
Performance Comparison of Randomized Local
Search, (1+1)-Evolutionary Algorithm and Genetic
Algorithm for Graph Isomorphism Problem using

Permutation Matrix Search Space
Akshitha Puri, Gunveen Batra, and Ajitha Shenoy K B*, Member, IAENG

Abstract—Graph isomorphism problem (GIP) is a class NP
Problem and is a well-studied problem in graph and complexity
theory. It is still an open problem, whether GIP is in class
P or NP-complete. In the literature, no meta-heuristics are
applied to GIP. However, few studies in the literature show
that the meta-heuristic algorithms are applied to the subgraph
isomorphism problem, which is a known NP-Complete problem
and extension of GIP. This article proposes a new search space
called permutation matrix space for GIP. Two search space
elements are neighbors if one is obtained from the other by
swapping any two distinct rows. The work shows that the
magnification of permutation matrix space is bounded below
by n/2. Magnification is one of the main structural properties
of a search graph which implies the number of arcs going
out from any cut-set in the search graph. The article studies
the performance of Randomized Local Search (RLS), (1+1)-
Evolutionary Algorithm (EA), and Genetic Algorithm (GA)
for the GIP. Using the concepts of Markov chain Coupling,
this article proves that the Markov chains associated with the
randomized local search mixes rapidly, i.e., the mixing time
is bounded above by O(n2). Experimentally, RLS outperforms
(1+1)-EA and GA on the permutation matrix space.

Index Terms—Meta-heuristic, Search Space, Evolutionary
Algorithm, Randomized Local Search, Genetic Algorithm,
Markov Chain, Mixing Time, Graph Isomorphism, Magnifi-
cation, Coupling.

I. INTRODUCTION

GRAPH Isomorphism Problem (GIP) is a well-studied
combinatorial optimization problem in the field of

computational complexity. It is a class NP problem [1]. It
continues to be an open question whether the problem is in
class P or NP-complete. The recent result says that GIP is in
the complexity class SPP [2]. GIP has many applications in
the area such as image processing [3]–[5], protein structure
analysis [6]–[9], fingerprint authentication [10], [11] and
pattern recognition [12], [13] etc.

GIP is relabeling of the vertices of one graph to obtain
another graph. Relabeling takes all permutations of the ver-
tices of graph G, thus it has a complexity of O(n.n!)), where

Manuscript received June 07, 2021; revised March 15, 2022.
Akshitha Puri is an Undergraduate Student of the Department of Infor-

mation and Communication Technology, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal - 576 104, Karnataka,
INDIA e-mail: akshitapuri@gmail.com

Gunveen Batra is an Undergraduate Student of the Department of Infor-
mation and Communication Technology, Manipal Institute of Technology,
Manipal Academy of Higher Education, Manipal - 576 104, Karnataka,
INDIA e-mail: emerald165@gmail.com

Ajitha Shenoy K B is a Senior Associate Professor in the Department of
Information and Communication Technology, Manipal Institute of Technol-
ogy, Manipal Academy of Higher Education, Manipal - 576 104, Karnataka,
INDIA (Corresponding Author e-mail: ajith.shenoy@manipal.edu)

n-denotes the number of vertices in the graph. Till date,
there is no algorithm to solve this problem in polynomial
time. L Babai, in 2016 proved that GIP can be solved
in quasi-polynomial time i.e. exp ((logn)O(1)) [14] and
this is the best-known complexity for GIP till date. The
claimed results had some flaws which L. Babai fixed in the
year 2017 [15]. Daniel Wiebking extended the result of L.
Babai in the year 2020. He proved that the run time of the
GIP test is npolylogk, where n and k denote the number
of vertices and the minimum treewidth of the given graph
respectively [16]. K. Liu et al., in the year 2019 designed
Discrete-Time Quantum Walk (DTQW) for GIP and proved
that the computational complexity of simulating DTQW on
the classical computer is O(n6) (the quantum walk is the
quantum analogue of the classical random walk) [17].

Meta-heuristics like Randomized Local Search (RLS),
(1+1)-Evolutionary Algorithm (EA) ([18], [19]) and Ge-
netic algorithm (GA) [20]–[23], Particle Swarm Optimization
(PSO) [24], Ant Colony Optimization (ACO) [25] etc., are,
used to get optimum or near to optimum solutions for
hard optimization problem [26]–[43]. In the literature, meta-
heuristics are applied to solve the subgraph isomorphism
problem (which is an extension of GIP) and it is a known
NP-complete problem [1], [44], [45]. This is the first attempt
where a meta-heuristic algorithm is being applied exclusively
to GIP. The paper proposes a new search space for GIP called
permutation matrix space and, studies the performance of
three meta-heuristic algorithms, namely, RLS, (1+1)-EA, and
GA on it. The major contribution of the paper is listed below:

1) Defined a new search space called permutation matrix
space for GIP (Definition II.4).

2) Proved that the magnification of the permutation matrix
space is at least n

2 (Theorem II.6), which indicates
more edges or arcs are going out from any cut-set.

3) Designed RLS algorithm, (1+1)-EA, GA for GIP using
permutation matrix space (Algorithm 1, Algorithm 2,
Algorithm 3 and Algorithm 4).

4) Using the concept of Markov chain and Coupling it
is proved that the Mixing time of the Markov chains
associated with the RLS algorithm is bounded by
O(n2) (Theorem III.3).

5) Experimental results show that the RLS algorithm
outperforms (1+1)EA and both the versions of GA
(GA-1, GA-2) for GIP using permutation matrix space
(Section V).

In the next section, the permutation matrix space is defined

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

and the structural property of the same is studied.

II. PERMUTATION MATRIX SPACE FOR GIP
Graph isomorphism problem [46], [47] is to check

whether the two graphs are structurally similar, more for-
mally:

Definition II.1. GIP Let G1 = (V1, E1) and G2 = (V2, E2)
are two graphs with vertex and edge set V1, E1 and V2, E2

respectively. An isomorphism from graph G1 to graph G2)
is a bijective (one-one and onto) function f : V1 → V2

such that, for each edge (u, v) ∈ E1, there is an edge
(f(u), f(v)) ∈ E2 and vice versa. If there is an isomorphism
between two graphs G1 and G2 then they are isomorphic.

