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Abstract—Computer-Aided Diagnosis (CAD) has become a 

requisite and fundamental part in medical detection and 

diagnosis. As an indispensable component of CAD, the lung 

fields segmentation is critical for further analysis. Nowadays, it 

is well known that the methods of deep convolutional neural 

networks (DCNNs) have achieved outstanding performance in 

medical image segmentation. Especially the U-Net and its 

extensions have obtained promising accuracy on medical image 

segmentation. However, due to the superimposed regions in lung 

fields and varied shapes among different individuals, it is 

difficult to detect and segment the boundaries precisely. Besides, 

insufficient training dataset may results in poor generalization 

ability of the networks. To address these problems, this paper 

uses the standard U-Net as its backbone, and optimizes and 

improves it effectively. The proposed method can segment the 

lung fields in chest X-ray images automatically, which integrates 

U-Net, Bi-directional ConvLSTM (BConvLSTM), Squeeze and 

Excitation (SE), and fully connected CRF into one framework. 

In the proposed architecture, a single U-Net network is 

employed as the backbone. Then, the BConvLSTM is employed 

to concatenate the features extracted from the encoder and the 

corresponding decoder. In this way, the skip connection of the 

U-Net structure is replaced by BConvLSTM. Furthermore, the 

SE modules are embedded in the decoder to recalibrate the 

channel-wise features. Besides, the fully connected CRF is used 

to further refine the initial segmentation contours, which can 

fully consider the mutual information between pixels in the 

original image. Compared with diverse lung fields segmentation 

algorithms on JSRT and MC datasets, the superiority, 

effectiveness and robustness of the proposed method are 

verified. 

 
Index Terms—Lung fields segmentation, SE module, U-Net, 

BConvLSTM, Fully connected CRF 

I. INTRODUCTION 

OWADAYS, Computer-Aided Diagnosis (CAD) is an 

essential tool for automatic detection and diagnosis, 

which can offer doctors more persuasive judgments. The 
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radiologists use the output of CAD as second opinion 

guidance to make the final decisions [1]. With the 

development of auxiliary diagnosis technologies, the 

performance of CAD has been continuously improved. The 

technologies of medical image analysis are key components 

of CAD. As we all know, Chest X-Ray images are widely used 

for detection and diagnosis of lung diseases. However, some 

challenges remain in correctly and effectively interpreting 

lung medical images, such as the difference among 

radiologists in skill, concentration, and experience. Accurate 

lung fields segmentation in medical lung images is a critical 

component that facilitates subsequent analysis. However, 

accurate lung segmentation has become a challenge for some 

reasons [2]. On the one hand, there are some superimposed 

regions and strong edge structures, such as ribs and clavicles. 

These structures will confuse the objective boundaries. 

Furthermore, due to differences in patient age, gender, and 

health conditions, the shape of the anatomical structure of the 

lungs varies greatly. On the other hand, the related DCNNs 

methods have been widely adopted in image analysis, 

especially in the task of image segmentation [2]. However, 

these models need to be trained on plenty of training samples. 

Besides, a large number of parameters are produced during 

the training of the networks. These problems lead to low 

generalization ability and high memory usage. To mitigate 

these challenges, researchers at home and abroad have 

proposed various strategies. This paper discusses it in 

accordance with traditional and deep learning-based methods. 

We divide the traditional segmentation methods into four 

categories: rule-based methods, pixel classification-based 

methods, registration-based methods and deformable 

model-based methods [3]. 

Rule-based methods contain a sequence of heuristic rules 

and steps according to the position, shape, intensity, texture, 

and anatomical information of lung fields [4]-[6]. However, 

the approximately solutions obtained by these methods are 

not satisfactory compared to the global optimal solution. Up 

to now, rule-based methods are usually employed as the initial 

steps [7]. 

Pixel classification-based methods are trained according to 

the appearance, size, position, and anatomical structures of 

the lung fields [8]-[10]. Then each pixel is assigned to either 

the object or background regions. Therefore, it can be 

regarded as a binary classifier. But the pixel 

classification-based methods also suffer from classification 

errors near the boundary. 

Registration-based methods use the labeled lung dataset as 

anatomical atlas to match the target images. Candemir et al. [7] 

proposed a novel non-rigid registration-driven method to 
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detect the lung boundaries via an adaptive method based on 

image retrieval. However, these methods are inefficient and 

rely on the results of non-rigid registration heavily.  

