, the process
will never leave the state k again. This means that no state
can be reached from that state.

B. SVIRS Epidemic Models
The SVIRS epidemic model has four compartments, and

random variables S(w), V (w), I(w) and R(w) are required.
Additional random variable V (w) calculates the number of
individuals in the population that have been vaccinated at
w ∈ T . S(w) and I(w) computes the number of infectious
and susceptible individuals in the population at time w ∈
T = {0,∆w, 2∆w, . . . } with S(w), I(w) ∈ {0, 1, 2, . . . }.
R(w) calculates the number of individuals in the population
that have recovered at w ∈ T . Recovered individuals will be
susceptible again and not immune to COVID-19 infection.
The SVIRS epidemic model can be seen in Fig. 2.

The parameters used are defined in Table I.

TABLE I
PARAMETER DEFINITION

Parameter Definition Value

β Infected rate β ≥ 0

η Vaccination rate η ≥ 0

δ Vaccine effectiveness in reducing
infection

0 < δ < 1

γ Recovery rate γ > 0

α Body immunity waning rate α > 0

Assuming a constant population persists for each value w
in the epidemic model,

N = S(w) + V (w) + I(w) +R(w)

1: Susceptible

2: Vaccinated

3: Infected 4: Recovered

βSI

N

γI

δV I

N

ηS

αR

Fig. 2. SVIRS epidemic models

then
dN

dw
=

dS(w)

dw
+

dV (w)

dw
+

dI(w)

dw
+

dR(w)

dw
= 0

By selecting a sufficiently small time step, we can assume
that one transition occurs per step. For time step w, only one
of the following can take place:

1) (s, v, i)
∆w−−→ (s− 1, v + 1, i) = p12,

2) (s, v, i)
∆w−−→ (s− 1, v, i+ 1) = p13,

3) (s, v, i)
∆w−−→ (s, v − 1, i+ 1) = p23,

4) (s, v, i)
∆w−−→ (s, v, i− 1) = p34,

5) (s, v, i)
∆w−−→ (s+ 1, v, i) = p41,

6) (s, v, i)
∆w−−→ (s, v, i) = p11 = p22 = p33 = p44.

For the SVIRS models, we define the path as a U sequence
of states with sojourn times.

U = ((s0, v0, i0),∆w, (s∆w, v∆w, i∆w),∆w, . . . , (s, v, i),

∆w, (k, l,m))

This indicates that the system begins in state (s0, v0, i0).
The system then changes to state (s∆w, v∆w, i∆w) after
the period ∆w unit of time. The system stays in state
(s∆w, v∆w, i∆w) for ∆w other units of time before moving
on to the next state, and so on.

The statistical results (vaccine efficacy) are often presented
as derived from the vaccinated group’s relative risk (Rr), or a
proportional decrease in disease attack rate (Ar) between the
unvaccinated (Au) and vaccinated (Av). The basic formula
is written as [27]:

Ve =
Au −Av

Au
× 100% (5)

III. RESULTS

A. Transition Probabilities of a DTMC SVIRS Model
Models that are formed based on the assumptions such as

variables, parameters, and model in Fig. 2 can be mathemat-
ically expressed using the following equation system.

dS(w)

dw
= −βS(w)I(w)

N
− ηS(w) + αR(w)

dV (w)

d(w)
= −δV (w)I(w)

N
+ ηS(w)

dI(w)

d(w)
=

βS(w)I(w)

N
+

δV (w)I(w)

N
− γI(w)

dR(w)

dw
= γI(w)− γR(w)
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The probability of the transition that occurs between states
in Fig. 2 is written in (6-11)

p(s,v,i)→(s−1,v+1,i)(∆w) = ηs∆w (6)

p(s,v,i)→(s−1,v,i+1)(∆w) =
βsi

N
∆w (7)

p(s,v,i)→(s,v−1,i+1)(∆w) =
δvi

N
∆w (8)

p(s,v,i)→(s,v,i−1)(∆w) = γi∆w (9)
p(s,v,i)→(s+1,v,i)(∆w) = αr∆w (10)

p(s,v,i)→(s,v,i)(∆w) = 1−
(
βsi

N
+

δvi

N
+ ηs+

γi+ αr)∆w (11)

Equation (6) shows the transition probability from suscep-
tible to vaccinated, (7) shows the transition probability from
susceptible to infected, (8) shows the transition probability
from vaccinated to infected, (9) shows the transition proba-
bility from infected to recovered, (10) shows the transition
probability from recovered back to susceptible, and (11)
shows the transition probability settling in a given state.

