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Analysis of Statistical Models for Fast Time Series
ECG Classifications

Ramkumar Rathi, Niraj Yagnik, Soham Tiwari, Chethan Sharma*

Abstract—This paper studies and compares several different
ways of classifying time series data using machine learning
instead of popular deep learning models that need large
amounts of data and high computational requirements to train.
The models are compared over the MIT-BIH Arrhythmia
database, which contains electrocardiogram (ECG) signal data
used to monitor a patient’s heartbeat, and classifies the data
into different types of diseases. The various methods explored
to classify this data are Time Series Forests (TSF), Random
Interval Spectral Ensemble (RISE), Word extraction for time
series classification (WEASEL), and K-Nearest Neighbours
with Dynamic Time Warping (DTW). The models are then
compared on the basis of the amount of data needed to train,
accuracy, precision, recall, time to train, and time to predict
per sample. This research aims to compare the performance
of these unconventional dictionaries, frequency, and interval-
based time series classification models and identify the fastest
and most robust algorithm. Time Series Forests emerge to be
the fastest ML-based time series classifier, making it suitable for
many potential smart devices which desire to perform on-device
time series classification.

Index Terms—Classification, DTW, ECG, KNNs, RISE, Time
series analysis, Time Series Forests, WEASEL.

I. INTRODUCTION

IME series analysis (TSA) is the detailed analysis

of chronological data to extract meaningful insights
from historical trends and to be able to make suitable
prognostications about the future. Numerous methods have
been developed, ranging from mathematical and statistical
methods to advanced machine learning and deep learning al-
gorithms. These methods excel at finding causal relationships
and patterns in longitudinal data. TSA can help recognise
the different trends present and the seasonality in the data
set and then utilise the learned trends and seasonality to
make appropriate predictions. Hence time series analysis
is extensively used in numerous applications which have
chronological data such as:

« financial analysis and the prediction of stock prices;
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o analysis of the trends in the weather of a region and
predict future weather conditions; however, the most
useful of them all,

¢ health analysis, i.e. monitoring and analysing the pa-
tients’ vitals.

TSA has many potential applications on portable devices.
For example, one such application would include deploying
a smart weather balloon, which can monitor the atmospheric
variables and even perform computations on devices or in
the field of healthcare, such as in smartwatches that have
ECG sensors and can monitor the heart rate. The usefulness
of these devices can improve if they can perform TSA on the
time series data they collect. It would be useful to predict
weather conditions using the collected weather data or clas-
sify the health and condition of the heart by analysing the
Electrocardiogram (ECG) signals. However, one significant
limitation is that portable smart devices usually have very
low compute power. Hence, expecting these devices to run
state of the heart TSA algorithms would be very difficult.
Any deep learning algorithm would require a lot of compute
power to make real-time predictions. On the other hand,
ML algorithms are relatively more efficient and run on low
compute devices.

Hence, this paper compares the performance of different
dictionary, frequency, and interval-based time series classifi-
cation algorithms. We have chosen to compare the algorithms
on the ECG dataset (1). The motivation behind using the
ECG dataset is that it belongs to the domain of healthcare
which we are pretty motivated about. We try to identify the
fastest and most robust algorithm by comparing them on
several metrics such as accuracy, precision, recall, dataset
size and time to train and predict and various other model
parameters. In doing so, we find the most efficient algorithm
of the ones we test. This algorithm can also be a candidate
to be deployed on low compute devices to make rudimentary
and preliminary assessments of the wearer’s heart conditions
with high accuracy and speed. This might also be extended
to other such applications with appropriate research.

Electrocardiogram (ECG) signals are used to monitor the
patient’s heartbeats. ECG’s record the electrical activity of
the heart muscles, as electrical pulses stimulate the heart
muscles to contract and pump blood throughout a body. As
a result, ECG’s can also record and detect any anomaly
in a person’s heartbeat, technically known as arrhythmia.
Hence, ECG recordings are instrumental in monitoring the
heart’s condition and help determine diseases that might ail
one’s heart as an anomaly or irregularity can be immedi-
ately recorded in the ECG readings. Hence ECG analysis
immensely benefits from various TSA algorithms. Given an
ECG reading of a heart, these algorithms can yield insights
about the heart’s condition and quickly detect abnormalities
that afflict the heart. Every cardiac cycle is typically defined
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by a sequence of wave shapes known as a P wave, QRS
complex wave, and T wave - as showin in Figure 1. Intervals
between different patients’ wave forms, as well as their
shapes and orientation, show physiological activities taking
place in the heart and the autonomous nervous system.

QRS
complex
PR
segment

-

ST
- segment
b >

PR Interval

QT Interval

Fig. 1. ECG Diagram with P-QRS-T Waves

The remainder of this paper is structured as follows:

o In Section II, we briefly look at the state-of-the-art,
deep-learning-based TSA algorithms and also look at
ML-based time-series algorithms.

e In Section III we look at the research methodology,
explaining the steps involved in running the different
ML-based time series classification algorithms (TSC)
on our ECG Data.

o Section IV contains the analysis of the results of our
different algorithms on the EEG dataset.

e Section V compares the different TSC algorithms based
on the results. These results are further compared with
various other models as well.

o Section VI we state our limitations and constraints and
possible future work.

e Section VII we state our conclusion.

