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Abstract—In this paper, the discrete variational derivative
method (DVDM) and the compact difference method are
combined to construct linearly energy-preserving schemes for
the Korteweg-de Vries equation. The sixth-order compact dif-
ference method is used in the spatial direction, and the discrete
variational derivative method is used in the temporal direction.
The resulting fully discrete schemes are linear, unconditionally
stable, uniquely solvable, and can precisely conserve the discrete
mass and energy. At last, some benchmark numerical examples
are given to demonstrate the accuracy and efficiency of the
proposed schemes. Numerical results show that the proposed
schemes are more advantageous than the existing methods.

Index Terms—Energy; Compact difference scheme; DVDM;
Korteweg-de Vries equation

I. I NTRODUCTION

T HE Korteweg-de Vries (KdV) equation

∂u

∂t
+ εu

∂u

∂x
+ µ

∂3u

∂x3
= 0, (1)

describes the evolution of the solitary wave. The parameters
ε, µ represent real constants. To determine the solution of
(1), we prescribe the following initial value and periodic
boundary condition

u(x, 0) = u0(x), u(a, t) = u(b, t).

The KdV equation is a completely integrable equation, it has
infinite number of conserved properties [1], the first three
conservation laws are

M(t) =

∫ b

a

u dx,

K(t) =
1

2

∫ b

a

u2 dx,

H(t) =

∫ b

a

[
−ε

6
u3 +

µ

2
u2
x

]
dx,
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which are respectively named mass, momentum and energy.
The quality of a numerical approximation hinges on how

well the physical properties of the original system can be pre-
served. The conservative methods have been shown to enjoy
favorable properties such as qualitative solution behavior and
improved overall accuracy [2]. To our knowledge, there have
been many results for the KdV equation. For instance, finite
difference methods [3], [4], finite element methods [5], [6],
spectral method [7] and operator splitting method [8], and
so on. However, the majority of the aforementioned methods
are designed to preserve onlyM, not other invariants.

Besides, some other methods are proposed to conserve
the invariants of the KdV equation. For example, symplectic
methods [9], [10], momentum-preserving methods [11]–[13],
and energy-preserving methods [14]–[16]. It is worthwhile
to note that Gong [10] proposed several systematic meth-
ods to discretize general multi-symplectic formulations of
the Hamiltonian partial differential equations (PDEs). Yi
[11], Bona [12] and Yan [13] designed some momentum-
preserving schemes to solve the KdV equation. More recent-
ly, researchers paid more attention to the energy-preserving
methods, for example, Celledoni proposed an average vector
field (AVF) method in [14], Brugnano [15] developed the
Hamiltonian boundary value method (HBVM) and Furihata
[16] proposed the discrete variational derivative method
(DVDM) to solve the general conservative or dissipative
PDEs. The DVDM methods has been extended in various
aspects. For more details see [17]–[20]. Inspired by the
compact DVDM in [19], we designed two linearly energy-
preserving schemes to solve the KdV equation.

The rest of this paper is organized as follows. In Section2,
we briefly introduce the basic knowledge of the compact d-
ifference method, and derive the proposed energy-preserving
schemes. In Section3, the uniqueness and solvability of the
proposed schemes are analyzed. In Section4, we analyze the
linear stability of the proposed schemes. In Section5, some
numerical examples are presented to validate the efficiency of
the proposed schemes. At last, some conclusions are given.

II. L INEARLY ENERGY-PRESERVING SCHEMES

The equation (1) can be rewritten as the following Hamil-
tonian form

ut =
∂

∂x

(
δG

δu

)
, G (u, ux) = −ε

6
u3 +

µ

2
u2
x (2)

whereG(u, ux) represents local energy, andδGδu denotes the
variational derivative ofG with respect tou, i.e. δG

δu = ∂G
∂u −

∂
∂x

(
∂G
∂ux

)
.
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A. Compact finite difference method

Firstly, we briefly describe the framework of compact
difference method. For more details refer to see [19], [21],
[22] and references therein.