The transition probability from the DTMC SVIRS epi-
demic model written with

(
p(s,v,i)→(s+k,v+l,i+m)(∆w)

)
is

given as follows.

p(∆w) =



ηs∆w, (k, l,m) = (−1, 1, 0)

β
N si∆w, (k, l,m) = (−1, 0, 1)

δvi
N ∆w, (k, l,m) = (0,−1, 1)

γi∆w, (k, l,m) = (0, 0,−1)

αr∆w, (k, l,m) = (1, 0, 0)

1−
(
ηs+ βsi

N si

+ δvi
N + γi+

αr)∆w, (k, l,m) = (0, 0, 0)

0, otherwise

(12)

The DTMC SVIRS epidemic model is the transition
probability from state (s, v, i) to state (s+ k, v + l, i+m),
which is expressed in (12). The number of individual groups
S, V, I , and R can be determined at any given time using
(12), and the initial values are given first.

The transition matrix formed in the SVIRS model will be
more complex than the SIR model because it is an ordered
pair of three states, namely (s, v, i). The time step ∆w must
be chosen so that all transition probabilities fall within the
interval [0,1]. However, applying the Markov property, the
difference equation satisfied by probability p(s,v,i)(w+∆w)
can be expressed in terms of the transition probabilities:

p(s,v,i)(w +∆w) =

p(s−1,v+1,i)(w)η(s− 1)∆w + p(s−1,v,i+1)(w)

β

N
(s− 1)(i+ 1)∆w + p(s,v−1,i+1)(w)

δ

N
(v − 1)(i+ 1)∆w + p(s,v,i−1)(w)

γ(i− 1)(∆w) + p(s+1,v,i)(w)

α(N − s− v − i)∆w + p(s,v,i)(w)(
1−

[
ηs+

βsi

N
+

δvi

N
+ γi+ αr

])
∆w

(13)

B. Parameter Estimation for DTMC SVIRS Model

According to the discrete-time SVIRS model with transi-
tion probability in (13), it is possible to estimate parameters
η, β, δ, γ and α by the maximum likelihood method. The
likelihood function of the DTMC SVIRS model is

L(η, β, δ, γ, α) = Pr(X(w = 0) = (s0, v0, i0))

=
N∏

i,m,v,
l,s,k=0

(
p(s,v,i)→(k,l,m)

)n(s,v,i)(k,l,m) (14)

where n(s,v,i)(k,l,m) is the number of transitions calculated
from state (s, v, i) to state (k, l,m). So (14) can be written
as

L(η, β, δ, γ, α) =
N∏
i=1

N∏
v=0

N∏
s=0

(p(s,v,i)→(s−1,v+1,i))
n(s,v,i),(s−1,v+1,i)

(p(s,v,i)→(s−1,v,i+1))
n(s,v,i),(s−1,v,i+1)

(p(s,v,i)→(s,v−1,i+1))
n(s,v,i),(s,v−1,i+1)

(p(s,v,i)→(s,v,i−1))
n(s,v,i),(s,v,i−1)

(p(s,v,i)→(s+1,v,i))
n(s,v,i),(s+1,v,i)

(p(s,v,i)→(s,v,i))
n(s,v,i),(s,v,i)

(15)

We have the likelihood function’s logarithm.

logL(η, β, δ, γ, α) =
N∑
i=1

N∑
v=0

N∑
s=0

[
n(s,v,i),(s−1,v+1,i) log(ηs)+

n(s,v,i),(s−1,v,i+1) log(
βsi

N
) + n(s,v,i),(s,v−1,i+1)

log(
δvi

N
) + n(s,v,i),(s,v,i−1) log(γi)+

n(s,v,i),(s+1,v,i) log(αr) + n(s,v,i),(s,v,i)

log

(
1−

[
ηs+

βsi

N
+

δvi

N
+ γi+ αr

])]
(16)