From the definition of GIP, the isomorphism preserves ad-
jacency and non-adjacency between two graphs and implies
that they are structurally the same. Note that, the concept of
permutation matrix is required to define permutation matrix
space for GIP.

Definition II.2. (Permutation Matrix [48], [49]) Permutation
matrix B is an n×n square binary matrix derived from per-
muting (or swapping) rows of identity matrix I . Permutation
matrix has the following properties:

• Permutation matrix is non singular.
• Determinant of permutation matrix is always ±1.
• B−1 = BT i.e. B ·BT = I , where B−1 and BT denote

inverse and transpose of matrix B.
• If B1 and B2 are permutation matrices then, B1 · B2

and B2 ·B1 are also permutation matrices.
• If B is a permutation matrix and A is a square matrix

then B · A permutes rows of A and A · B permutes
columns of A.

The following proposition summarizes the relationship
between permutation matrices and adjacency matrices of two
isomorphic graphs.

Proposition II.3. [50] Let A1 and A2 denote adjacency
matrix of two graphs G1 and G2 respectively. If G1 and G2

are isomorphic, then there exists a permutation matrix B
such that A2 = B ×A1 ×BT .

Next, the permutation matrix space for GIP is defined.

Definition II.4. (Permutation Matrix Space) Given are two
graphs, G1 and G2, and their adjacency matrices A1 and
A2 respectively.

• Search Space Elements: Permutation Matrices (as de-
fined in Definition II.2).

• Neighbourhood Structure: Two search space elements,
B1 and B2, are neighbours if B2 is obtained by swap-
ping any two rows of B1.

• Fitness Function: For any search space element B1,
fitness f(B1) is defined as number of corresponding
identical elements between the matrices A′ = (B1 ×
A1 ×BT

1) and A2. Formally,

f(B1) =
n∑

i=1

n∑
j=1

xi,j ,

where

xi,j =

{
1, if A′(i, j) = A2(i, j)

0, otherwise

Note that if two graphs are isomorphic then search space
has at least one element Bi for which fitness f(Bi) = n2.
This implies that by pre and post multiplying adjacency
matrix A1 with permutation matrices Bi and BT

i , A′ = A2

(i.e., A′ = (Bi × A1 × BT
i) = A2) matrix is obtained. This

implies A′ is obtained by permuting rows and columns of
matrix A1. From the definition of the permutation matrix
space (Definition II.4), it is clear that each permutation
matrix (i.e., each search space element) has d = n(n−1)

2
neighbours and the total number of permutation matrices
(search space elements) are n!. If Ω denotes permutation
matrix space then |Ω| = n!.

One of the important structural properties of any search
space is Magnification. Finding a lower bound on magnifica-
tion gives a clear idea about the minimum number of arcs (or
edges) going out from any cut set. Formally, magnification
is defined as:

Definition II.5. (Magnification [51], [52]) Let Ω denote
permutation matrix space. For any subset S ⊂ Ω and S ̸= ∅,
let E(S, S) denote the cut set in Ω defined by S, that is,
E(S, S) is the set of edges with one end point in S and
other end point in S = Ω−S, then magnification (µ(Ω)) is:

µ(Ω) = min
0<|S|≤|Ω|/2

E(S, S)

|S|
(1)

Note that, large magnification implies that there is more
number of arcs (or edges) going out from any cut set
E(S, S) in the permutation matrix space. Therefore, any
meta-heuristic algorithm may use the permutation matrix
space profitably to overcome local optimum. Now to find a
lower bound for magnification of permutation matrix space,
the concept of canonical path method (as defined in [51],
[52]) is used, which is explained in the following theorem.

Theorem II.6. Permutation matrix space Ω has magnifica-
tion at least n

2 .

Proof: For each pair of states B1 and B2 in the
permutation matrix space, define a unique path ηB1B2 called
canonical path as follows: Let l1, l2, . . . , lk (k ≤ n), denote
row indices, arranged in increasing order, where permutation
matrix B1 differs from B2. The canonical path ηB1B2

is
a sequence P0 = B1, P1, . . . , Pk = B2, where Pi is a
permutation matrix obtained by swapping ith and jth rows
of P(i−1), and j > i. That is, at ith stage, swap ith and jth

(j > i) row of P(i−1) so that first i-rows of Pi match with
the first i-rows of B2. At the ith stage, swap takes place only
if they differ at the ith row. By the definition of permutation
matrices (Definition II.2) such a row-j always exists. The
way in which the canonical path is defined, it is clear that
all the edges in the canonical path between B1 and B2 are
distinct and appear exactly once.

Let ER,S = (R,S) denote an edge in the canonical path
ηB1B2

, where S is obtained by interchanging or swapping the
i th and j th row of R (j > i). Let P (ER,S) be the set of all
canonical paths ηBi,Bj which use edge ER,S , for some Bi

and Bj in Ω. Now to prove that a function f : P (ER,S) → Ω
is an injective function:

Let B2 and B3 denote two permutation matrices and B2 ̸=
B3. Let ηB1B2

, ηB1B3
∈ P (ER,S) be canonical paths from

B1 to B2 and B1 to B3 respectively, which make use of
edge ER,S .

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

• If B2 = B3 then, from the definition of canonical
path stated above, it is evident that the canonical path
sequence is equivalent. i.e., ηB1B2

= ηB1B3
.

• Next, if ηB1B2
̸= ηB1B3

, i.e.,

B1, P1, . . . , (Pk = B2) ̸= B1, P
′
1, . . . , (P

′
k = B3)

which implies that there exists at least one edge

(P(i−1), Pi) ∈ ηB1B2

which is not equal to (P ′
(i−1), P

′
i) ∈ ηB1B3

. Thus, it can
be inferred that, at i-th stage, the swaps while moving
from state B1 to B2 are different than that from state B1

to B3 (Refer the way in which canonical path defined).
Therefore, B2 ̸= B3.

