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Abstract—The existing large scale point cloud recognition
and segmentation methods based on deep learning only focus
on recognition accuracy. They always ignore the memory and
computational complexity limitations in practical applications
(eg autonomous driving applications). A large-scale 3D model
recognition and segmentation method based on lightweight
channel-aware dynamic convolutional neural network is pro-
posed in this paper. Firstly, a channel-aware module is con-
structed to adaptively predict the most important input feature
channels of point clouds. It reduces the computational costs
while ensuring the integrity of the original network structure
and improves the recognition ability of the model. Secondly,
by constructing a feature channel attention predictor, we
design a lightweight channel-aware dynamic convolution. It
can dynamically prune some unimportant feature channels of
point cloud and reduce redundant calculation costs. Finally, a
channel-aware dynamic dynamic convolutional neural network
is constructed to efficiently recognize and segment large-scale
point clouds with low complexity. Experiments are carried
out on the 3D model recognition dataset ModelNet40 and the
large-scale point cloud indoor segmentation dataset S3DIS and
the outdoor segmentation dataset vKITTI, respectively. Exper-
iments show that our method not only has higher recognition
and segmentation accuracy than existing methods, but also has
lower computational and memory complexity.

Index Terms—Point cloud, recognition and segmentation,
channel-aware, dynamic convolution

I. INTRODUCTION

W ITH the wide application of 3D depth sensors, the
number of 3D models is rapidly increasing. The

object recognition and semantic segmentation of 3D models,
as the premise and foundation of 3D model analysis and
processing, have become important research in the field of
machine vision. 3D object recognition and model semantic
segmentation are completed by comparing the differences
between feature descriptors. Therefore, the key issue is
how to extract accurate and robust three-dimensional feature
descriptors. Traditional methods use hand-designed shape
descriptors to extract the features of the 3D model, such
as geometric shape descriptors [1] and hot-core signature
descriptors [2], etc. However, the hand-designed feature
descriptors rely heavily on expert experiences, and have
poor generalization ability. In recent years, deep learning
[3] methods have achieved certain phased results in the
field of machine vision for many tasks [4], [5], [6], [7],
[8]. More and more scholars have begun to try to use
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deep learning methods for three-dimensional recognition and
semantic segmentation. The main methods are divided into
multi views-based methods, voxel-based methods and point
cloud representation-based methods.

Multi views-based methods. Due to the irregularity of
the 3D point cloud, it is difficult to extract features from
the 3D point cloud directly. Literature [9] first performs
multi-directional rendering on the 3D model to obtain 2D
projection views, and then inputs the 2D multi-view as
training data into the classic VGG [10] to train and extract
features, and finally through view pooling to aggregate the
view features to obtain a one-dimensional global feature
descriptor. Although this method improves the accuracy of
3D model recognition, it has the problems of view feature
redundancy and loss of 3D model geometric information.

Voxel-based methods. Literature [11] proposes to regular-
ize irregular point cloud into 3D voxel grids, and then uses
a three-dimensional convolutional neural network to directly
act on the 3D voxel data to extract feature descriptors. Litera-
ture [12] converts the point cloud data into a binary 3D voxel
matrix, and extracts the features of the voxel matrix through
the stochastic gradient descent algorithm with regularization
items to predict the category of models. Although the above
algorithms effectively retain the geometric structure of the
model, the memory consumption of the voxelization oper-
ation is serious, which makes it difficult to capture high-
resolution information and fine-grained features. Because the
recognition accuracy of low-resolution models is not high,
the literature [13] proposes a space division method, but it
cannot still capture local geometric features.