Deformable model-based methods have been extensively 

studied profit from its shape flexibility and are widely used in 

medical image segmentation [11], [12]. These methods take 

the lung boundary as a flexible curve and force it under 

internal and external potential energy [13]. The internal 

potential energy ensures that the curve remains bendable and 

stretchable by calculating the object shape [14]. In addition, 

by using appearance information, the external pushes the 

model as close to the boundary as possible. However, these 

methods tend to produce average shapes. For abnormal cases, 

it is ineffective due to heavy reliance on the initial model.  

The above-mentioned methods need to set some 

hyperparameters subjectively and extract useful features 

manually, which relies on manual experience highly. These 

methods are not automatic and have low generalization. 

Hence, the results are not reliable enough. 

Deep learning-based methods have achieved outstanding 

performance in many applications [15], [16], especially in 

medical image segmentation [2], [17], [18]. Convolutional 

neural networks (CNNs) demonstrated its efficiency due to its 

prominent achievements in abstract features expression and 

extraction [19], [20]. However, a plenty of parameters 

produced during training of the networks causes a large 

storage overhead. Besides, the repeated operations of 

convolution during model training process affect computation 

efficiency. For semantic segmentation tasks, Fully 

Convolutional Network (FCN) [21] is a basic framework in 

deep learning, which is trained in an end-to-end manner. In 

FCN, all fully connected layers in CNN are replaced with 

convolution operations to maintain spatial resolutions. 

However, since the deep feature mappings are included in the 

final results of FCN model, the spatial domain information 

extracted from the shallow network is ignored. Besides, the 

FCN model is not sensitive to image details. Drozdzal et al. 

[22] employed both long and short connections in deep FCN 

for segmentation, and obtained better results than the original 

FCN. Ronneberger et al. [23] proposed U-Net network in 

2015 with skip architecture. Today, the U-Net network has 

been regarded as a baseline framework for medical image 

segmentation. It concatenates the features from shallow and 

deep layers by skip connections, and can make full use of 

global position and context information simultaneously. The 

U-Net network contains two sub-structures: encoding and 

decoding structures. However, due to the large differences in 

shape and size of the target tissue or organ, the segmentation 

performance of a single U-Net model is inefficient. 

In this paper, a novel and end-to-end framework is 

proposed for lung fields segmentation. This paper has the 

following contributions: Firstly, the BConvLSTM is 

employed to concatenate the features extracted from the 

encoder and the corresponding decoder, which replaces the 

skip connection of U-Net. Secondly, the SE modules are 

embedded in the decoder to recalibrate the channel-wise 

features. Then the U-Net with the above structures produces a 

probability map for each sample. Finally, a fully connected 

CRF is employed to refine the initial segmentation contours, 

and the probability map and the original image are used as its 

input. The rest of this paper is organized as follows: Section 2 

shows the related theories and some works in this paper; 

Section 3 presents the details of the proposed method; Section 

4 gives some comparative experiments and discussion; 

Section 5 is our conclusion. 

II. RELATED THEORIES AND WORKS 

Today, a lot of DCNNs methods have been widely applied 

in the task of medical image analysis, especially in organ and 

tissue segmentation. In most cases, due to the varied shapes 

and sizes of organs among different individuals, a single 

U-Net can hardly obtain accurate results. In this research, 

inspired by the strengths of U-Net, BconvLSTM, SENet, and 

fully connected CRF structures, a novel and automatic 

framework is constructed for lung fields segmentation. This 

section introduces the proposed overall architecture and some 

related works.  

A. U-Net network  

Over the past few years, CNN has been introduced to tackle 

different image processing tasks effectively with its 

remarkable achievement for feature extraction and expression. 

However, it causes large storage overhead and lower 

computation efficiency due to its repeated convolutional 

operations during training.  

The U-Net network is an extension of FCN, which is more 

compatible with the task of image segmentation. Besides, the 

skip connection alleviates the loss of feature information and 

further improves the segmentation performance. It consists of 

down-sampling and up-sampling structures, and can also be 

called encoder and decoder, respectively. The down-sampling 

structure extracts the features information from the input 

samples, and transmits it through continuous operations to the 

next layer. The up-sampling structure expands the resolution 

of the feature maps through deconvolutional operations until 

the resolution of the images is fully restored.  

 

B. BconvLSTM 

In this paper, we use BConvLSTM [24] in our network. 

The structure of BConvLSTM employs two ConvLSTMs 

[25], which can transmit input data to forward and backward 

paths.  