Therefore, function f is injective. Hence, the number of
canonical paths which pass through an edge are bounded
above by |Ω| = n!. To get tighter bound consider the path
from permutation matrix

B1 = (r1, r2, . . . , rn) to B2 = (r′1, r
′
2, . . . , r

′
n)

, where ri and r′i for all 1 ≤ i ≤ n denote rows of
permutation matrix B1 and B2 respectively. Consider an edge
(Pi, P(i+1)) ∈ ηB1B2

. Assume that Pi+1 obtained by Pi by
swapping i-th and j-th row, where j > i. Then,
Pi = (r′1, r

′
2, . . . , r

′
i−1, remaining rows of B2 in any random

order)
Pi+1 = (r′1, r

′
2, . . . , r

′
i−1, r

′
i, remaining rows of B2 in same

order of Pi except at i and j-th position)
Therefore, number of canonical paths that pass through above
edge Pi and Pi+1 is less than or equal to (i−1)! ·(n−i−1)!
i.e.,

(i−1)!·(n−i−1)! ≤ i!·(n−1−i)! =
(n− 1)!

C(n− 1, i)
≤ (n−1)!

(since C(n− 1, i) = (n−1)!
i!(n−i−1)! ≥ 1.)

Now to bound the magnification, consider any non-empty
set S ⊆ Ω and |S| ≤ |Ω|

2 . Let ΓSS represent all canonical
paths ηPQ, which start at search space element P in S and
end at search space element Q in S. Then,

|ΓSS | = |S| × |S| ≥ |S| × |Ω|
2(

since |S| ≤ |Ω|
2

, |S| > |Ω|
2

)
Every path in ΓSS has to traverse an edge (R, S) in E(S, S).
It is proved that through any edge (say (R, S)), at most
(n− 1)! canonical paths can pass through. Therefore,

|E(S, S)| · (n− 1)! ≥ ΓSS ≥ |S| × |Ω|
2

This gives,

µ(Ω) =
|E(S, S)

|S|
≥ n!

2(n− 1)!
≥ n

2
(2)

From the way canonical path is defined, it is clear that
between any two search space elements in Ω there is a O(n)
length path. Hence, the diameter (i.e., longest shortest path)
of the search graph is bounded above by O(n). The next
section describes the design of the RLS algorithm for GIP
using permutation matrix space and it is analyzed using the
concept of the Markov chains and mixing time.

III. RLS FOR GIP

Randomized local search (RLS) is a meta-heuristic search
strategy. It greedily searches the neighborhood for opti-
mum/near to optimum solutions in the search space. The
detailed RLS algorithm for GIP is given in Algorithm 1. Mu-
tation for each individual (search space element) is defined
as follows:

Definition III.1. (Mutation) For any individual (i.e. search
space element) B1 ∈ Ω, mutation is defined as swapping
of any two distinct rows of B1 uniformly, at random. i.e.,
swap(B1i, B1j), where i ̸= j and B1i and B1j denote i-th
and j-th row of B1 respectively.

Algorithm 1 RLS for GIP

1: Let B1 = I be initial starting state, where I is an n×n
identity matrix.

2: No. of steps = 0 and Best Cost = f(B1)
3: while ((No. of steps < Max iterations) and

(Best Cost < n2)) do
4: Select a row of B1 uniformly, at random and mutate

it as defined in Definition III.1. [i.e., select any one of
the neighbour of B1 uniformly, at random.]

5: Calculate the fitness f(B1) and f(B2) of B1 and B2

as defined in Definition II.4.
6: if f(B2) ≥ f(B1) then
7: Set B1 = B2 with probability 1

2 .
8: Best Cost = f(B2)
9: end if

10: step = step+ 1
11: end while

The concept of the Markov chain is used to analyze the
performance of RLS. For basic definitions and concepts
related to Markov chains, Coupling and Mixing Time refer
[51]–[55]. The RLS algorithm for GIP (Algorithm 1) induces
a Markov chain on the permutation matrix space Ω with
transition probabilities defined as:

PB1,B2 =

0, if B2 /∈ N(B1)

0, if B2 ∈ N(B1), B2 ̸= B1

&f(B2) < f(B1)
1
2d , if B2 ∈ N(B1), B2 ̸= B1

&f(B2) ≥ f(B1)

1−
∑

Bi ̸=B1
PB1,Bi

, if B2 = B1,

Bi ∈ N(B1)

where N(B1) denotes neighbours of B1 and d = n(n−1)
2

denotes degree (or number of neighbors) of each node in
the permutation matrix space. Note that the proposed RLS
Algorithm 1 is a slightly modified version of RLS. In this
modified version of RLS for GIP, with probability 1

2 , the
Markov chain remains in the same state. This property is re-
quired to make the chain aperiodic. Also, permutation matrix
space is connected. Therefore, the Markov chain running on
state space is ergodic (i.e. irreducible and aperiodic). Thus
using the fundamental theorem of Markov chains ([51]–
[55]), the chain associated with RLS has unique stationary
distribution (say π). Note that for the Markov chain induced
by RLS, πB1

PB1,B2 ̸= πB2
PB2,B1

. Hence the Markov chain

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

is not reversible. The next section describes the concept of
Coupling to bound the mixing time of the chain.

Definition III.2. Coupling: A coupling of a Markov chain
with transition matrix P is a pair process (Xt, Yt) such that,

• Pr[Xt+1 = b|Xt = a] = P (a, b) = Pr[Yt+1 = b|Yt =
a].

• if Xt = Yt, then Xt+1 = Yt+1.

Stopping time (i.e. until the time two process Xt and Yt

meet) is defined as Txy = min{t : Xt = Yt|X0 = x, Y0 =
y}. The relationship between Coupling time (stopping time)
and mixing time is given as:

tmix(ε) ≤ max
x,y

Pr[Txy > t]

Theorem III.3. The mixing time tmix(ε) of the chain asso-
ciated with RLS is bounded by O(n2)

Proof: Consider the scenario of swapping two rows of
a permutation matrix say ri and rj . Define a Coupling as Xt

and Yt, choosing same ri and rj at each step. This coupling
ensures that the distance between X and Y is non-increasing.
Let dt denote the distance between Xt and Yt for the number
of positions at which two permutation matrices differ. Then
the following two cases arise:

1) If row ri is in the same position in both the permutation
matrices, then dt+1 = dt.

