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Abstract— The purpose of this paper is to control a 

quadrotor in a finite-time. Here the nonlinear controller is 

designed by the back-stepping method. For each quadrotor 

subsystem, a proposed finite-time nonlinear controller is 

designed in several steps. In addition, in the last step of the 

controller design algorithm, the super-twisting method is used, 

which is robust to uncertainties. This method produces a 

smooth control signal because it is a second-order sliding mode 

algorithm. This control system ensures finite-time convergence 

of quadrotor attitude and position states. The stability of the 

proposed method has been analytically proven and computer 

simulations have been performed to evaluate the results of the 

control system. 

 
Index Terms— Quadrotor, Finite-time convergence, Back-

stepping method, Super-twisting controller 

 

I. INTRODUCTION 

NMANNED aerial vehicles have received significant 

attention in recent decades. Especially, the quadrotor, 

as an example of small scale UAVs, is the focus of much 

attention in the research community, owing to its simple 

structure and low cost. It has been successful in many 

commercial applications, such as aerial photography, 

agricultural service, search and rescue, industrial inspection 

and so on [1]. Given advantages (managed remotely or 

autonomously, fly over areas of difficult access, etc.), these 

robots are ideal tools for inspection [2].  

Control of these flying robots has been done using various 

methods including linear controllers. For example in [3] the 

classical PID controller is designed to control a quadrotor. 

The design of the LQR controller to control a quadrotor is 

performed in [4]. One of the disadvantages of linear 

controllers is that they do not have the ability to effectively 

stabilize quadrotor when complex airflows are generated by 
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the reaction of the rotors and also they cannot stabilize it in 

the presence of disturbances. Because these items cause the 

quadrotor to deviate from the operating point for which the 

controller is designed.  

The dynamic quadrotor model is nonlinear [5], so it is 

better controlled with nonlinear control methods. So far, 

many nonlinear methods have been used to control it. The 

back stepping control method is very useful when some 

states are controlled by other states. In quadrotor, it is 

usually advantageous to use the back stepping method for 

transferring positional movements. In [6-8] the back 

stepping controller is designed to control quadrotors. The 

sliding mode control (SMC) method is a nonlinear method 

for uncertain systems. This control method has also been 

used for quadrotor in [9-11]. Different types of this control 

method have also been used for various applications, 

including dynamic terminal SMC [9], integral back stepping 

SMC [10], Adaptive SMC [11] and chaos synchronization 

via integral SMC [12]. 

The convergence of the output to the desired value in a 

finite time is very important. Finite time stability, in addition 

to the error convergence speed, also brings robustness to 

uncertainties and disturbances [13]. In some methods, such 

as the sliding mode method, to ensure finite time 

convergence, the control input equation includes a 

discontinuous sign function that causes high frequency 

oscillation in the control signal. Due to the oscillation 

control signal, it is not possible for this type of controllers to 

perform. A very popular control algorithm is the super-

twisting (ST) [14] algorithm. It was proposed to stabilize 

disturbed systems of relative degree one by means of 

continuous control. The ST enforces second-order sliding 

modes, i.e. the output (sliding variable) and its time-

derivatives are driven to zero in finite-time. Theoretically, 

the STA is able to compensate Lipschitz disturbances 

exactly [15]. Applications of ST algorithm in various 

systems are presented in [16-19].  

The main innovation of this paper is to control a 

quadrotor robot in a finite time. This goal will be achieved 

by proposing a hybrid finite time backstepping algorithm. 

The hybrid controller must be used for four different 

quadrotor subsystems separately. Due to the nonlinearity of 

the proposed controller, it will be used in the whole 

quadrotor operating range. In the first stages of controller 

design, the finite time stability theory is used to obtain 

virtual controllers. The super twisting algorithm is used in 

final step of each four controllers which causes robustness 

against model and parametric uncertainties.  

In the second section, modeling will be done. In the third 
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part, the proposed control theory will be described and the 

proposed method will be used to control this flying object. 

In the fourth section, the simulation results will be presented. 

Finally, the conclusion will be made.  

II. QUADROTOR DYNAMIC MODEL  

Several basic assumptions are made for quadrotor 

modeling. These assumptions simplify the modeling process 

and provide a simpler dynamic model. These assumptions 

are as follows [20]: 

- The structure is supposed to be rigid. This 

assumption limits the degree of freedom of the 

quadrotor to 6.  

- The structure is supposed to be symmetrical. Using 

this assumption causes the inertia matrix of the 

quadrotor body to be symmetrical. 

- The center of mass and the body fixed frame origin 

are assumed to coincide. 

- The propellers are supposed to be rigid. 

- The propelling force of the rotors is proportional to 

the square of the angular speed of the rotors. 