As we all know, the architecture of U-Net adopts skip 

connections to combine the features extracted from the 

encoder and the corresponding decoder layers. In fact, it is 

generally considered that the features obtained from the 

decoder structure involve more semantic information, while 

the higher resolution exists in the corresponding encoder 

structure. In this work, we combine these different feature 

maps with nonlinear functions instead of a simple 

concatenation.  

Due to the difference in feature information between the 

encoder and the decoder, this paper adds the BConvLSTM 

module in the skip connection to reduce the semantic gap. 

BConvLSTM contains two ConvLSTM blocks, the following 

is a brief description of ConvLSTM.  

Standard LSTM fail to consider spatial correction 

information. To mitigate this problem, ConvLSTM [25] 

introduces convolution operation into input-to-state and 
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state-to-state transitions. It models temporal dependence 

while preserving spatial information. ConvLSTM includes 

four elements: input gate ti , output gate to , memory cell tc , 

and forget gate tf . During the training process, the memory 

cell is used to memorize or forget information in the sequence, 

and accordingly update the information stored in it in time. 

The input gate and output gate control the input and output 

messages in the memory cell respectively. Besides, the forget 

gate is used to discard some irrelevant information in the 

memory cell. The process of ConvLSTM at time t can be 

formulated as (1) [25]: 

 

tanh

tanh

t xi t hi t -1 i

t xf t hf t -1 f

t xo t ho t -1 o

t t t -1 t xc t hc t -1 c

t t t

i = (W x +W h b ),

f = (W x +W h b ),

o = (W x +W h b ),

c = f c +i (W x +W h b ),

h = o (c ).









 

 

 

(1) 

where   denotes the operator of the convolution and  is 

Hadamard product.  

Obviously, the ConvLSTM mentioned above accumulates 

past information in the memory cells, which can be seen as 

simply “remembering” the past sequences. In this paper, we 

employed BConvLSTM in the skip connection. The 

BConvLSTM network is a variant of the ConvLSTM network, 

which takes into account the information in both the forward 

path and the backward path. In this way, it can enhance the 

predict results by considering different information. The 

process of BConvLSTM can be formulated as (2) [24]. 

 
1tanh( * * )

f bH f H b

t y t y tY W H W H    (2) 

where 
f

H and 
b

H are the hidden state tensors. 

 

C. SENet 

Recently, many mechanisms have been proposed to 

improve the focusing ability of the network in acquiring 

spatial information, such as attention and perception. The 

architecture of Squeeze-and-Excitation networks (SENet) [26] 

is a kind of attention mechanisms, which can highlight 

important features and suppresses nonsignificant features. In 

this paper, SE modules are embedded in the decoder to 

recalibrate the channel-wise features. Next, we give a simple 

introduction to the SE modules.  

The SE modules are used to capture the relationships 

between feature channels, and the interdependence 

relationship can be modeled explicitly. Assigning weights to 

each channel in the feature maps can enhance useful features 

and suppress others. Therefore, the adaptive calibration of the 

feature channel can be realized. As shown in Fig. 1, SE 

module includes two structures: squeeze and excitation. 

Squeeze operation uses the global average pooling (GAP) 

algorithm to aggregate the global spatial information into a 

channel descriptor, which can be formulated as (3). Excitation 

operation obtains the interdependence between channels 

through the fully connected layer, and assigns a 

corresponding proportion of weights to each channel. This 

process can be formulated as (4), it can capture channel-wise 

dependencies. In this way, recalibration of the original 

features is realized in the channel dimension. 

 

1 1

1
( ) ( , )

H W

c s c c

i j

z u u i j
H W  

 


F  (3) 

 2 1(z, ) ( (z, )) ( ( z))es g ReLU  F W W W W  (4) 

where sF , eF represent the squeeze and excitation operations, 

respectively. 

 
Fig. 1. The Squeeze-and-Excitation module. 

D. Fully connected CRF 

In 2011, Krähenbühl et al. [27] proposed the Fully 

connected conditional random field (CRF) algorithm, which 

can be used as a post-processing step for segmentation 

method. The CRF method originated from the Markov 

Random Field (MRF), which consists of two parts: unary and 

pairwise potentials. Unary potentials consist of a single pixel 

or image patch, and pairwise potentials include adjacent 

pixels or image patches. Different from the basic CRF, the 

fully connected CRF calculates pairwise potentials on all 

pairs of pixels in an image. Equation (5) is the energy function 

of fully connected CRF. 