Point cloud representation-based methods. These methods
can directly use matrix operations to perform the affine
transformation on the point cloud, avoiding the complicated
operation of transforming the point cloud into other regular
data. It has been widely used in the fields of computer
graphics and machine vision, such as indoor navigation [14],
autonomous driving [15] and robots [16], etc. For 3D point
cloud recognition and semantic segmentation, the PointNet
[17] has become a pioneer in applying the deep learning
framework directly to the original point cloud data, but
PointNet only focuses on the features of independent points
and does not consider local neighborhood information. Liter-
ature [18] proposes the PointNet++ network, which extracts
fine-grained features by hierarchically dividing local point
clouds, and shows good performance for 3D point cloud
model recognition and semantic segmentation. Although the
network effectively captures the local neighborhood infor-
mation of the point cloud, it does not consider the distance
measurement between points in the local neighborhood,
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and lacks the ability to capture the fine-grained local ge-
ometric information, resulting in poor recognition results.
The DGCNN [19] constructs a local graph by searching k
neighboring points of each sampling point, and captures the
relative relationship between point pairs in the local point
cloud to fully mine local geometric features. Although the
recognition accuracy of the model is improved, it causes
the problem of high computational and memory complexity.
In summary, the existing methods only focus on how to
improve the accuracy of model recognition, and have less
consideration of memory and computational complexity in
practical applications.

Therefore, we propose a 3D point cloud recognition and
large-scale scene segmentation method based on a channel-
aware dynamic convolutional neural network, which can
obtain strong feature representation capabilities with lower
computing costs and fewer parameters, and improve the
accuracy of recognition and model semantic segmentation
of point cloud. The main innovations and contributions are:
(1) Aiming at the problem that the existing convolution
complexity is high, a channel-aware strategy is proposed
to predict the importance of feature channels automatically.
(2) Based on the channel-aware strategy, a channel-aware
dynamic convolution is proposed, which can adaptively prune
unimportant feature channels of point cloud. (3) We build
a lightweight channel-aware dynamic convolutional neural
network for point cloud processing with lower complexity
and higher recognition accuracy.

II. CHANNEL-AWARE DYNAMIC CONVOLUTION

To reduce the complexity of the deep neural networks, we
intend to design a channel-aware dynamic convolution that
can learn to select and adaptively obtain a strong feature
representation ability with lower computational costs and
fewer parameters according to different input data.

A. Channel-Aware Module

As shown in Figure 1, to reduce the computational costs,
we propose to design a dynamic pruning strategy that can
be used to select import channels. After the point cloud is
preprocessed to obtain input features, the Channel-Aware
Dynamic Convolution (CADConv) first selects the input
feature channels and parameters of convolutional kernels, and
equips each block with an input channel selector. According
to the importance score of the input channels generated
by the channel-aware coefficients, the channel-aware coef-
ficients is used to dynamically determine the most important
subset of the input channels, and then the selected important
input channel subset is subjected to a convolution operation,
and feature maps are output in each block. The dynamic
pruning mechanism of CADConv is to adaptively sparse the
connection of the input channels and the output channels, so
that each block can automatically select a small part of the
most relevant input channels to participate in the convolution
calculation.

G(xk) = F(xk,Θ)⊗ A(xk, ψ), (1)

where G is the channel-aware convolution, x is the input
features, xk ∈ x represents the feature subset of the input
channels of the i-th block, F is the convolution kernel

containing parameters Θ, A is the pruning matrix containing
parameters ψ, and calculates the significance score of the
input channel selector, ⊗ represents the matrix dot multi-
plication operation. The channel-aware coefficients assign a
score representing its importance to each input channel to
select different input channels adaptively dynamically. The
channel-aware coefficients of each block enables different
blocks to select the most important subset of the input
channels, diversifying the feature representation. For the i-th
block, the calculation formula of the significance score Si is
as follows:

Si = A(xk, ψ) = FC(MaxPool(RuLU(BN(xk)))) (2)

where Si ∈ RC×1 is the channel-aware score of the i-th
block input channels, BN is the Batch Normalization, and FC
are the trainable weights and biases, respectively. After the
saliency score is obtained, the most important input channels
are selected according to the saliency score and added to
the convolution kernel of the current block for convolution
calculation. We set a pruning threshold to select a specific
number of channels for each block in the CADConv layer.
Therefore, all channels with a saliency score less than the
threshold in the input channels are discarded, to effectively
retain important input channels. The advantage of CADConv
is that it can significantly reduce the computational and mem-
ory complexity of the network while ensuring recognition
capability.