Taking the partial derivative of the likelihood function’s
logarithm with respect to η, we have

∂ logL(η, β, δ, γ, α)

∂η
=

N∑
i=1

N∑
v=0

N∑
s=0

[
n(s,v,i),(s−1,v+1,i)

(
1

η

)

−
n(s,v,i),(s,v,i)s(

1− ηs− βsi

N
− δvi

N
− γi− αr

)


(17)
if derived against β, we have

∂ logL(η, β, δ, γ, α)

∂β
=

N∑
i=1

N∑
v=0

N∑
s=0

[
n(s,v,i),(s−1,v,i+1)

(
1

β

)

−
n(s,v,i),(s,v,i)si

N

(
1− ηs− βsi

N
− δvi

N
− γi− αr

)

(18)
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if derived against δ, we have

∂ logL(η, β, δ, γ, α)

∂δ
=

N∑
i=1

N∑
v=0

N∑
s=0

[
n(s,v,i),(s,v−1,i+1)

(
1

δ

)

−
n(s,v,i),(s,v,i)vi

N

(
1− ηs− βsi

N
− δvi

N
− γi− αr

)

(19)

if derived against γ, we have

∂ logL(η, β, δ, γ, α)

∂γ
=

N∑
i=1

N∑
v=0

N∑
s=0

[
n(s,v,i),(s,v,i−1)

(
1

γ

)

−
n(s,v,i),(s,v,i)i(

1− ηs− βsi

N
− δvi

N
− γi− αr

)


(20)
if derived against α, we have

∂ logL(η, β, δ, γ, α)

∂α
=

N∑
i=1

N∑
v=0

N∑
s=0

[
n(s,v,i),(s+1,v,i)

(
1

α

)

−
n(s,v,i),(s,v,i)r(

1− ηs− βsi

N
− δvi

N
− γi− αr

)


(21)
The first step to estimate the η parameter is that the likelihood
equation is equal to zero. So the value of η̂ is as follows.

∂ logL(η, β, δ, γ, α)

∂η
= 0

Therefore, we have that
N∑
i=1

N∑
v=0

N∑
s=0

[
n(s,v,i),(s−1,v+1,i)

(
1

η

)
−

n(s,v,i),(s,v,i)s(
1− ηs− βsi

N
− δvi

N
− γi− αr

)
 = 0

(
1

η

) N∑
i=1

N∑
v=0

N∑
s=0

[
n(s,v,i),(s−1,v+1,i)

]
−

N∑
i=1

N∑
v=0

N∑
s=0

 n(s,v,i),(s,v,i)s(
1− ηs− βsi

N
− δvi

N
− γi− αr

)
 = 0

Suppose
∑N

i=1

∑N
v=0

∑N
s=0

[
n(s,v,i),(s−1,v+1,i)

]
= Nηkl

is
the total number of individuals who transitioned from sus-
ceptible state to vaccinated state in the period t = 1 to N .
Whereas

N∑
i=1

N∑
v=0

N∑
s=0

 n(s,v,i),(s,v,i)s(
1− ηs− βsi

N
− δvi

N
− γi− αr

)
 = Nηkk

is the number of people who have remained in the susceptible
state divided by the entire population minus the number

of people who have moved between states. More simply,
parameter estimate value can be written as follows.

η̂ =
Nηkl

Nηkk

(22)

The estimation results of the β parameter with the maxi-
mum likelihood function written as β̂ are obtained as follows.