Using Newton's second law, the relationship between the 

equations of motion, forces and torques is expressed. 

Therefore, the equations of motion must be transferred from 

the body coordinate system to the inertia coordinate system. 

Using Newton's second law, the dynamic equations are as 

follows: 
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In this equation, I is the body inertia matrix of quadrotor, 

which is a diametric matrix due to the symmetry of the 

quadrotor [21].  
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RJ
 is the inertia of the rotor and   is the angular torque 

vector on the quadrotor. 
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d is the coefficient of air resistance and l is the length of 

the connecting rod between the rotor and the center of the 

quadrotor. Using the angular speed of the rotors, four 

control signals are defined to simplify the equations of the 

quadrotor dynamic model in the form of Equation (4). 
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 (5)       
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The following dynamic are obtained using differential 

equations for angular accelerations and linear acceleration. 

(6)   

 

 

 

1

1

1

2

3

4

cos sin cos sin sin . /

cos sin sin sin cos . /

cos cos . /

y z R

d

x x y

z x R

d

y y y

x y

z z

x u m

y u m

z g u m

I I J l
u

I I I

I I J l
u

I I I

I I l
u

I I

    

    

 

  

  

 

  


 


  
  
    

 


 
     

 
  
   
  

 

It can be seen that the angles subsystem is completely 

independent of the position subsystem. But the position 

subsystem depends on the angles subsystem. This model can 

be written in the form of ( , )X f X U  state space where 

1 2 3 4[ , , , ]TU u u u u  is the vector of input. 12X   is the 

vector of variables and is defined as follows [21]: 

(7)         ( , , , , , , , , , , , )TX x x y y z z        

System state space: 

(8)           
( ) ( )X F x G x U

Y CX

 


 

III. CONTROL SYSTEM DESIGN  

A. Hybrid back-stepping super-twisting control with finite-

time convergence  

Many studies have been conducted on the finite-time 

convergence of systems [22, 23]. Consider the following 

system: 

(9)        ( ), : nx f x f D   

Consider the continuous Lyapunov function : nV   

in the neighborhood of the equilibrium point, which is 

positive. So the origin will be finite time stable if:  

(10)         ( ) ( ) ,   0 1,   0V x cV x c       

and the convergence time depends on the initial conditions 

as follows [24, 25]: 
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To describe a backstepping controller with finite time 

convergence capability, consider the following second order 

system: 
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we start with the first equation (12): 

(13)              
  ( )x f x g x  

 

  is considered as a virtual input. Then the virtual control 

is as follows: 

(14)             ( )x   

to bring the state variable x to the desired value in a 

Engineering Letters, 30:2, EL_30_2_32

Volume 30, Issue 2: June 2022

 
______________________________________________________________________________________ 



 

finite time. For this purpose, consider the following 

Lyapunov function: 

(15)            
21
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2
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 is the desirable value of the x . The derivative of this 

function is as follows: 

(16)      

   

( )

         = ( ) ( )d d

V
V x x

x

x x f x g x x x





    

 

using  
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we have 

(18)               ( )V x cV    

Equation (18) guarantees that the x  converges to dx  in 

a finite time and its convergence time will be obtained from: 
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Now in the second step, a sliding variable is defined as 

follows: 
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The sum of parametric and model uncertainties can be 

added to the sliding variable dynamics as follows: 

(21)     ( ) ( ),    ( )  ds u x d t d t L     

control input to stabilize the sliding variable, by using 

super twisting algorithm is determined as [24-29]: 
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B. Position subsystem controller 

To control the position of the quadrotor on the z axis, the 

subsystem related to this section is as follows: 
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where 5x z and since the dynamic system has two state 

variable, so the back stepping controller will be designed in 

two steps. To control the z, we start with equation (25):  

(25)                5 6x x  

In this equation, 
6x  is considered as a virtual input. Then 

this virtual control will be considered as follows: 

(26)           6 1( )x x  

this virtual control input brings the state variable 
5x  to 

the desired value in a finite time. For this purpose, consider 

the Lyapunov function:  
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where 5dx  is the desirable value of the state variable 5x  

or the desirable position on the z axis. The derivative of this 

Lyapunov function is as follows: 

(28)

    
  11

11 5 5 5 1 5( ) ( )d d

V
V x x x x x x

x



   


 

(29)         
 

 11

1 5 11 11

5 5

1
( ) d

d

x x c V
x x

  


 

(30)                   11

11 11 11( )V x c V 
   

Equation (30) guarantees that the state variable 5x will 

converge to 5dx in a finite time and its convergence time 

will be obtained from the following equation: 
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Now in the second step, a sliding variable is defined as 

follows: 
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where 1( )d t  is sum of parametric and model 

uncertainties. Control input by using super twisting 

algorithm is determined as: 
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By using this controller, the finite time stability of the 

system will be guaranteed in the second step.  