Given a sufficiently smooth functionf(x), which is ap-
proximated byfi (i = 0, 1, . . .N − 1) on the uniform
mesh with the mesh sizeh = (b − a)/N . In the following,
unless otherwise specified, the discrete periodic boundary
conditionsfi±N = fi will be supposed and the values for
the nodes outsidei = 0, 1, . . .N will be periodically defined.

Typical compact finite difference operator for∂/∂x is
defined in the following form

f
′

j + α
(
f

′

j+1 + f
′

j−1

)
+ β

(
f

′

j+2 + f
′

j−2

)

= a
fj+1 − fj−1

2h
+ b

fj+2 − fj−2

4h
+ c

fj+3 − fj−3

6h
,

(3)

whereα, β, a, b, andc are real constants.
Equality (3) can also be expressed in the following matrix

form
Tf

′

= Sf, (4)

where

f = (f1, f2, · · · , fN )T , f
′

= (f
′

1, f
′

2, · · · , f
′

N)T ,

T = C(1, α, β, 0, · · · , 0, β, α),

S =
1

12h
C(0, 6a, 3b, 2c, 0, · · · , 0,−2c,−3b,−6a),

whereinT and S are respectivelyN × N symmetric and
anti-symmetric matrix.

In particular, whenα = β = 0, a = 3
2 , b = − 3

5 , c = 1
10

and α = 1
3 , β = 0, a = 14

9 , b = 1
9 , c = 0, the sixth order (i.e.

O(h6)) standard central finite difference operator (C6) and a
three point compact difference operator (T6) are respectively
obtained for∂/∂x.

Proposition II.1. Let h > 0, f(x) ∈ C7[a, b] and α = 1
3 ,

β = 0, a = 14
9 , b = 1

9 and c = 0, the truncation error of the

compact difference operator (T6) is− 1
1260f

(7)
j h6.

Proof: By resorting to the Taylor formula, expanding
the left side of (3) at nodex = xj , j = 0, 1, ..., N , we have

f
′

j = f
′

j ,

αf
′

j−1 = αf
′

j − αhf
′′

j + α
h2

2
f
(3)
j − α

h3

6
f
(4)
j + α

h4

24
f
(5)
j

− α
h5

120
f
(6)
j + α

h6

720
f
(7)
j − h7

5040
f
(8)
j +O

(
h7

)
,

αf
′

j+1 = αf
′

j + αhf
′′

j + α
h2

2
f
(3)
j + α

h3

6
f
(4)
j + α

h4

24
f
(5)
j

+ α
h5

120
f
(6)
j + α

h6

720
f
(7)
j +

h7

5040
f
(7)
j +O

(
h7

)
.

Adding up both sides of the above equalities, we get

αf
′

j−1 + f
′

j + αf
′

j+1 = (2α+ 1) f
′

j + αh2f
(3)
j

+ α
h4

12
f
(5)
j + α

h6

360
f
(7)
j +O

(
h7

)
.

(5)

Next, expanding the right side of (3) at nodex = xj ,
j = 0, 1, ..., N , we have

b
fj+2 − fj−2

4h
= bf

′

j +
4

6
bh2f

(3)
j +

16

120
bh4f

(5)
j

+
64

5040
bh6f

(7)
j +O(h7).

a
fj+1 − fj−1

2h
= af

′

j +
1

6
ah2f

(3)
j +

1

120
ah4f

(5)
j

+
1

5040
ah6f

(7)
j +O(h7).

Adding up both sides of the above equalities, we have

b
fj+2 − fj−2

4h
+ a

fj+1 − fj−1

2h
= (a+ b) f

′

j

+

(
a+ 22b

)

6
h2f

(3)
j +

(
a+ 24b

)

120
h4f

(5)
j

+
(a+ 26b)

5040
h6f

(7)
j +O(h7).