2) If row ri is in different positions in the two permutation
matrices, there are two cases:

a) If row rj is in the same position in both the
permutation matrices, then dt+1 = dt.

b) Otherwise dt+1 ≤ dt − 1.
This implies that there is a decrease in the distance only in
case 2(b). Therefore,

Pr[dt+1 < dt] =

(
dt
n

)2

It can be deduced that the time for dt to decrease from value
d is dominated by a geometric random variable with mean
(n/d)2. Therefore,

E[Txy] ≤
n∑

d=1

(
n

d

)2

= O(n2).

Using Markov inequality,

Pr[Txy > cn2] < c′ =
1

2ε
for a suitable constant c.

Thus, tmix(ε) ≤ cn2.
In the next section (1+1)-EA and GA for GIP using

permutation matrix space are discussed.

IV. (1+1)-EA AND GA FOR GIP

(1+1)-EA and GA are evolutionary algorithms that are
extensively used meta-heuristics in the literature to get good
solutions to hard optimization problems. The first subsection
defines (1+1)-EA for GIP and the second subsection defines
GA for GIP.

A. (1+1)-EA for GIP

(1+1)-EA is a slightly modified version of RLS. (1+1)-
EA mutates every row with probability 1/n in each iteration,
unlike RLS which selects one row uniformly, at random for
mutation. This slight modification makes (1+1)-EA more ca-
pable of escaping from local optima compared to RLS. Both
RLS and (1+1)-EA are well studied in the literature for the
analysis of the evolutionary algorithm. The detailed (1+1)-
EA for GIP is given in Algorithm 2. The next subsection

Algorithm 2 (1+1)-EA for GIP

1: Let B1 = I be initial starting state, where I is an n×n
identity matrix.

2: No. of steps = 0 and Best Cost = f(B1)
3: while ((No. of steps < Max iterations) and

(Best Cost < n2)) do
4: Mutate each row of B1 as defined in Definition III.1

with probability 1/n and obtain B2.
5: Calculate the fitness f(B1) and f(B2) of B1 and B2

as defined in Definition II.4.
6: if f(B2) ≥ f(B1) then
7: Set B1 = B2

8: Best Cost = f(B2)
9: end if

10: step = step+ 1
11: end while

describes GA for GIP using permutation matrix space.

B. GA for GIP

Genetic algorithm is a popular evolutionary algorithm
technique used for finding near to optimum or good solutions
for many hard optimization problems. GA is unlikely to get
stuck at local optima if parameter settings are appropriate.
This work proposes two versions of GA for GIP. In GA-
1 (version1: simple basic version) population size equals 2
and the number of offspring generated is 2 and in GA-2
(version2: generic) population size equals k and the number
of offspring generated is m. GA-2 uses tournament selection
with tournament size 2 for selecting the best k/2 individuals
from the population. Using the ℓ = k/2 individuals, create
C(ℓ, 2) pairs, and each pair can produce two offspring (as
defined in Definition IV.1). Therefore, number of offspring
per generation is m = 2 × C(ℓ, 2). Crossover and mutation
for genetic algorithm are defined as follows:

Definition IV.1. (Crossover and Mutation)

• Crossover: Create two children/offspring C1 and C2

from parents B1 and B2 as C1 = B1 · B2 and
C2 = B2 ·B1 [Note that the product of two permutation
matrices is again a permutation matrix (refer Defini-
tion II.2)].

• Mutation: Swap rows of B1 to mutate B1 i.e., select
any neighbour of B1 uniformly at random (as defined
in Definition II.4).

The two versions of genetic algorithm GA-1 and GA-2
for GIP is using permutation matrix space is discussed in
the Algorithm 3 and Algorithm 4 respectively.

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

Algorithm 3 GA-1 for GIP

1: Population Size k = 2, Number of children per genera-
tion m = 2.

2: Select any two individuals (two permutation matrices) as
population say B1 and B2.

3: Calculate fitness of population as defined in Defini-
tion II.4. i.e. f(B1) and f(B2).

4: initialize step = 0 and Best Cost = min{f(B1), f(B2)}.
5: while ((step < Max iterations) and (Best Cost < n2))

do
6: Select both individuals from the population
7: Generate 2 offspring using cross over as defined in

Definition IV.1 with crossover probability Pcrossover.
8: Apply mutation on 2 offspring with probability

Pmutation

9: Calculate fitness of all the offspring.
10: Out of 4 individuals (2 individuals in the population

and 2 individuals are offspring generated) , the best 2
candidates will go for next generation. Rename them
as B1, B2.

11: if Best Cost < max{f(B1), f(B2)} then
12: Best Cost = max{f(B1), f(B2)}
13: end if
14: step = step+ 1
15: end while

The next section experimentally compares the perfor-
mances of RLS, (1+1)-EA, GA-1, and GA-2 for GIP using
permutation matrix space.

V. RESULTS AND DISCUSSION

To test RLS, (1+1)-EA and GA algorithms, random graphs
are used and they are constructed using Erdös Rényi [56]
model G(n, p). In G(n, p), each edge in the graph has a prob-
ability p, independent from every other edge. The parameter
p is a weight function. As p increases from 0 to 1, the graph is
likely to have more edges. If p > (1+ε) lnn

n , then a graph will
almost surely be connected. For comparing the performance
of different meta-heuristics considered, created the graph G1

by taking different values of n and p. The isomorphic graph
G2 is constructed by permuting the corresponding rows and
columns of the adjacency matrix of G1 randomly for n
iterations.