The x axis is controlled by   angle. Therefore, we use 

the following dynamics to control the position on this axis: 
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In which 
1x x  and 

9x  . The above dynamic system 

has four state variables, so the finite time back stepping 

controller will be designed in four steps. With the same 

process as in the height axis, the controller in this axis is 
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designed as follows:  
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The control of the y axis is done by the  angle. 

Therefore, to control the position on this axis, we consider 

the following subsystem: 
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In which 
3x y , 

11x  . The above dynamic system 

has four state variables, so the back stepping controller will 

be designed in four steps. Similar to the x axis controller, the 

controller in this axis is also designed as follows: 
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C. Control of   angle  

To control   angle, consider the following dynamics: 

(39)           

11 12

12 10 8 3 4

4 11

z

x x

l
x x x I u

I

y x



 



 

where 
11x   and the above dynamic system has two 

state variables, so the controller will be designed in two 

steps. The controller is designed similarly to the previous 

section as follows: 
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IV. SIMULATION RESULTS 

Here the results of the proposed controller simulation will 

be presented. To perform the simulation, the values of the 

parameters are used as identified in the following table: 
TABLE. 1- QUADROTOR MODEL PARAMETERS 

Variable Values Units 

sm
 

1.1 kg 

l  0.21 m 

x yl l
 

1.22 Ns2/rad 

zl
 

2.2 Ns2/rad 

rl
 

0.2 Ns2/rad 

( 1,2,3)ik i 
 

0.1 Ns/m 

( 4,5,6)ik i 
 

0.12 Ns/m 

g
 9.81 m/s2 

b  5 Ns2 

k  2 N/ms2 

c  1 - 

To check the performance of the proposed controller in 

first scenario, tracking a specific trajectory is considered. In 

Figures (1) and (2), by applying the controller to the 

quadrotor system, changes in position variables and errors in 

tracking the desired positions are shown. As can be seen, by 

applying the proposed control system, the position states 

follow the desired positions in a finite time, and the position 

tracking error converges to zero with high precision. 

Figures (3) and (4) show the changes of angles and the 

angles tracking errors. It is evident that, by applying the 

proposed control system, the quadrotor angles follow the 

desired angles with high accuracy and in a finite time, also 

the angles tracking error converges to zero. It can be say that 

only state  is the main output of the system and states   

and   are used as auxiliary variables to track the positions x 

and y. 

Figure (5) shows the control input signals. It can be seen 

that the control signals generated using the proposed 

controllers have a suitable amplitude and smooth behavior 

that can be easily implemented. Figure (6) shows the 

trajectory of the quadrotor and the desired trajectory. It is 

evident that the quadrotor have followed the desired 

trajectory with good accuracy. 
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Fig. 1- position variables in first scenario 
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Fig. 2- Position tracking errors in first scenario 
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Fig. 3- Angle variables in first scenario 
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Fig. 5- Control Input Signals in first scenario 
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Fig. 6- Quadrotor Trajectory in first scenario 

Now the performance of the control system in tracking a 

sinusoidal path is evaluated. For this purpose, from the 

beginning of the simulation, the desired sinusoidal output in 

the x and y channels and the desired slope output in the 

height axis are considered. By performing the simulation, 

changes in position and angle variables are plotted in 

Figures (7) and (8). As can be seen, by applying the 

proposed control system, the quadrotor position states 

follow the desired positions with high accuracy and the 

tracking errors are converged to zero. Also, by applying the 

proposed control system, the quadrotor angles follow the 

desired angles with high accuracy. 

Figure (9) shows the changes in the control input signals 

in this scenario. It is observed that the control inputs have a 

smooth changes in the acceptable range to track the related 

outputs. Figure (10) also shows the quadrotor path and the 

desired path. It is observed that the desired sinusoidal path is 

tracked with high accuracy. 

 
Fig. 7- Position variables in tracking the sinusoidal path  

 
Fig. 8- Angle variables in tracking the sinusoidal path 

 
Fig. 9- Control inputs in tracking the sinusoidal path 

 
 

Fig. 10- Quadrotor path in tracking the sinusoidal path 
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V. CONCLUSION 

In this paper, a finite time backstepping controller is 

designed to control a quadrotor. For this purpose, the 

dynamics of quadrotor were considered as four independent 

subsystems. These four sections include the z subsystem, the 

x position subsystem, the y position subsystem, and the   

angle subsystem. In the x and y position subsystems, the 

angles   and   are used as auxiliary variables. The 

simulation results show that the proposed controller has a 

successful performance in controlling the position and 

angles of the quadrotor in a finite time.  
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