(6)

Substitutingα = 1
3 , β = 0, a = 14

9 , b = 1
9 , and c = 0 into

(5) and (6), we have

1

3
f

′

j−1 + f
′

j +
1

3
f

′

j+1 =
5

3
f

′

j +
1

3
h2f

(3)
j +

h4

36
f
(5)
j

+
h6

1080
f
(7)
j +O(h7),

fj+2 − fj−2

36h
+ 7

fj+1 − fj−1

9h
=

5

3
f

′

j +
1

3
h2f

(3)
j

+
1

36h
h4f

(5)
j +

13

7560
h6f

(7)
j +O(h7).

Subtracting the above two equations, we have

1

3
f

′

j−1 + f
′

j +
1

3
f

′

j+1 −
1

36h
(fj+2 − fj−2)

− 7

9h
(fj+1 − fj−1) = − 1

1260
f
(7)
j h6.

Thus, the result is hold.
Similarly, the compact difference operator for∂2/∂x2 is

defined in the following form

f
′′

j + α̂(f
′′

j+1 + f
′′

j−1) + β̂(f
′′

j+2 + f
′′

j−2)

= â
fj+1 − 2fj + fj−1

h2
+ b̂

fj+2 − 2fj + fj−2

4h2

+ ĉ
fj+3 − 2fj + fj−3

9h2
,

(7)

whereâ, β̂, â, b̂ and ĉ are real constants.
Denote d̂ = −72â + 18b̂ + 8ĉ, equality (7) can also be

expressed in the following matrix form

T1f
′′

= S1f,

where

f = (f1, f2, · · · , fN )T , f
′′

= (f
′′

1 , f
′′

2 , · · · , f
′′

N)T ,

T1 = C(1, α, β, 0, · · · , 0, β, α),
S1 = (1/36h2)C(d̂, 36â, 9b̂, 4ĉ, 0, · · · , 0, 4ĉ, 9b̂, 36â).

wherein T1 and S1 are respectivelyN × N symmetric
circulant matrix.

In particular, in case of̂α = β̂ = 0, â = 3
2 , b̂ = − 3

5 ,
ĉ = 1

10 and α̂ = 2
11 , β̂ = 0, â = 12

11 , b̂ = 3
11 , ĉ = 0, the sixth

order (i.e.O(h6)) standard central finite difference operator
(C6) and a three point compact difference operator (T6) are
respectively obtained for∂2/∂x2.

Proposition II.2. Let h > 0, f(x) ∈ C7[a, b], and α̂ = 2
11 ,

β̂ = 0, â = 12
11 , b̂ = 3

11 and ĉ = 0, the truncation error of

the compact difference operator (T6) is− 1
1980f

(8)
j h6.

Proof: The proof is similar as the Proposition II.1.
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B. Scheme 1

Define a discrete local energy as follows

Gd(U
m+1, Um)i =

µ

2

(
δ
〈1〉
c Um+1

i

)2
+
(
δ
〈1〉
c Um

i

)2

2

− ε

6

(
Um
i

)2
Um+1
i +

(
Um+1
i

)2
Um
i

2
,

(8)

whereδ〈1〉c denotes the first order compact difference opera-
tor.

Substituting (8) into the following equality, we have

N−1∑

i=0

′′

[
Gd(U

m+1, Um)i −Gd(U
m, Um−1)i

]
∆x

=

N−1∑

i=0

′′

[
− ε

6

(
Um
i

)2
+ Um

i

(
Um+1
i + Um−1

i

)

− µ

2

(
δ〈1〉c

)2(
Um+1
i + Um−1

i

)]Um+1
i − Um−1

i

2
∆x

=

N−1∑

i=0

′′

[
− ε

6
Um
i

(
Um
i + Um+1

i + Um−1
i

)

− µ

2

(
δ〈1〉c

)2(
Um+1
i + Um−1

i

)]Um+1
i − Um−1

i

2
∆x,

where
N−1∑
i=0

′′fi
∆
= 1

2f0 + f1 + · · ·+ fN−1 +
1
2fN denotes the

trapezoidal rule.
Then, we obtain a discrete scheme ofδG

δu as follows,

δGd

δUi
=

δGd

δ(Um+1, Um, Um−1)i

= −ε

6
Um
i

(
Um
i + Um+1

i + Um−1
i

)

− µ

2

(
δ〈1〉c

)2(
Um+1
i + Um−1

i

)
.