In Theorem III.3, it is proved that the mixing time of the
Markov chain associated with the proposed RLS is bounded
by O(n2). Therefore, executed RLS and (1+1)-EA for 10n2

iterations. GA-1 and GA-2 generate 2, and m individuals
per iteration respectively, whereas both RLS and (1+1)-EA
generates 1 individual per iteration. Therefore, to have a
fair comparison, executed GA-1 and GA-2 for 5 × n2 and
10n2/m iterations respectively. This ensures that the total
number of search space elements searched using all the
algorithms is 10n2. Parameter settings used for For GA-1
and GA-2 are given in Table I. Various combinations of
mutation and cross-over probabilities are considered (i.e.,
mutation probability in the range from 0 to 0.5 and cross-
over probability in the range of 0.6 to 1) and, based on
the performance, finally selected crossover and mutation
probability as 0.8 and 0.5 respectively. For GA-2, different

Algorithm 4 GA-2 for GIP

1: Population Size k, Number of children per generation
m.

2: Initially select k individuals by performing row swapping
operation B1 = I (as defined in Definition II.4), where
I is n×n identity matrix (i.e., select any k permutation
matrices as starting states).

3: Calculate fitness of population as defined in Defini-
tion II.4. i.e. f(B1), f(B2), . . . , f(Bk).

4: initialize step = 0 and Best Cost =
min f(B1), f(B2), . . . , f(Bk).

5: while ((step < Max iterations) and (Best Cost < n2))
do

6: Select the best ℓ = k
2 candidates using tournament

selection with tournament size 2.
7: Generate m = C(ℓ, 2)×2 = (ℓ(ℓ−1)) offspring using

cross over as defined in Definition IV.1 with crossover
probability Pcrossover.

8: Apply mutation on m offspring with probability
Pmutation

9: Calculate fitness of all the m offspring
10: Out of the (k+m) individuals (k being the population

size and m being the number of offspring generated)
, the best k candidates will go for next generation.
Rename them as B1, B2, . . . , Bk.

11: if Best Cost < max{f(B1), f(B2), . . . , f(Bk)} then
12: Best Cost = max{f(B1), f(B2), . . . , f(Bk)}
13: end if
14: step = step+ 1
15: end while

population size (6, 10, and 20) is set to see the effect
of population size on the performance. The observation
indicates that considering a larger population size will not
give a better solution for GA-2. As population size increases
in GA-2, slight or negligible improvement in the cost of the
best solution. To report the result in this paper, a population
size equal to 10 for GA-2 is selected.

Specification of the system used for running RLS, (1+1)-
EA, GA-1, and GA-2 is Asus FS702D Ryzen 5 Quad Core
AMD R5 2500 U (up to 3.6 GHz), 8 GB RAM, and HDD
1 TB. Figures [Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, and Fig.
6] and Tables [Table II, Table III, Table III, Table V, Table
VI] shows comparison of RLS, (1+1)-EA, GA-1 and GA-2
for different values of p (0.04, 0.25, 0.5, 0.75, 0.9 and lnn

n).
Figures Fig. 1a, Fig. 2a, Fig. 3a, Fig. 4a, Fig. 5a, and Fig.
6a show a comparison of different algorithms concerning the
cost of the solution obtained and the number of nodes in the
graph. It is evident from the result that the cost obtained using
the RLS algorithm is better than other algorithms considered
in all the cases. (1+1)-EA is slightly better than GA if the cost
of the solution obtained is considered. Figure Fig. 1b, Fig. 2b,
Fig. 3b, Fig. 4b, Fig. 5b, and Fig. 6b show a comparison of
different algorithms concerning CPU time needed to search
10n2 elements in the search space and number of nodes in
the graph. It is clear from the figure that RLS is faster as
compared to all other algorithms considered in all the cases
(i.e., for different values of p).

From Tables [Table II, Table III, Table IV, Table V and
Table VI] it is evident that taking one sample is not sufficient

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

TABLE I: Parameter Settings for GA

Version Crossover Mutation Selection Offspring per Number of Total individual
Probability Probability Method iteration iterations Searched

GA-1 0.8 0.5 – 2 5n2 10n2

GA-2 0.8 0.5 Tournament m 10n2

m
10n2

(1+1)-EA – – – 1 10n2 10n2

RLS – – – 1 10n2 10n2

TABLE II: Results of RLS, (1+1)-EA, GA-1 and GA-2 for p=0.04

No.of Optimum RLS (1+1)-EA GA-1 GA-2
vertices Cost Best CPU Best CPU Best CPU Best CPU

Cost Time Cost Time Cost Time Cost Time
10 100 100 0.02 84 0.8 81 0.06 92 2.44
20 400 400 0.44 304 6.73 356 4.86 376 6.95
25 625 625 1.4 457 14.5 481 12.16 497 9.99
50 2500 2500 9.55 2020 145.83 2152 197.54 2224 131.4
75 5625 5625 76.89 4729 639.041 4813 763.67 4921 672.04
100 10000 10000 276.02 8524 1825.6 8600 3110.9 8664 4055.8

TABLE III: Results of RLS, (1+1)-EA, GA-1 and GA-2 for p=0.25

No.of Optimum RLS (1+1)-EA GA-1 GA-2
vertices Cost Best CPU Best CPU Best CPU Best CPU

Cost Time Cost Time Cost Time Cost Time
10 100 96 0.24 84 0.41 72 0.75 80 2.06
20 400 344 3.13 300 3.76 312 8.24 312 11.35
25 625 509 7.16 465 18.25 481 18.9 465 21.34
50 2500 1940 105.67 1712 93.73 1696 156.78 1720 185.69
75 5625 4257 522.86 3745 460.66 3657 915.13 3793 1161.1
100 10000 7300 1635.16 6528 1300.14 6260 2758.78 6404 2922.44

TABLE IV: Results of RLS, (1+1)-EA, GA-1 and GA-2 for p=0.5

No.of Optimum RLS (1+1)-EA GA-1 GA-2
vertices Cost Best CPU Best CPU Best CPU Best CPU

Cost Time Cost Time Cost Time Cost Time
10 100 88 0.23 80 0.43 68 0.47 76 2.12
20 400 312 3.14 268 3.94 256 5.52 260 11.43
25 625 473 7.25 389 8.12 369 13.28 397 20.9
50 2500 1732 104.8 1436 94.52 1360 171.94 1440 305.96
75 5625 3713 330.98 3049 422.47 2913 965.42 3045 1273.26
100 10000 6344 1043.97 5635 1246.27 5372 2730.62 5536 3272.99