B. Channel-Aware Dynamic Convolution

After channel-aware, the use of traditional convolution
in each block to process point cloud data will result in
redundant parameters in the convolution kernel, which will
cause a lot of waste of computing resources. This subject
intends to select the input channels of the 3D point cloud into
blocks, and then further design the channel-aware dynamic
convolution for feature extraction at lower computational
costs. Channel-aware dynamic convolution aims to adap-
tively select the corresponding important feature channels
according to the different 3D point clouds, dynamically
allocates a corresponding amount of computing resources for
different inputs, and further reduce the redundant computing
costs in the traditional convolution kernel. First, the channel-
aware dynamic convolution uses a channel attention predic-
tor to calculate the channel attention coefficients based on
the input features to predict the importance of the output
feature channels. The channel attention predictor consists
of a max pooling layer, a fully connected layer and an
activation function layer. The max pooling layer aggregates
the feature maps containing all the feature channels into a
one-dimensional feature vector, and the fully connected layer
maps the one-dimensional feature vector to the channel at-
tention coefficients, and uses the sigmoid activation function
to non-linearly map the channel attention coefficients. The
calculation formula for channel-aware dynamic convolutions
is as follows:

Pruning(W ) = S(

g∑
k=1

∂k ⊙Wk), (3)

where Pruning is the channel selection operation, S is
the Sigmoid activation function, g is the number of blocks,
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Fig. 1. The Structure of Channel-Aware Dynamic Convolution.
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Fig. 2. The Structure of Channel-Aware Dynamic Convolutional Neural Network.

∂k is the channel aware coefficients of the feature chan-
nels in the k-th block, and Wk is the weight parameter
of the feature channels in the k-th block. According to
the channel attention coefficients, the feature channels with
different importance of the feature channels of point cloud
are adaptively selected, which can significantly reduce the
computational costs while improving the recognition perfor-
mance. Specifically, for point clouds that are less difficult
to recognize, CADConv adaptively selects fewer important
feature channels to perform convolution operations to do the
feature representation; For large-scale point clouds, CAD-
Conv dynamically allocates more important feature channels
to Perform convolution to ensure the adequacy of computing
resources. Finally, the output channels from different blocks
are connected together to enhance the integrity of features,
and RuLU activation layer is used for nonlinear mapping.
The calculation formula of CADConv is as follows:

y = G(xk)⊗ Pruning(W ) = G(xk)⊗ S(

g∑
k=1

∂k ⊙Wk)

= F(xk,Θ)⊗ A(xk, ψ)⊗ S(

g∑
k=1

∂k ⊙Wk)

(4)

In summary, CADConv can reduce computational costs while
preserving high recognition capabilities.

C. Channel-Aware Dynamic Convolutional Neural Network

We use the lightweight CADConv as the basic feature
representation operation, and further build a lightweight
CADCNN for 3D model recognition and large-scale point
cloud segmentation, as shown in Figure 2. For the classi-
fication task, we design a neural network with a depth of
three layers. Finally, the max pooling is used to aggregation
features, and three-fully connected layers are used to ob-
tain the classification score. For the semantic segmentation
task, each encoder layer is similar to the settings in the
classification, but the network has a deeper structure. Since
the semantic segmentation of 3D point clouds has a larger-
scale point cloud, we sample four times in total to reduce
the computation. Similar to PointNet++ [18], we use the
inverse distance weighted average of k nearest neighbors for
interpolation. In addition, we introduce skip connections for
feature propagation in the middle layers of the encoder and
decoder.