(9)

Substituting (9) into (2) and approximating(ut)i by(
U

(m+1)
i − U

(m−1)
i

)
/2τ , we have

Um+1
i − Um−1

i

2τ
= −µ

2
δ〈1〉c

(
δ〈1〉c

)2(
Um+1
i + Um−1

i

)

− ε

6
δ〈1〉c Um

i

(
Um
i + Um+1

i + Um−1
i

)
,

(10)

wherei = 0, 1, . . . , N .
Scheme 1 can also be reformulated as the following matrix

form

(T 3 + µτS3)Um+1 = (T 3 − µτS3)Um−1

− ε

3
τT 2SUm(Um+1 + Um + Um−1),

(11)

which satisfies the following conservative properties

Theorem II.1. Let Um be numerical solution of (10), and
suppose it satisfies the periodic boundary conditions, then
the solution of the scheme 1 (10) satisfies

Md

(
Um+1, Um

)
= Md

(
U1, U0

)
,

Hd

(
Um+1, Um

)
= Hd

(
U1, U0

)
.

Proof:

Md(U
m+1, Um)−Md(U

m, Um−1)

2∆t

=

N−1∑

i=0

′′U
m+1
i − Um−1

i

2∆t
∆x

=
N−1∑

i=0

′′δ〈1〉c

δGd

δ(Um+1, Um, Um−1)i
∆x

=

[
δGd

δ(Um+1, Um, Um−1)i

]b

a

= 0.

Similarly,

Hd(U
m+1, Um)−Hd(U

m, Um−1)

2τ

=

N−1∑

i=0

′′ δGd

δUi

Um+1
i − Um−1

i

2τ
∆x

=

N−1∑

i=0

′′ δGd

δUi
δ〈1〉c

δGd

δUi
∆x

= −
N−1∑

i=0

′′δ〈1〉c

δGd

δUi

δGd

δUi
∆x

= 0.

C. Scheme 2

Given the discrete local energy is defined as follows,

Gd

(
Um+1, Um

)
i

= −ε

6

(
Um
i

)2
Um+1
i +

(
Um+1
i

)2
Um
i

2

+
µ

2

(
δ+c U

(m+1)
i

)2
+
(
δ−c U

(m+1)
i

)2

4

+
µ

2

(
δ+c U

m
i

)2
+
(
δ−c U

m
i

)2

4
,

(12)

where δ+c and δ−c respectively represents the forward and
backward compact difference operator.

Substituting (12) into the following equality, we have

N−1∑

i=0

′′

[
Gd

(
Um+1, Um

)
i
−Gd

(
Um, Um−1

)
i

]
∆x

=

N−1∑

i=0

[
− ε

6

(
Um
i

)2(
Um+1
i − Um−1

i

)

2

− ε

12
Um
i

(
Um+1
i − Um−1

i

)(
Um+1
i + Um−1

i

)

− µ

8
δ+c

(
Um+1
k + Um−1

k

)
δ+c

(
Um+1
k − Um−1

k

)

− µ

8
δ−c

(
Um+1
k + Um−1

k

)
δ−c

(
Um+1
k − Um−1

k

)]
∆x

=

N−1∑

i=0

[
− ε

6
Um
i

(
Um
i + Um+1

i + Um−1
i

)

− µ

2
δ〈2〉c

(
Um+1
i + Um−1

i

)]Um+1
i − Um−1

i

2
∆x.
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Then, we obtain a discrete scheme ofδG
δu as follows,

δGd

δ(Um+1, Um, Um−1)i
= −µ

2
δ〈2〉c

(
Um+1
i + Um−1

i

)

− ε

6
Um
i

(
Um
i + Um+1

i + Um−1
i

)
.