TABLE V: Results of RLS, (1+1)-EA, GA-1 and GA-2 for p=0.75

No.of Optimum RLS (1+1)-EA GA-1 GA-2
vertices Cost Best CPU Best CPU Best CPU Best CPU

Cost Time Cost Time Cost Time Cost Time
10 100 92 0.26 84 0.61 80 0.57 84 2.11
20 400 328 2.04 284 6.03 264 5.77 272 11.38
25 625 513 4.83 449 13.83 425 12.54 453 21.31
50 2500 1920 68.24 1708 94.52 1652 169.78 1720 176.99
75 5625 4265 346.48 3737 416.1 3653 949.41 3777 1418.42
100 10000 7316 1645.2 6519 1248.64 6516 2714.2 6668 4932.97

TABLE VI: Results of RLS, (1+1)-EA, GA-1 and GA-2 for p=0.9

No.of Optimum RLS (1+1)-EA GA-1 GA-2
vertices Cost Best CPU Best CPU Best CPU Best CPU

Cost Time Cost Time Cost Time Cost Time
10 100 96 0.2 92 0.66 88 0.68 96 2.06
20 400 360 3.05 344 6.23 328 8.19 332 11.46
25 625 565 7.17 525 13.34 517 17.57 521 21.0
50 2500 2228 107.56 2136 155.86 2112 263.84 2140 205.84
75 5625 4945 535.39 4637 679.96 4597 1236.08 4685 1555.3
100 10000 8808 1641.19 8372 1924.48 8372 3584.17 8416 6839.26

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

(a) No. nodes Vs Best Cost obtained

(b) No. nodes Vs CPU Time

Fig. 1: Comparison of RLS, (1+1)EA, GA-1 and GA-2 for Erdös Rényi model G(n, p = 0.04)

to get a good solution when we make use of randomized
search heuristics like RLS, EA and GA etc. A total of
100 samples are generated for each algorithm, where each
sample is obtained by searching 10n2 individuals in the
search space, and the cost of the best solution obtained
is listed in Table VII. From Table VII, it is evident that
RLS outperforms (1+1)-EA, GA-1, and GA-2 on permutation
matrix space. (1+1)-EA, GA-1, and GA-2 failed to produce
an optimum solution in all the samples obtained by searching
10n2 individuals, whereas RLS can produce an optimum
solution in one of the 100 samples drawn by searching 10n2

individuals. For n = 200, getting one sample by running
RLS for 10n2 iterations takes nearly half an hour of CPU
time (1800 seconds). Therefore, taking 100 samples will
approximately take 2 days. But even 100 samples are not
sufficient to locate optimum solution when n = 200. The cost

of the best solution obtained in this case is 39100 (optimum
cost is 40000). As n increases, one has to take more samples
to get the optimum solution for the problem at hand.

VI. CONCLUSION AND FUTURE WORK

CONCLUSION

The paper proposes a new permutation matrix search space
for GIP. The results obtained show that the magnification of
permutation matrix space is at least n

2 , where n denotes the
number of search space elements. This work studies three
meta-heuristic algorithms, RLS, (1+1)-EA, and GA for GIP
using permutation matrix search space. The proposed work
shows that the mixing time of the Markov chains associated
with RLS has bounded above by O(n2). The experimental
results show that the RLS algorithm outperforms (1+1)-EA

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

(a) No. nodes Vs Best Cost obtained

(b) No. nodes Vs CPU Time

Fig. 2: Comparison of RLS, (1+1)EA, GA-1 and GA-2 for Erdös Rényi model G(n, p = 0.25)

and GA on permutation matrix space. As a future work one
can check the suitability of other meta-heuristics like ant
colony optimization (ACO), Simulated Annealing (SA), Par-
ticle Swarm Optimization (PSO), etc., on permutation matrix
space for GIP. It will be interesting to study the theoretical
analysis of GA and other meta-heuristic algorithms for GIP
using permutation matrix space. The proposed permutation
matrix space can also be used by different meta-heuristic
algorithms for subgraph isomorphism problems.

REFERENCES

[1] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. USA: W. H. Freeman & Co.,
1990.

[2] V. Arvind and P. P. Kurur, “Graph isomorphism is in spp,” Information
and Computation, vol. 204, no. 5, pp. 835 – 852, 2006.

[3] M. A. Abdulrahim and M. Misra, “A graph isomorphism algorithm for
object recognition,” Pattern Analysis and Applications, vol. 1, no. 3,
pp. 189–201, Sep 1998.

[4] H. Bunke and B. T. Messmer, “Efficient attributed graph matching and
its application to image analysis,” in Image Analysis and Processing,
C. Braccini, L. DeFloriani, and G. Vernazza, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1995, pp. 44–55.

[5] S. Pan, X. Zhu, C. Zhang, and P. S. Yu, “Graph stream classification
using labeled and unlabeled graphs,” in 2013 IEEE 29th International
Conference on Data Engineering (ICDE), April 2013, pp. 398–409.

[6] A. Elmsallati, C. Clark, and J. Kalita, “Global alignment of protein-
protein interaction networks: A survey,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 13, no. 4, pp. 689–
705, July 2016.

[7] R. Singh, J. Xu, and B. Berger, “Global alignment of multiple
protein interaction networks with application to functional orthology
detection,” Proceedings of the National Academy of Sciences, vol. 105,
no. 35, pp. 12 763–12 768, 2008.

[8] C. Henneges, C. Behle, and A. Zell, “Practical graph isomorphism
for graphlet data mining in protein structures,” in Computational
Intelligence. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 345–360.

[9] J. Huan, D. Bandyopadhyay, W. Wang, J. Snoeyink, J. Prins, and
A. Tropsha, “Comparing graph representations of protein structure
for mining family-specific residue-based packing motifs,” Journal of
Computational Biology, vol. 12, no. 6, pp. 657–671, 2005.