∂ logL(η, β, δ, γ, α)

∂β
= 0

Suppose
∑N

i=1

∑N
v=0

∑N
s=0

[
n(s,v,i),(s−1,v,i+1)

]
= Nβkl

is
the total number of individuals who transitioned from sus-
ceptible state to infected state in the period t = 1 to N .
Whereas

N∑
i=1

N∑
v=0

N∑
s=0

 n(s,v,i),(s,v,i)si

N
(
1− ηs− βsi

N
− δvi

N
− γi− αr

)
 = Nβkk

is the number of people who have remained in the sus-
ceptible and infected state divided by the entire population
minus the number of people who have moved between states.
Therefore, we have that

β̂ =
Nβkl

Nβkk

(23)

The estimation results of the δ parameter with the maxi-
mum likelihood function written as δ̂ are obtained as follows.

∂ logL(η, β, δ, γ, α)

∂δ
= 0

Suppose
∑N

i=1

∑N
v=0

∑N
s=0

[
n(s,v,i),(s,v−1,i+1)

]
= Nδkl

is
the total number of individuals who transitioned from vac-
cinated state to infected state in the period t = 1 to N .
Whereas

N∑
i=1

N∑
v=0

N∑
s=0

 n(s,v,i),(s,v,i)vi

N
(
1− ηs− βsi

N
− δvi

N
− γi− αr

)
 = Nδkk

is the number of people who have remained in the vaccinated
and infected state divided by the entire population minus
the number of people who have moved between states.
Therefore, we have that

δ̂ =
Nδkl

Nδkk

(24)

The estimation results of the γ parameter with the maxi-
mum likelihood function written as γ̂ are obtained as follows.

∂ logL(η, β, δ, γ, α)

∂γ
= 0

Suppose
∑N

i=1

∑N
v=0

∑N
s=0

[
n(s,v,i),(s,v,i−1)

]
= Nγkl

is the
total number of individuals who transitioned from infected
state to recovered state in the period t = 1 to N . Whereas

N∑
i=1

N∑
v=0

N∑
s=0

 n(s,v,i),(s,v,i)i(
1− ηs− βsi

N
− δvi

N
− γi− αr

)
 = Nγkk

is the number of people who have remained in the infected
state divided by the entire population minus the number of
people who have moved between states. Therefore, we have
that

γ̂ =
Nγkl

Nγkk

(25)
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The estimation results of the α parameter with the maxi-
mum likelihood function written as α̂ are obtained as follows.

∂ logL(η, β, δ, γ, α)

∂α
= 0

Suppose
∑N

i=1

∑N
v=0

∑N
s=0

[
n(s,v,i),(s+1,v,i)

]
= Nαkl

is the
total number of individuals who transitioned from recovered
state to susceptible state in the period t = 1 to N . Whereas

N∑
i=1

N∑
v=0

N∑
s=0

 n(s,v,i),(s,v,i)r(
1− ηs− βsi

N
− δvi

N
− γi− αr

)
 = Nαkk

is the number of people who have remained in the recovered
state divided by the entire population minus the number of
people who have moved between states. Therefore, we have
that

α̂ =
Nαkl

Nαkk

(26)

C. Procedure for DTMC SVIRS Model
The procedure needed to apply the DTMC SVIRS model

is depicted below.
1) Derive the DTMC SVIRS model

a) COVID-19 spreads if there is a contact between
an infected individual and an individual suscepti-
ble to the disease then recovers and is not immune
to the disease before being vaccinated; this is in
accordance with the characteristics of the SVIRS
mathematical model. Although vaccination has
been carried out, a person is still likely to be
infected but with mild symptoms that rarely cause
death. The SVIRS epidemic model, divides indi-
viduals into four states, namely susceptible (S),
i.e., the state of an individual who is healthy
but can be infected with the disease, vaccinated
(V ), i.e., the state of an individual who has
been vaccinated with the second shot but is still
possible to be infected with COVID-19 with mild
symptoms, infected (I), i.e., the condition of
infected individuals, including those who have
been and have not been vaccinated, and recovered
(R), i.e., the state of individuals recovering from
the disease. The number of individuals in each
state S, V , I , and R at time w is expressed as
S(w), V (w), I(w), and R(w).

b) Specify the DTMC SVIRS epidemic model as-
sumptions.
The population is considered to be constant, thus
the population size is fixed, or S(w) + V (w) +
I(w) +R(w) = N , where N is the total number
of individuals in a population.

c) Specify the transition probability of the DTMC
SVIRS epidemic model
The possibility that an individual can move from
one state to another only concerns one individual
who transitions at a very small time interval.
Therefore, at time interval δw, the probability
of the transition with the number of individuals
moving by more than one is zero. Equations (6-
11) show the transition probability of the DTMC
SVIRS epidemic model which is written as (12).