(13)

Substituting (13) into (2), and approximating(ut)i by
(Um+1

i − Um−1
i )/2∆t, we have

Um+1
i − Um−1

i

2τ
= −µ

2
δ〈1〉c δ〈2〉c

(
Um+1
i + Um−1

i

)

− ε

6
δ〈1〉c Um

i

(
Um
i + Um+1

i + Um−1
i

)
,

(14)

wherei = 0, 1, . . . , N.

The above scheme can also be reformulated as the follow-
ing matrix form

(TT1 + µτSS1)U
m+1 = (TT1 − µτSS1)U

m−1

− ε

3
τT1SU

m
(
Um+1 + Um + Um−1

)
,

which satisfies the following conservative properties,

Theorem II.2. Let Um be the solution of (14), and suppose
it satisfies the periodic boundary conditions, then the solution
of the scheme 2 (14) satisfies

Md(U
m+1, Um) = Md(U

1, U0),

Hd(U
m+1, Um) = Hd(U

1, U0).

Proof: The proof is similar as the Theorem II.1.

III. U NIQUENESS ANDSOLVABILITY

Theorem III.1. The Scheme 1 (10) and the Scheme 2 (14)
are uniquely solvable.

Proof: The Scheme 1 (11) can be written as the follow-
ing matrix form

BUm+1 = b,

whereB = T 3 + µτS3 + ε
3τT

2Sdiag(Um) and

b =
(
T 3 − µτS3 − ε

3
τT 2Sdiag(Um)

)
Um−1

− ε

3
τT 2Sdiag(Um)Um.

In order to obtain the unique solvability of the Scheme 1,
we only need to prove thatB is invertible.

If Bx = 0, then

0 = xTBx = xTT 3x,

where the skew-symmetry ofµτS3 + ε
3τT

2Sdiag(Um) was
used. Note thatT 3 is a symmetric positive definite, thusx =
0, i.e. Bx = 0 only has zero solution. Therefore,B is an
invertible matrix. Thus, the Scheme 1 is uniquely solvable.

Similarly, we can also prove that the scheme 2 (14) is
uniquely solvable.

IV. L INEAR STABILITY ANALYSIS

In this section, we will investigate the linear stability of
the proposed schemes. To this end, we consider the following
linear KdV equation

ut + ux + uxxx = 0. (15)

Theorem IV.1. The scheme 1 (10) and the scheme 2 (14) are
unconditionally linearly stable whenτ is sufficiently small.

Proof: Firstly, we can easily derive the following
scheme for the equation (15),

Um+1
i − Um−1

i

2τ
= −δ〈1〉c Um

i − 1

2
(δ〈1〉c )3

(
Um+1
i + Um−1

i

)
,

(16)
wherei = 0, 1, . . . , N.

The above scheme can be reformulated as the following
matrix form

Um+1 − Um−1

2τ
= −JUm − J3U

m+1 + Um−1

2
, (17)

whereJ = T−1S. T is an invertible symmetric matrix and
S is a skew-symmetric matrix.

AssumeUm be the exact solution of (16) and̂Um be the
numerical solution of the following algorithm,

Ûm+1 − Ûm−1

2τ
= −JÛm − J3 Û

m+1 + Ûm−1

2
. (18)

Let ρm = Ûm−Um. Subtracting (16) from (18), we obtain
the following perturbation error equation:

ρm+1 − ρm−1

2τ
= −Jρm − J3 ρ

m+1 + ρm−1

2
.

Thus, we have

(ρm+1)Tρm+1 − (ρm−1)Tρm−1

= (ρm+1 + ρm−1)T (ρm+1 − ρm−1)

= −2τ(ρm+1 + ρm−1)T Jρm

− τ(ρm+1 + ρm−1)T J3(ρm+1 + ρm−1)

= −2τ(ρm+1 + ρm−1)T J(ρm + o(τ2))

= −τ(ρm+1 + ρm−1)T J(ρm+1 + ρm−1 + o(τ2)),

whereρm = (ρm+1 + ρm−1)/2, and the skew-symmetry of
J andJ3 were used in the last two equalities.