       , ,    , 1,2, ,i i ij i j

i i j

E x x x x i j N


       (5) 

where N is the number of pixels, ix denotes the label that 

assigned to pixel i. The operator  ,   represent unary term 

and pairwise term respectively. By minimizing (5), a 

sequence of ix  can be obtained, which can be regarded as the 

solution of the function. The unary potential is formulated as 

(6), which is the negative log-likelihood.  

   log ( )i i ix P x   (6) 

where ( )iP x  represents the probability of assigning pixel i to 

the target. Generally speaking, the calculation of ( )iP x  can 

correspond to the output of the network. Pairwise potentials 

allow efficient inference by using a fully connected graph. 

The formula is as follows: 

 

 

2 2

1

2 2

2

2

2

exp
2 2
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2
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p p I I
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w
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  
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 



 

 



(7) 

where I represents an image, ip  and 
jp  represent the 

positions of pixels iI , 
jI  respectively. Equation (7) consists 

of two Gaussian kernels, and the parameters (1)w  and 
(2)w denote the weights of different Gaussian kernels. Besides, 

, ,      control the “scale” of Gaussian kernels. 
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Fig. 2. The network architecture of the proposed method in this paper 

 

III. PROPOSED METHOD  

A. Network architecture 

The proposed method of lung fields segmentation in this 

paper is depicted in Fig. 2. In our research, we adopt the 

U-Net as the backbone. Inspired by the theories of 

BconvLSTM and SENet, this paper puts forward a new model 

to obtain a coarse lung fields segmentation result, and then 

uses fully connected CRF to refine the initial contours. The 

proposed network includes encoder and decoder as in Fig. 2. 

We will introduce the encoder and decoder parts in detail as 

follows. 

 

B. Encoder 

The encoder consists of five layers, each of which includes 

two convolution operations followed by a ReLU activate 

function. In addition, except for the last layer in the encoder, 

each layer contains a max-pooling operation of size 2*2. 

While each layer in the encoder progressively extracts image 

representations, the dimensions of these representations 

increase layer by layer. Through a sequence of convolution 

operations, various features are yielded of the network. In the 

end, the last layer in the encoder generates images with high 

semantic information.  

 

C. Decoder  

The decoder includes some convolution, up-convolution, 

and batch normalization operations. The SE and 

BConvLSTM modules are also embedded in the decoder to 

enhance the representation of the network. More definitions 

and information about these modules are described in section 

Ⅱ. In a standard U-Net, it uses skip connections to concatenate 

features extracted from encoder to decoder with the same 

resolutions, so as to transmit high-resolution information 

throughout the network. In essence, the feature maps of the 

encoder include a large amount of local information, and the 

feature maps of decoder contain more semantic information. 

Concatenating these feature maps simply may result in feature 

redundancy. To solve this problem, instead of the simple skip 

connection between the encoder and decoder, this research 

uses BConvLSTM to concatenate the features extracted from 

the encoder and the decoder. Moreover, SE modules are 

employed in the decoder to highlight important features and 

suppress others. In this way, adaptive calibration of the 

feature channels can be realized. Furthermore, the Batch 

Normalization (BN) operation is applied to speed up the 

process of training, which can increase the network stability.  

Besides, a ReLU operation is employed as the activate 

function of the intermediate layers, and sigmoid is applied to 

the output layers to assign labels. Finally, the Adam optimizer 

is applied to optimize the loss function. 

 

 
 
Fig. 3. Left: A sample randomly selected from the JSRT dataset. Right: 

Probability map of the corresponding segmentation output by the proposed 

network.  

D. Post-processing  

In this work, U-Net with BConvLSTM and SE modules 

produces a probability map for each sample. Specifically, the 

proposed network assigns a probability to each pixel in the 

image. Fig. 3 gives a group of randomly selected image from 

the JSRT dataset and its segmentation probability map. In the 

probability map, the intensity of each pixel represents the 

likelihood that the pixel belongs to a part of the lung region. In 

our study, the algorithm of fully connected CRF is employed 

as the post-processing method, and the probability map and 

the original image are taken as its input. This algorithm is 
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considered to be a highly efficient inference method. The 

potentials of the pairwise edge is defined by a linear 

combination of Gaussian kernels in the feature space. In this 

way, the surrounding pixels are considered in the original 

images.  