2) Simulate a COVID-19 disease spread pattern using
the DTMC SVIR model. The DTMC SVIRS model
algorithm is as follows.

a) Calculate the value of each parameter utilized
(η, β, δ, γ, α) based on the number of transitions
that occur between states and those that remain
in each state, and the number of the population
used N .

b) Create a transition probability matrix based on
the existing data, with the following details.

i) Calculate (p13) using
(
βS(w)I(w)

N

)
∆w

from susceptible state and (p23) using(
δV (w)I(w)

N

)
∆w from vaccinated state.

ii) Calculate (p12) using ηS(w)∆w to transition
from susceptible to vaccinated state.

iii) Calculate (p34) using γI(w)∆w to transition
from infected to recovered state.

iv) Calculate (p41) using αR(w)∆w to transition
back to susceptible after recovered.

v) Calculate the probability of no increase in the
number of infected using 1− (p12 + p13).

c) Draw a graph of S(w), V (w), I(w) and R(w) for
the next several periods.

d) Provide interpretation of the simulation results.

1: Susceptible

2: Vaccinated

3: Infected 4: Recovered

p13

p34

p11

p44p33

p22

p23

p12

p41

Fig. 3. Transition probability of multi-state DTMC SVIRS model

In this paper, the R software was used to assist the analysis
and prediction of the COVID-19 data. We used an algorithm
based on the COVID-19 data in Indonesia to illustrate an
example of a DTMC SVIRS epidemic model. The multi-state
DTMC SVIRS model can be seen in Fig. 3. Fig. 3 shows
the transition probability among states, where p11 represents
the probability that someone remains in a susceptible state
during the observation period. p12 expresses the transition
probability of a person from a susceptible to vaccinated state
during the observed period and so on.

Although there is no optimum prediction model for
COVID-19, but we can choose a suitable model for the de-
sired prediction results. Deterministic epidemiological mod-
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els, such as the SVIR-type model, rely significantly on
estimated parameters such as R0 and can provide a broad
variety of predictions in a short amount of time. This is
valuable for reference, but its capacity to support real-time
decision-making may be restricted. The DTMC model with
empirical probability has the advantage of not requiring any
complicated estimation procedures. In this present study, the
DTMC model has been proven to be more flexible and
accurate for short-term prediction. Meanwhile, to make a
long-term prediction, this model is less accurate, making it
difficult to predict when the epidemic will end.

IV. APPLICATION

A. Application of DTMC SVIR Model using Data Simulation

We used the previously mentioned algorithm to simulate
a DTMC SVIRS model. In this case, it is assumed that the
population of the outbreak is 100 people with the initial
condition being that there are two infected people. In this
example, the infected rate (β) is 0.08, the vaccination rate
(η) is 0.6, the efficiency of the vaccine in preventing infection
(δ) is 0.00392, the recovery rate (γ) is 0.234, and the time
between consecutive occurrences is 0.01.

Fig. 4 shows a simulation using different values of pa-
rameter β while the other parameters remain the same. The
values of parameter β consist of 0.02, 0.04, 0.06, and 0.08.
Fig. 4 shows that the higher the rate of disease infection,
the faster the transition of people who are in a susceptible
state to both the vaccinated state and the infected state. In
addition, when the value of β changes, the vaccinated and
infected curves also change. At the value of β = 0.02, the
vaccinated curve is higher than the infected curve, and it
will move continuously as the value of β increases, so the
position of the infected curve is higher than the vaccinated
curve.

Fig. 5 shows a simulation using different values of pa-
rameter η while the other parameters remain the same. The
values of parameter η consist of 0.2, 0.4, 0.6, and 0.8. Fig.
5 shows that the higher the vaccination rate, the more likely
the infection rate to lower among people who are in the
vaccinated state, the lower the peak of the infected curve as
shown in Fig. 5.