Thus, whenτ is sufficiently small,

(ρm+1)T ρm+1 − (ρm−1)Tρm−1 = 0,

i.e., the scheme 1 (10) is unconditionally linearly stable.
Similarly, we can also prove that the scheme 2 (14) is

unconditionally linearly stable.

V. NUMERICAL EXPERIMENTS

In this section, some examples are presented to validate
the efficiency of the proposed schemes. To this end, theL∞

and L2 error norms and convergence order att = nτ are
defined as

L∞ = max
0≤k≤N

|Un
k − u(xk, nτ)|,

L2 =
N∑

k=0

(|Un
k − u(xk, nτ)|2h)1/2,

order= log2(||U2h − u||/||Uh − u||).
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The discrete invariants att = nτ are defined as

Mn
d =

1

2

N−1∑

i=0

(Un
i + Un+1

i )∆x,

Kn
d =

1

2

N−1∑

i=0

(Un
i )

2∆x,

Hn
d =

N−1∑

i=0

Gd(U
n, Un+1)∆x.

The relative errors of the invariants on then-th time level
are computed by

∣∣In − I0
∣∣ /
∣∣I0

∣∣.

A. Single solitary wave

In this example, we adoptε = 1, µ = 1 and choose the
following exact solution

u(x, t) = A sech2 (κ(x− ct− x0)) ,

whereA = 3c, κ =
√
c/2µ, andc denotes the speed of the

wave.
In this example, we mainly consider the following tests:
(i) The accuracy of the proposed schemes. Here, we

choosex0 = 0, c = 1, and−40 ≤ x ≤ 40. To check the
accuracy of the proposed schemes in the spatial direction,
we chose a relatively small time stepτ = 1 × 10−6, so
that the error from the temporal direction can be negligible.
Table I and Table II respectively presents the spatial errors
and convergence rates of the proposed schemes. It is clearly
seen that the Scheme 1 and Scheme 2 can reach sixth-order
accuracy in space. Similarly, to measure the accuracy of the
proposed schemes in the temporal direction, the spatial step is
chosen ash = 1/16, and the temporal steps are respectively
chosen asτ = 1/5, 1/10, 1/20, 1/40. The results are listed
in Table II, which indicates that the Scheme 1 is second-order
accuracy in time.

(ii) The conservative properties and long time behaviors
of the proposed schemes. To this end, setx0 = 0, c = 1,
and mesh sizes are respectively taken ash = 0.1, τ = 0.01,
and computation domain is chosen as[−20, 20]. Figure 1
presents the numerical results of the Scheme 1 overt ∈ [0, 5].
As is shown in the Figure 1(b), the Scheme 1 can precisely
conserve the discrete mass and energy, and approximately
conserve the discrete momentum to10−8. Figure 2 presents
the numerical results of the Scheme 1 overt ∈ [0, 200].
It shows that the Scheme 1 still can precisely conserve the
discrete mass and energy after long time computation. The
results of the Scheme 2 are similar to the Scheme 1, for
simplicity, we do not list it again.

B. Interaction of two solitary waves

In this example, we study the interaction of two solitary
waves with different amplitudes and traveling in the same
direction. The KdV equation (1) has the following exact
solution,

u(x, t) = 12
F (x, t)

G(x, t)
, x ∈ [0, 4], t ∈ [0, 6],

F (x, t) = k21e
θ1 + k22e

θ2 + 2(k2 − k1)e
θ1+θ2

+ a2(k22e
θ1 + k21e

θ2)eθ1+θ2 ,

G(x, t) = (1 + eθ1 + eθ2 + a2eθ1+θ2)2,

where θ1 = k1x − k31t + x1, θ2 = k2x − k32t + x2, a =
(k1 − k2)/(k1 + k2), k1 = 0.4, k2 = 0.6, x1 = 4, x2 = 15,
a = 1/5. In the following simulation, we chooseε = 1,
µ = 4.84× 10−4, τ = 0.01 andh = 0.02.