IV. EXPERIMENT  

A. Dataset information 

1) JSRT dataset  

In this paper, we use a publicly available dataset of the 

Japanese Society of Radiological Technology (JSRT) [28] to 

evaluate the performance of the segmentation models. The 

JSRT dataset is collected from one American institution and 

thirteen Japan institutions. The image grayscale in JSRT is 

12-bit, and the spatial resolution is 0.175 mm. The lung 

segmentation labels for the JSRT dataset are manually 

annotated by radiologists and can be accessed at: 

http://www.isi.uu.nl/Research/Databases/SCR/. Fig. 4 shows 

gold standard lung segmentation masks and its original 

images. The JSRT dataset consists of 247 PA chest 

radiographs with 2048*2048 image resolution, the dataset 

was divided to two folds: fold 1 includes 124 images and fold 

2 has 123 images. 

 
Fig. 4. Chest X-Ray images and corresponding ground truth in JSRT dataset 

 

2) MC dataset 

In this research, the Montgomery County Chest X-Ray 

database (MC) is also employed to evaluate the model 

performance. The MC dataset is a publicly available dataset 

created by the Department of Health and Human Services, 

Montgomery County, Maryland, USA. This dataset contains 

Chest X-Ray images collected under Montgomery County’s 

Tuberculosis screening program. The MC dataset includes 

138 Chest X-Ray images, of which 80 are from normal cases 

and 58 are abnormal cases with manifestations of tuberculosis. 

The images of the MC dataset are 12-bit gray-scale and their 

resolutions are either 4020 4892  or 4892 4020 . The 

pixel spacing in vertical and horizontal directions is 

0.0875mm. In addition, the MC database has gold standard 

segmentations under the supervision of a radiologist [7], [29]. 

Fig. 5 shows gold standard lung segmentation masks and its 

original images. 

 

 

Fig. 5. Chest X-Ray images and corresponding segmentation labeled in the 

MC dataset.  

B. Evaluation metrics 

The definitions of TP, FP, TN, and FN are included in 

Table I. These definitions can be used in the computation of 

segmentation performance.  
TABLE I 

THE CONCEPT OF CONFUSION MATRIX 

Predict  
Ground-Truth 

Positive Negative 

Positive TP FP 

Negative FN TN 

 

1) Jaccard index (Ω): is the agreement between the lung area 

in the real segmentation (GT) and the estimated results (S). It 

can be formulated as (8): 

 
= 

S GT TP

S GT FP TP FN


 

  
 

(8) 

2) Dice similarity coefficient (DSC): represents the overlap 

between the real segmentation and the estimated results. It can 

be defined as follows: 

 2
 = 

2

S GT TP
DSC

S GT TP FN FP




  
 

(9) 

3) Sensitive: denotes the ability that the ground truth can be 

predicted as the correct objective region. It can be computed 

as (10): 

 

+

P

P N

T
Sensitivity

T F
  

(10) 

4) Accuracy: is the proportion of pixels that are correctly 

assigned to the objective region or background in the whole 

image. Its formula as shown in (11): 

 TN TP
Accuracy

TP FP TN FN




  
 (11) 

 

C. Data augmentation 

Labeling large-scale data by radiologists is both 

time-consuming and costly. Therefore, it is difficult to obtain 

a complete medical image dataset. As we all know, deep 

learning methods, especially convolutional neural networks, 

require abundant samples for training. Based on this, a 

potential solution to the problem of insufficient data is 

augmentation technologies during training. In this paper, we 
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employ augmentation methods including random rotation, 

center cropping, scaling, and offset changes to generate new 

images. 

 

D. Training 

In this work, we used two-fold cross-validation method to 

evaluate the performance of the proposed network. The JSRT 

and MC datasets were split into 3 subsets: training, validation, 

and testing. During the training stage, the validation subset is 

employed to tune the trained model until the validation subset 

reaches prominent results, at which point the trained model is 

considered to have the best parameters. Based on this, 20% of 

the training samples were reserved as validation subset. 

Besides, to accelerate the network learning process, each 

up-convolutional layer in the decoder was followed by a BN 

operation. The epoch is set to 100. 

 

V. RESULTS AND DISCUSSION 

In this paper, our experiments were implemented in the 

Python programming language with the Keras framework. 

The size of the images was adjusted to 256*256 without any 

compression.  

The proposed network was an extension of U-Net. As we 

all know, U-Net has been considered as the baseline 

framework for the task of image segmentation. Hence, this 

paper compared the proposed network with a single U-Net 

with the same data augmentation techniques to prove its 

effectiveness on JSRT and MC Datasets.  