[10] D. Isenor and S. Zaky, “Fingerprint identification using graph match-
ing,” Pattern Recognition, vol. 19, no. 2, pp. 113 – 122, 1986.

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

(a) No. nodes Vs Best Cost obtained

(b) No. nodes Vs CPU Time

Fig. 3: Comparison of RLS, (1+1)EA, GA-1 and GA-2 for Erdös Rényi model G(n, p = 0.5)

TABLE VII: Results of RLS, (1+1)-EA, GA-1 and GA-2 using permutation matrix space

No.of Optimum RLS (1+1)-EA GA-1 GA-2 (population size = 10)
vertices Cost Best cost Best cost Best cost Best cost

Obtained Obtained Obtained Obtained
10 100 100 80 81 92
20 400 400 304 356 376
25 625 625 457 481 497
50 2500 2500 2020 2152 2224
75 5625 5625 4729 4813 4921
100 10000 10000 8524 8600 8664

[11] D. R. Kisku, P. Gupta, and J. K. Sing, “Feature level fusion of face and
palmprint biometrics by isomorphic graph-based improved k-medoids
partitioning,” in Advances in Computer Science and Information
Technology, T.-h. Kim and H. Adeli, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 70–81.

[12] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years of graph
matching in pattern recognition,” IJPRAI, vol. 18, no. 3, pp. 265–298,
2004.

[13] K. Madi, “Inexact graph matching : application to 2D and 3D Pattern
Recognition,” Theses, Université de Lyon, Dec. 2016.

[14] L. Babai, “Graph isomorphism in quasipolynomial time [extended
abstract],” in Proceedings of the Forty-Eighth Annual ACM Symposium
on Theory of Computing, ser. STOC ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 684–697.

[15] L Babai, “Graph isomorphism algorithm updated, quasipolynomial-

time claim restored,” http://people.cs.uchicago.edu/∼laci/update.html,
2017.

[16] D. Wiebking, “Graph Isomorphism in Quasipolynomial Time Parame-
terized by Treewidth,” in 47th International Colloquium on Automata,
Languages, and Programming (ICALP 2020), ser. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), A. Czumaj, A. Dawar, and
E. Merelli, Eds., vol. 168. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2020, pp. 103:1–103:16.

[17] K. Liu, Y. Zhang, K. Lu, X. Wang, X. Wang, and G. Tian, “Mapeff:
An effective graph isomorphism agorithm based on the discrete-time
quantum walk,” Entropy, vol. 21, no. 6, p. 569, Jun 2019.

[18] S. Droste, T. Jansen, and I. Wegener, “On the analysis of the (1+ 1)
evolutionary algorithm,” Theor. Comput. Sci., vol. 276, no. 1-2, pp.
51–81, apr 2002.

[19] P. Jain, L. Kanesh, J. Madathil, and S. Saurabh, “A parameterized

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

(a) No. nodes Vs Best Cost obtained

(b) No. nodes Vs CPU Time

Fig. 4: Comparison of RLS, (1+1)EA, GA-1 and GA-2 for Erdös Rényi model G(n, p = 0.75)

runtime analysis of randomized local search and evolutionary algo-
rithm for max uncut,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion, GECCO 2018, Kyoto, Japan,
July 15-19, 2018, H. E. Aguirre and K. Takadama, Eds. ACM, 2018,
pp. 326–327.

[20] D. E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning, 1st ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1989.

[21] J. McCall, “Genetic algorithms for modelling and optimisation,”
Journal of Computational and Applied Mathematics, vol. 184, no. 1,
pp. 205 – 222, 2005, special Issue on Mathematics Applied to
Immunology.

[22] J. A. Vasconcelos, J. A. Ramirez, R. H. C. Takahashi, and R. R.
Saldanha, “Improvements in genetic algorithms,” IEEE Transactions
on Magnetics, vol. 37, no. 5, pp. 3414–3417, 2001.

[23] C. Garcı́a-Martı́nez, F. J. Rodriguez, and M. Lozano, Genetic Algo-
rithms. Cham: Springer International Publishing, 2018, pp. 431–464.

[24] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of the IEEE International Conference on Neural Networks,
1995, pp. 1942–1948.

[25] M. Dorigo and T. Stützle, Ant Colony Optimization. Scituate, MA,
USA: Bradford Company, 2004.

[26] X. Zhang and D. Yuan, “A niche ant colony algorithm for parameter

identification of space fractional order diffusion equation,” IAENG
International Journal of Applied Mathematics, vol. 47, no. 2, pp. 197–
208, 2017.

[27] R. M. Son Duy Dao, Kazem Abhary, “An adaptive restarting genetic
algorithm for global optimization,” in Lecture Notes in Engineering
and Computer Science: Proceedings of the World Congress on En-
gineering and Computer Science 2015, San Francisco, USA, 21-23
October 2015, pp. 455–459.

[28] M. A. R. M. A. H. Akhand, Shahina Akter and S. B. Yaakob,
“Velocity tentative pso: An optimal velocity implementation based
particle swarm optimization to solve traveling salesman problem,”
IAENG International Journal of Computer Science, vol. 42, no. 3,
pp. 221–232, 2015.

[29] D. X. Lei Jiang, “An efficient differential memetic algorithm for clus-
tering problem,” IAENG International Journal of Computer Science,
vol. 45, no. 1, pp. 118–129, 2018.

[30] Y. D. Shiyong Li, Huan Liu, “An optimal resource allocation scheme
for elastic applications in multipath networks via particle swarm
optimization,” IAENG International Journal of Computer Science,
vol. 47, no. 2, pp. 278–283, 2020.

[31] Z. Y. Xin Shen, Xiaoxia Zhang, “A new hybrid cuckoo search for the
resourcesesources-constrained project scheduling problem,” IAENG
International Journal of Computer Science, vol. 48, no. 2, pp. 304–

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

(a) No. nodes Vs Best Cost obtained

(b) No. nodes Vs CPU Time

Fig. 5: Comparison of RLS, (1+1)EA, GA-1 and GA-2 for Erdös Rényi model G(n, p = 0.9)

315, 2021.
[32] S.-S. G. Yi-Xuan Lu, Jie-Sheng Wang, “Solving path planning problem

based on particle swarm optimization algorithm with improved inertia
weights,” IAENG International Journal of Computer Science, vol. 46,
no. 4, pp. 628–636, 2019.