III. EXPERIMENTS

A. Datasets

For the 3D point cloud recognition task, we choose Model-
Net40 [11] standard dataset for the experiments. ModelNet40
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TABLE I
RECOGNITION ON MODELNET40

Methods mA(%) OA(%) params (Million) FLOPs(Million)

VoxNet [12] 83.0 85.9 - -
PointNet [17] 86.0 89.2 3.5 919
PointNet++ [18] - 90.7 2.0 3136
KC-Net [20] - 91.0 - -
Kd-Net [13] - 91.8 - -
DGCNN [19] 90.2 92.2 1.8 3212
PCNN [21] - 92.3 8.2 -
SpiderCNN [22] 90.7 92.4 - -
PointCNN [23] 88.1 92.2 0.6 1682
PointASNL [24] - 92.9 3.4 1700
KPConv [25] - 92.9 1.5 -
CADCNN(Ours) 91.9 93.4 1.6 2200

TABLE II
QUANTITATIVE RESULTS OF DIFFERENT APPROACHES ON INDOOR

S3DIS

Methods OA(%) mIoU(%) FLOPs(M)

PointNet [17] 78.5 47.6 7222
MS+CU [26] 79.2 47.8 -
G+RCU [26] 81.1 49.7 -
PointNet++ [18] 81.0 54.5 -
DGCNN [19] 84.4 56.1 12558
3P-RNN [27] 86.9 56.3 -
RSNet [28] - 56.5 -
SPG [29] 85.5 62.1 -
LSANet [30] 86.8 62.2 -
PointCNN [23] 88.1 65.4 8038
PointWeb [31] 87.3 66.7 -
ShellNet [32] 87.1 66.8 -
HEPIN [33] 88.2 67.8 -
KPConv [25] - 70.6 -
SSP+SPG [34] 87.9 68.4 -
RandLA-Net [35] 88.0 70.0 -
PointASNL [24] 88.8 68.7 -
CADCNN(Ours) 90.0 71.2 5368

TABLE III
QUANTITATIVE RESULTS OF DIFFERENT APPROACHES ON OUTDOOR

VKITTI WITH 6-FOLD CROSS VALIDATION

Methods OA(%) mIoU(%)

PointNet [17] 79.7 34.4
G+RCU [26] 80.6 36.2
3P-RNN [27] 87.8 41.6

SSP+SPG [34] 84.3 52.0
CADCNN(Ours) 88.2 56.0

has a total of 12,311 CAD models in 40 categories, of which
9,943 models are used for network training and 2468 models
are used for network testing. For the 3D model semantic
segmentation task, the indoor scene semantic segmentation
dataset S3DIS [36] and the outdoor autonomous driving
scene semantic segmentation dataset vKITTI [37] are used
for experiments. S3DIS is an indoor large-scale point cloud
dataset, including 6 indoor areas, a total of 272 rooms, of
which all points are marked as 13 semantic categories such as

TABLE IV
ABLATION STUDY ON MODELNET40

Model Ablation ModelNet40(OA)

A CADCNN (W CA) 92.4%
B CADCNN (W DC) 92.6%
C CADCNN (W CADC) 91.1%
D CADCNN(Fully Network) 93.4%

s
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Fig. 3. Visualization of misclassification results on the ModelNet40 dataset.

board, bookcase, chair, ceiling and beam and so on. vKITTI
is an outdoor large-scale point cloud dataset of actual scenes
of autonomous driving, divided into 6 different urban scenes,
among them, all points are marked as 13 semantic categories
such as car, tree, building, road, traffic light and pedestrian
in the autonomous driving scene.