To validate the contribution of BConvLSTM to lung fields 

segmentation, we conducted an ablation experiment without 

BConvLSTM. The features extracted from the encoder and 

decoder is concatenated by the BConvLSTM structure in our 

work, rather than the skip connection of U-Net. In the network, 

the features in the encoder included a lot of local information, 

while decoder contained more semantic information. 

Combing these two features may result in feature redundancy 

in both local information and semantic information. This 

paper used BConvLSTM to replace skip connection to 

mitigate this problem. For a clear comparison, we set the 

epoch to 50, and used the model trained in step 50 for 

verification. The segmentation results were shown in Fig. 6.  

 
Fig. 6. Segmentation results with or without BConvLSTM 

In this work, the SE modules were embedded in the 

decoder. To prove its effectiveness, an ablation experiment 

without the SE modules on JSRT was implemented. We set 

the epoch to 50, and used the model trained in step 50 for 

verification. From Table II, it is clear that the network with the 

SE modules produced more accurate results. The reason was 

that the adaptive feature recalibration of the SE modules can 

boost the representational ability by enhancing useful features 

and suppressing weak features.   

 
TABLE II 

QUANTITATIVE COMPARISON WITH SE MODULE IN THE 

PROPOSED NETWORK. 

Method Ω(%) DSC(%) 

Without SE module 93.9 95.4 

With SE module 95.0 96.6 

 
TABLE III 

QUANTITATIVE COMPARISON OF THE DIFFERENT LUNG FIELDS 

SEGMENTATION METHODS 

Method Ω (%) DSC(%) Sensitivity(%)  Accuracy(%) 

SEDUCM [30] 

(JSRT) 

95.2 97.5 ----- ----- 

Inverted with 

ELU [17] 

(JSRT) 

95.0 97.4 ----- ----- 

Rigid [7] 

(JSRT) 

95.4 96.7 ----- ----- 

Rigid [7] 

(MC) 

94.1 96 ----- ----- 

Single U-Net 

(MC) 

92.5 94.0 95.6 96.1 

Single U-Net 

(JSRT) 

93.8 96.2 95.9 96.8 

The proposed 

method 

(JSRT) 

95.48 97.5 96.3 97.7 

The proposed 

method 

(MC) 

95.1 97.3 95.9 97.0 

 

To evaluate the performance of the model, this work used 

four different indicators: Jaccard Index, DSC, Sensitivity, and 

Accuracy. In this paper, the probability images from the 

output of the proposed method were converted into binary 

images by setting the threshold to 0.5. Afterwards, the 

segmentation performance of the binary image was calculated. 

Table III presented some quantitative comparison results of 

different models. From Table III, the SEDUCM achieved 

97.5% of DSC on the JSRT dataset, but it needed to predefine 

the number of features corresponding to various segmentation 

tasks. Furthermore, the parameters in the method of 

SEDUCM are adjusted manually, and it took more time to 

train the model. Therefore, its generalization and automation 

capabilities were poor. The performance of the Inverted 

network with ELU [17] achieved a Jaccard index of 95.0% 

and a DSC of 97.4%. It was obvious that our method achieved 

higher performance than the recently popular InvertedNet 

network. The method of [7] was widely applied in medical 

image segmentation. It was included in the registration-based 

methods that used a labeled lung database as an anatomical 

atlas to match the target images. Nevertheless, this method 

relied on the results of non-rigid registration heavily. Finally, 

in conclusion, the experiments and discussion demonstrated 

the effectiveness and reliability of the proposed method.  

VI. CONCLUSION 

As we all know, CAD can be used for early diagnosis and 

accurate treatment of lung diseases. Furthermore, CAD is a 

requisite tool for automatic diagnosis, which can provide 

radiologists with more persuasive and reliable judgments. A 

critical component in CAD of lung disease is automatic and 

accurate lung fields region detection. In this paper, a novel 

framework for lung fields segmentation is proposed. By using 

a. Original image b. Ground Truth c. No BConvLSTM d. With BConvLSTM 
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the U-Net as the backbone, and adding BconvLSTM and SE 

modules to the network. Then the fully connected CRF is 

employed to refine the coarse segmentation results. The 

proposed framework is capable of learning more 

discriminative features, thereby producing more effective 

segmentation results. Finally, to prove the effectiveness of the 

proposed method, four indicators are adopted to evaluate the 

model performance. Compared with some algorithms, the 

proposed method shows higher performance on the JSRT and 

MC datasets. 
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