Fig. 6 shows a simulation using different values of pa-
rameter δ while the other parameters remain the same. The
values of parameter δ consist of 0.002, 0.004, 0.006, and
0.008. Fig. 6 shows a change in neither the susceptible nor
recovered curves because parameter δ represents the transi-
tion probability of a person from a vaccinated state to an
infected state. The higher the number of people vaccinated,
the lower the probability of contracting the disease.

Fig. 7 shows a simulation using different values of parame-
ter γ while the other parameters remain the same. The values
of parameter γ consist of 0.2, 0.4, 0.6, and 0.8. Fig. 7 shows
that if there is an increase in the cure rate, the epidemic will
end more quickly. As for the infected curve, the higher the
value of parameter γ, the lower the infected curve.

B. Application of DTMC SVIRS Model using COVID-19
Data

The infectious disease used in this model was COVID-19
which is still spreading today. The data used were Indonesia’s
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Fig. 4. Simulation of a DTMC SVIR model with different values of infected
rate (β) parameters
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Fig. 5. Simulation of a DTMC SVIR model with different values of
vaccination rate (η) parameters
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Fig. 6. Simulation of a DTMC SVIR model with different values of vaccine
effectiveness in reducing infection (δ) parameters
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Fig. 7. Simulation of a DTMC SVIR model with different values of
recovery rate (γ) parameters

COVID-19 cases taken between March 2, 2020, and August
31, 2021. From the data obtained on August 31, 2021,
the number of suspected individuals was 164,364,896, the
number of individuals vaccinated with the second shot was
36,034,132, the number of infected cases was 4,089,801 and
the number of recovered individuals was 3,776,891. Thus,
the number of people involved in this study was 208,265,720
[28].

Based on the total number of susceptible individuals, vac-
cinated, infected with COVID-19, then declared recovered,
the obtained data are presented as follows.

1) The COVID-19 infection rate in Indonesia was 1.96%.
It was obtained from the total number of the infected
individuals divided by N , so the value of p13 =
0.0196. The transition probability of those vaccinated
with the second shot was obtained from the quotient
of the number of people vaccinated divided by N ,
resulting in p12 = 0.1730. Since it was a transition
probability matrix where the number of rows had to be
equal to 1, the value of p11 = 1− 0.0196− 0.1730 =
0.8074. This indicated the probability that a person
would remain susceptible during the observation pe-
riod.

2) The probability of a vaccinated person being infected
with COVID-19 was p23 = 1−0.6608 = 0.3392. This
value was obtained from 1 minus the proportion of
efficacy of the five types of vaccines used in Indonesia
including Sinovac, Sinopharm, Pfizer/BionTech, Mod-
erna, and AstraZeneca/Oxford Vaccine. According to
WHO, the efficacy of the five types of vaccines is as
follows.

TABLE II
VACCINE TYPE EFFICACY

Types of Vaccines Efficacy (E) Proportion (P ) E × P

Sinovac 63.00 % 77,26 48.68 %
Sinopharm 78.10 % 0.38 0.30 %
Pfizer/BionTech 95.00 % 3.81 3.62 %
Moderna 93.00 % 5.82 5.42 %
AstraZeneca/Oxford 63.47 % 12.72 8.07 %

The Johnson and Johnson vaccine was not included
in the study because this vaccine was approved in
Indonesia starting in September 2021 and it requires
one dose only, while this article used vaccination data
collected until August 2021. The amount from the
efficacy column multiplied by the proportion of each
vaccine is 66.08%. So the value of p22 = 0.6608.
This showed the possibility that a person was able to
survive from the COVID-19 virus because of getting
vaccinated.

3) The recovered rate for COVID-19 in Indonesia was
92.34%. This percentage was obtained from the div-
idend between the number of people who recovered
from COVID-19 infection and the number of people
infected during the selected time period. The value
of p34 = 0.9234. Meanwhile, the value of p33 =
1−0.9234 = 0.0766. This showed the probability that
someone would remain in the infected state within the
period of observation.