B. Network Settings

The experiment uses momentum-based Stochastic Gradi-
ent Descent (SGD) optimization, the momentum factor is 0.9,
the initial learning rate is 0.001, the learning rate decay index
is 0.7 and the decay speed is 200,000. The Adam is used to
update the step size of SGD and the network parameters
are initialized with the Xavier optimizer. The initial value
of the batch normalized attenuation rate is 0.5, and the final
value is 0.99. The activation function uses Selu to alleviate
the disappearance of the gradient and increase the nonlinear
fitting ability of the network.

C. Point Cloud Classification

We select the ModelNet40 [11] dataset for the 3D point
cloud recognition, and the experimental results are shown
in Table I. It can be seen that the recognition accuracy of
our method has reached 93.4%, which is higher than other
mainstream methods, fully verifying the superiority of our
method. It can also be seen from the table that our algorithm
has lower parameters and FLOPs. The reason is that the
channel-aware dynamic convolution we designed not only
has strong feature extraction capabilities, but also has low
computational and memory complexity, and can be easily
embedded in other models to efficiently perform point cloud
processing. Besides, to qualitatively analyze the classification
results, Figure 3 shows the visualization results of several
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Fig. 5. Qualitative results of CADCNN on outdoor vKITTI.

typical misclassification models on the ModelNet40 dataset.
It can be seen from the examples that the real categories and
the predicted categories of models contain some similar local
structures. These similar local structures lead to confusion
in recognition of our algorithm. It shows that our method
has insufficient capabilities for fine-grained local feature
extraction.

D. Point Cloud Segmentation

To further verify the effectiveness of our algorithm for
fine-grained shape analysis of 3D point clouds, experiments
have evaluated our network performance on large-scale in-
door point clouds S3DIS [36] and outdoor point clouds

vKITTI [37]. The experimental results are shown in Table II
and Table III. As shown, comprehensively, our algorithm
has shown good recognition ability on all datasets, and
the overall accuracy (OA) and mean Intersection-over-Union
(mIoU) are both superior to other mainstream methods and
fully prove the advanced nature of our algorithm. In addi-
tion to quantitative comparison, we also perform qualitative
analysis. Figure 4 and Figure 5 show the visualization of
the segmentation results of our algorithm on the S3DIS
and vKITTI datasets, respectively. It can be seen that the
segmentation result of our algorithm is closer to Ground
Truth, can perfectly segment the entire large-scale point
cloud scene, and has better robustness to missing points
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and occlusion. The reason is that the channel-aware dynamic
convolution can adaptively block to ensure the integrity of
the network structure, to improve the recognition ability of
the model.

E. Ablation Study

To explore the influence of the channel-aware and full
dynamic convolution designed in this paper on the point
cloud recognition performance, different networks were con-
structed for training and testing. The experimental results are
shown in Table IV. Among them, ”W CA” means without
channel-aware. It can be seen that the recognition accuracy
is reduced by 1.0% after using random pruning instead of
channel-aware. ”W DC” means without dynamic convolu-
tion. After removing dynamic convolution, the recognition
accuracy is reduced by 0.8%. ”W CADC” means without
channel-aware dynamic convolution, that is, using Multilayer
Perceptron(MLP) for feature extraction, the recognition ac-
curacy is reduced by 2.3%. The above experiments fully
verify the advanced nature of channel-aware and channel-
aware dynamic convolution, and fully demonstrate that the
three components constructed are effective.

IV. CONCLUSION

We propose a channel-aware dynamic convolutional neural
network for 3D model recognition and semantic segmenta-
tion. Firstly, a channel-aware strategy is designed to block the
input features and the parameters of the convolution kernel
adaptively, which can ensure the integrity of the network
structure and improve the feature extraction ability of the
model. Secondly, channel-aware dynamic convolution is used
to adaptively prune unimportant feature channels, reducing
redundant feature channels’ computational costs. Finally, a
lightweight channel-aware dynamic convolutional neural net-
work is constructed for efficient point cloud classification and
segmentation. Experiments show that our algorithm has good
advantages in recognition accuracy, complexity for large
scale point cloud recognition and semantic segmentation.
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