[33] Y. H. D. K. Wang and Q. Zhao, “A hybrid metaheuristic algorithm for
the heterogeneous school bus routing problem and a real case study,”
IAENG International Journal of Computer Science, vol. 47, no. 4, pp.
775–785, 2020.

[34] S. A. Rezzy Eko, Rung Ching, “Employing best input svr robust
lost function with nature-inspired metaheuristics in wind speed en-
ergy forecasting,” IAENG International Journal of Computer Science,
vol. 47, no. 3, pp. 572–584, 2020.

[35] X.-L. S. Hua-Ping Wu, Hui Li, “Evolutionary game for enterprise
cloud accounting resource sharing behavior based on the cloud sharing
platform,” IAENG International Journal of Applied Mathematics,
vol. 51, no. 1, pp. 125–132,, 2021.

[36] A. Raghavan, P. Maan, and A. K. B. Shenoy, “Optimization of day-
ahead energy storage system scheduling in microgrid using genetic

algorithm and particle swarm optimization,” IEEE Access, vol. 8, pp.
173 068–173 078, 2020.

[37] S. K. B. Ajitha, S. Biswas, and P. P. Kurur, “Metropolis algorithm
for solving shortest lattice vector problem (svp),” in 2011 11th
International Conference on Hybrid Intelligent Systems (HIS), 2011,
pp. 442–447.

[38] A. Shenoy K B, S. Biswas, and P. P. Kurur, “Performance
of metropolis algorithm for the minimum weight code word
problem,” in Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, ser. GECCO ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 485–492.
[Online]. Available: https://doi.org/10.1145/2576768.2598274

[39] Y. X. Z. Nan Wang, Jie Sheng Wang, “Two dimensional bin packing
problem with rectangular and circular regions solved by genetic
algorithm,” IAENG International Journal of Applied Mathematics,
vol. 51, no. 2, pp. 268–278, 2021.

[40] J. H. Rayner Alfred, Loo Yew, “Social media mining: A genetic
based multiobjective clustering approach to topic modelling,” IAENG
International Journal of Computer Science, vol. 48, no. 1, pp. 32–42,

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

(a) No. nodes Vs Best Cost obtained

(b) No. nodes Vs CPU Time

Fig. 6: Comparison of RLS, (1+1)EA, GA-1 and GA-2 for Erdös Rényi model G(n, p = lnn/n)

2021.
[41] M. R. H. Abdallah Aissou, Abdelhamid Daamouche, “Components

assignment problem for flow networks using mopso,” IAENG Inter-
national Journal of Computer Science, vol. 48, no. 1, pp. 96–108,
2021.

[42] C. Z. Gonggui Chen, Ao Zhang, “Optimal placement and capacity
of combined dgs and scs in radial distribution networks based on
pso-os algorithm,” IAENG International Journal of Computer Science,
vol. 48, no. 2, pp. 236–249, 2021.

[43] Y. H. Xiaoxia Zhang, Ziqiao Yu, “Milling force prediction of titanium
alloy based on support vector machine and ant colony optimization,”
IAENG International Journal of Computer Science, vol. 48, no. 2, pp.
223–235, 2021.

[44] J. Choi, Y. Yoon, and B.-R. Moon, “An efficient genetic algorithm for
subgraph isomorphism,” in Proceedings of the 14th Annual Conference
on Genetic and Evolutionary Computation, ser. GECCO ’12. New
York, NY, USA: Association for Computing Machinery, 2012,
p. 361–368. [Online]. Available: https://doi.org/10.1145/2330163.
2330216

[45] H. Choi, J. Kim, Y. Yoon, and B.-R. Moon, “Investigation of
incremental hybrid genetic algorithm with subgraph isomorphism
problem,” Swarm and Evolutionary Computation, vol. 49, pp. 75–
86, 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S2210650218308071

[46] L. Gonz´alez, “Edges, chains, shadows, neighbors and subgraphs in
the intrinsic order graph,” IAENG International Journal of Applied
Mathematics, vol. 42, no. 1, pp. 66–73, 2012.

[47] S. Wang Jing-yu, “Some results of the compact graph,” IAENG
International Journal of Applied Mathematics, vol. 49, no. 4, pp. 588–
594, 2019.

[48] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory. Cam-
bridge University Press, 1991.

[49] S. Pissanetzky, “”linear algebraic equations”,” in Sparse Matrix Tech-
nology, S. Pissanetzky, Ed. Academic Press, 1984, pp. 38 – 68.

[50] L. Chen, “Graph isomorphism and identification matrices: Sequential
algorithms,” Journal of Computer and System Sciences, vol. 59, no. 3,
pp. 450 – 475, 1999.

[51] A. Sinclair, Algorithms for Random Generation and Counting A
Markov Chain Approach. Cambridge, MA 02139, USA.: Birkhauser
Boston, 1993.

[52] A. K. B. Shenoy, S. Biswas, and P. P. Kurur, “Efficacy of the
metropolis algorithm for the minimum weight codeword problem
using codeword and generator search spaces,” IEEE Transactions on
Evolutionary Computation, vol. 24, no. 4, pp. 664 – 678, 2020.

[53] J. R. Norris, Markov chains., ser. Cambridge series in statistical and
probabilistic mathematics. Cambridge University Press, 1998.

[54] M. Mitzenmacher and E. Upfal, Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. New York, USA:

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

Cambridge University Press, 2005.
[55] D. Levin, Y. Peres, and E. Wilmer, Markov Chains and Mixing Times.

American Mathematical Soc., 2008.
[56] P. Erdös and A. Rényi, “On random graphs,” Publicationes Mathemat-

icae Debrecen, vol. 6, p. 290, 1959.

Engineering Letters, 30:2, EL_30_2_26

Volume 30, Issue 2: June 2022

__