Thus, the following transition probability matrix can be
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formed for the DTMC SVIR and DTMC SVIRS models.

PSV IR =


0.8074 0.1730 0.0196 0.0000

0.0000 0.6608 0.3392 0.0000

0.0000 0.0000 0.0766 0.9234

0.0000 0.0000 0.0000 1.0000


and

PSV IRS =


0.8074 0.1730 0.0196 0.0000

0.0000 0.6608 0.3392 0.0000

0.0000 0.0000 0.0766 0.9234

1.0000 0.0000 0.0000 0.0000


The transition probabilities of each state are illustrated in

Fig. 8, where the direction of the arrow denotes the direction
of transition between states and the circle denotes the state
used in the case of COVID-19. S represents susceptible, V
represents vaccinated, I represents infected, and R represents
recovered.
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1.0000
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0.33920.1730

R

V
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0.0196

0.8074 0.0766

0.6608

0.92341.0000

0.33920.1730

Fig. 8. Comparison of the DTMC SVIR and DTMC SVIRS COVID-19
transition probability plots

The difference between the transition probabilities of the
DTMC SVIR and DTMC SVIRS models only lies in the
fourth line. The DTMC SVIR model no longer transitions to
another state after the individual is in the recovered state p44
= 1. Meanwhile in the DTMC SVIRS model, all recovered
individuals will return to the susceptible state because there
is no immunity to COVID-19, so p41 = 1, meaning that every
recovered individual will return to susceptible regardless of
whether they have been vaccinated.

TABLE III
PREDICTION RESULTS WITH DTMC SVIRS ON COVID-19 CASES IN

INDONESIA

Date Actual Prediction MAPE (%)

2021/09/1 10,337 10,537 1.93
2021/09/2 8,955 8,927 0.31
2021/09/3 7,797 8,045 3.18
2021/09/4 6,727 6,651 1.13
2021/09/5 5,403 5,865 8.55
2021/09/6 4,413 5,234 18.60
2021/09/7 7,201 6,674 7.32
2021/09/8 6,731 7,052 4.77

Transition matrices PSV IR and PSV IRS can be plotted
as shown in Fig. 8 which shows the transition probability
between states where the difference is that the DTMC SVIRS
model has a transition back to a susceptible state while the
DTMC SVIR model does not.
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Fig. 9. A comparison of COVID-19 prediction in Indonesia with DTMC
SVIR and DTMC SVIRS models

The transition probability matrix that was obtained previ-
ously can predict the number of patients over the next several

Engineering Letters, 30:2, EL_30_2_24

Volume 30, Issue 2: June 2022

 
______________________________________________________________________________________ 



days. Due to the Markov chain’s nature stating that today’s
events affect the next event, each of the data in this study was
used to predict the next period. Then the predicted results and
MAPE values were calculated and the results are as shown
in Table III. Table III shows that the prediction results using
DTMC had an average MAPE value of 5.7%.

The plot of the COVID-19 data in Indonesia by entering
the parameter values, namely the rate of transmission, vac-
cination, and cure, can be seen in Fig. 9. With the spread of
COVID-19 in Indonesia, which was modelled with DTMC
SVIR, the number of susceptible individuals will reach 0
over time. In the DTMC SVIRS model, the number of
individuals in a susceptible state will never reach 0 because
every recovered individual will return to a susceptible state.
Even though they have been vaccinated, there is no immunity
in COVID-19 cases, so it is very suitable to model the spread
of COVID-19 with the SVIRS model.

V. CONCLUSION

The multi-state model with the DTMC assumption can
model not only chronic diseases but also infectious diseases.
This multi-state DTMC model is different from the compart-
ment model with the DTMC assumption stating that if the
multi-state model is used, the transition probability should be
used to determine the relationship among states. This paper
uses four states of COVID-19 infection, namely susceptible,
vaccinated, infected, and recovered. After finding the tran-
sition probability between the states, short-term predictions
on the COVID-19 data in Indonesia were made. The results
obtained have a highly accurate prediction with a MAPE
value lower than 10%.
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