Figure 3 (a) presents the wave profile of the numerical
solution to the Scheme 2 fromt = 0 to t = 6. As is shown
in the Figure 3 (b), the Scheme 2 can precisely conserve
discrete mass and energy to machine precision. Besides, the
wave profile at different times are displayed in Figures 4–6.
Compared with the exact wave profile, we can clearly see
that the wave shapes of the Scheme 1 and Scheme 2 are
captured very well. Specifically, att = 0, the taller wave
located at the left of the shorter one. However, because the
taller wave is faster than the shorter one, it is noted that the
taller wave gradually catches up the shorter one att = 2.5
and occurs interaction att = 3. Then, att = 3.5, the taller
one pass through the shorter wave and continues to travel
forward. TheL∞ errors of the numerical solutions of the
proposed schemes are presented in Figure 7, which shows
that the numerical errors of the Scheme 1 and Scheme 2 are
much the same overt ∈ [0, 6].

C. Numerical Comparisons

In this example, we consider the following solitary wave,

u(x, 0) = 3 sech2(0.5x), x ∈ [−25, 25],

under the periodic boundary conditions. Other discretizaion
parameters are set ash = 1/3, τ = 0.02 and T = 100.
Then, the Scheme 1 and Scheme 2 are tested under standard
sixth-order central difference operator (i.e., C6) and the com-
pact finite difference operator (i.e., T6). Since the proposed
schemes areO(τ2), we also consider applying the third-order
Heun method and standard fourth-order Runge-Kutta method
(RK4) to the following ordinary differential equations,

dU

dt
= −U ∗ δ〈1〉c U − δ〈1〉c δ〈2〉c U, (19)

where U = (u0(t), u1(t), . . . , uN(t))T is the semi-
discretization ofu(x, t), and the symbol∗ denotes the
element-wise product.δ〈1〉c and δ

〈2〉
c represent the C6 or T6

approximation. Concretely, we will consider the following
cases,
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Fig. 7: TheL∞ errors of the proposed schemes withh =
0.02, τ = 0.01.
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TABLE I: Spatial errors and convergence order of the Scheme 1 with τ = 1× 10−6, t = 0.0001.

h L2 order L∞ order CPU(s)
1/2 5.3421 × 10−7 — 4.8510 × 10−7 — 2.2776
1/4 6.6602 × 10−9 6.33 6.1133 × 10−9 6.31 4.3368
1/8 9.7235 × 10−11 6.09 9.3875 × 10−11 6.03 15.7717
1/16 1.8866 × 10−12 5.69 2.2990 × 10−12 5.35 84.9269

TABLE II: Spatial errors and convergence order of the Scheme 2 with τ = 1× 10−6, t = 0.0001.

h L2 order L∞ order CPU(s)
1/2 1.1733 × 10−7 — 1.0492 × 10−7 — 2.4648
1/4 1.7919 × 10−9 6.03 1.6189 × 10−9 6.02 3.9936
1/8 2.7225 × 10−11 6.04 2.6163 × 10−11 5.95 14.5081
1/16 4.2268 × 10−13 6.01 4.1878 × 10−13 5.97 74.7557

TABLE III: Temporal errors and convergence order of the Scheme1 with h = 1/16, t = 1.

τ L2 order L∞ order CPU(s)
1/5 4.6746 × 10−2 — 2.5880 × 10−2 — 20.3269
1/10 1.0778 × 10−2 2.12 7.1528 × 10−3 1.86 35.7398
1/20 2.7369 × 10−3 1.98 1.7664 × 10−3 2.02 62.0884
1/40 6.9162 × 10−4 1.98 4.4291 × 10−4 1.99 104.4271
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Fig. 1: The numerical results of the Scheme 1 withh = 0.1, τ = 0.01. (a) numerical solution, (b) the relative errors of
invariants.
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Fig. 2: The numerical results of the Scheme 1 withh = 0.1, τ = 0.01. (a) numerical solution, (b) the relative errors of
invariants.

• Heun method applied to (19) with (C6) asδ〈1〉c andδ〈2〉c ,
• Heun method applied to (19) with (T6) asδ〈1〉c andδ〈2〉c ,
• RK4 method applied to (19) with (C6) asδ〈1〉c andδ〈2〉c ,

• RK4 method applied to (19) with (T6) asδ〈1〉c andδ〈2〉c

• Scheme 1 (10) with (C6),
• Scheme 1 (10) with (T6),
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Fig. 3: The numerical results of the Scheme 2 withh = 0.02, τ = 0.01. (a) numerical solution, (b) the relative errors of
invariants.
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Fig. 4: The numerical solutions computed by the Scheme 1 and Scheme 2 withh = 0.02, τ = 0.01. (a) t = 0, (b) t = 2.5.
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Fig. 5: The numerical solutions computed by the Scheme 1 and Scheme 2 withh = 0.02, τ = 0.01. (c) t = 3, (d) t = 3.5.

• Scheme 2 (14) with (C6),
• Scheme 2 (14) with (T6),

The last four schemes are conservative according to the
aforementioned theory.

Figure 8 presents the wave profiles of the numerical solu-
tions obtained by the aforementioned schemes. It is clearly
seen that the schemes Heun+(C6), Heun+(T6), RK4+(C6)
and RK4+(T6) are unstable, and the Scheme 1 and Scheme 2
provide satisfactory solutions. The evolutions of the discrete
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Fig. 6: The numerical solutions computed by the Scheme 1 and Scheme 2 withh = 0.02, τ = 0.01. (e) t = 3.75, (f) t = 6.

energy produced by eight different methods are displayed
in Figure 9, which shows that the discrete energy of the
schemes Heun+(C6), Heun+(T6), RK4+(C6) and RK4+(T6)
are rapidly diverge, which agree with the instability of the
solution. In contrast, the Scheme 1 and Scheme 2 can
precisely conserve the discrete energy. It indicates that the
Scheme 1 and Scheme 2 are superior than the Heun method
and RK4 method. Tables IV and V lists the discrete mass
and energy att = 100. It is clearly seen that the proposed
methods can precisely conserve the discrete mass and energy,
while the Heun method and RK4 method only conserve the
discrete mass.

At last, we compare the aforementioned two spatial dis-
cretization technique, i.e., (C6) and (T6), to see if the
compact finite difference operator is more accurate than the
central difference operator. To this end, we takeh = 1,
τ = 0.02 and computation domain[−50, 50]. Figure 10
displayed the magnified detail of the solitary wave solutions
obtained by the proposed schemes in both cases of (C6)
and (T6), aroundu = 0 at t = 10. It is clearly seen
that the solution obtained by Scheme 1+C6 produces larger
oscillation than the Scheme 1+T6. This result is also hold
for the Scheme 2. This may be attributed to the fact that the
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Fig. 9: The discrete energy of different methods withh =
1/3, τ = 0.02.

central finite difference method can not preserve the correct
dispersion relation [19]. Thus, we conclude that the compact
finite difference method is more accurate than the central
difference operator.

VI. CONCLUSIONS

In this paper, we propose two linear energy-preserving
schemes to solve the KdV equation. The methods are based
on the discrete variational derivative method and the sixth-
order compact finite difference method. The results show
that the proposed schemes can be used to simulate various
wave phenomena, and can exactly conserve the discrete mass
and energy. Besides, the numerical results also indicate that
the energy-preserving compact finite difference schemes are
superior to the nonconservative methods in terms of accuracy
and stability.
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TABLE IV: Maximum and minimum of global massMd and their gap for each scheme att = 100.
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RK4(T6) h = 1/3,∆t = 0.001 11.9999999997355 11.9999999997191 1.6412 × 10−11
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