II. LITERATURE REVIEW

This paper looks at the various machine learning methods
used for time series classifications for ECG analysis. Time
series classifications are a popular domain used over various
problem statements, and the most common methods used per-
tain to deep learning. Some popular methods of recognition
of various problems in ECG include the use of support vector
machines (SVM) (2), Recurrent neural networks (RNNs)
(3), Convolutional Neural Networks (CNNs) (4), Multilayer
perceptron’s (MLP) (5) and Markov Models (6). Convolu-
tional Neural Network models have shown high accuracy
scores reaching up to 97.2% as mentioned (4), but require
a large amount of data, as well as computational time to
train and make these predictions. ’Long short term memory

networks’, which are a more popular choice for time series
data, do not work particularly well with ECG classifications
and are restricted to an accuracy of 88.1%. Normal RNNs
further degrade the accuracy to 85.4%, and GRU’s prove
to provide the least accuracy at 82.5% (3). The same data
and computational power problems persist for these methods
as well. For our research, we have focused on Time Series
Forests (7), Random Interval Spectral Ensemble (RISE) (8),
Word ExtrAction for time SEries classification (WEASEL)
(9) and K-Nearest Neighbours models (10).

Time Series Forests (TSF) (7) is an efficient and accurate
time series classifier. It consists of a tree ensemble algorithm
that uses simple statistical features that summarise each time
series and then use the summary to train its algorithm. It
also uses a novel metric as a splitting criterion, resulting in
TSF outperforming other baseline algorithms such as nearest
neighbours with dynamic time warping (NNDTW).

Random Interval Spectral Ensemble (RISE) (8) has proved
helpful in the problems involving speech processing and
long time-series data, such as in audio processing, where
the discriminatory features of the dataset are found in the
frequency domain rather than the time domain. It is a tree-
based, ensemble time series algorithm, The class probability
for each sample is then computed based on the majority vote
of all the trees.

Word ExtrAction for time SEries cLassification (WEASEL)
(9) follows the bag-of-patterns approach. Hence, it can
achieve high classification accuracy with incredible speeds,
making it suitable for application in domains with high run
time and quality constraints. The model’s robustness also
makes it highly suitable for application in smart-grid systems
9).

K-Nearest Neighbours (with Dynamic Time Warping) (10)
is a distance-based algorithm. It is a simple and robust
algorithm that does not require a high amount of hyper-
parameter tuning. It has become a commonly used bench-
mark for evaluating the performance of several time-series
classification algorithms.

Regarding literature on the classification of arrhythmia
using the MIT BIH database, one of the initial studies on how
the MIT BIH dataset impacted and shaped the development
of arrhythmia detection was shown by Geroge et al. (11).
It gave rise to numerous works and has become the most
popular database for arrhythmia classification and detection.

Markos et al. (12) published an influential study on this
where they used time-domain analysis to produce features,
which were then fed into 63 different types of neural
networks in various distinct combinations. The outputs of
these neural networks were then fed into a decision tree,
where the diagnosis of arrhythmia was made. Similar to this
study, short-time Fourier transform and other time-frequency
distributions were used in the time-frequency analysis.

Karimifard (13) used the modelling of signals and the
Hermitian basis function to get a feature vector. This was
then sent to a KNN classifier to classify the different types
of arrhythmia. An important conclusion in this study showed
how the feature vector’s size affected training times.

Hamid et al. (14) compared the use of different time series
transformation methods such as CWT (Continuous wavelet
transform), DCT (Discrete Cosine Transform) and DWT
(Discrete Wavelet Transform) to improve the classifications
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of ECG datasets when using Multi-Layer Perceptron’s (MLP)
and Support Vector Machines (SVM). They used the feature
extraction methods separately on the ECG signal and formed
4 structures using MLP and 4 others using SVMs. Then, they
compared the efficiency of these feature extraction methods
on time taken for the model to train.

Oscar (15) segmented the ECG signals from the MIT
BIH dataset and used three methods — fuzzy KNN’s, Multi-
Layer Perceptron with Gradient Descent and momentum
Backpropagation, and Multi-Layer Perceptron with Scaled
Conjugate Gradient Backpropagation to classify them into 5
classes. They finally achieved the highest accuracy of 98%
by combining the outputs of all three methods in a Mamdani
type fuzzy inference system.

Roland et al. (16) used Fast Fourier Transform as the
method of pre-processing for the signals and then passed this
to a neural network. They achieved an accuracy of 98.6% and
concluded that the diagnosis of heart abnormalities and early
detection of debilitating medical conditions would improve
when the medical community would adopt neural networks
to analyze test data samples further.

Shirin et al. (17) used a block-based neural network which
consisted of a 2D array of blocks connected. The structure
of each block was dependent on the number of incoming
and outgoing signals. The inputs in this method consisted of
temporal features and the Hermit function coefficient. The
network structure and weights were then optimized using
Particle Swarm Optimization (PSO). This provided a unique
method to overcome the possible change of ECG from person
to person as the BBNN would have a unique structure for
every person. They achieved an accuracy of 97%.

Saroj et al. (18) proposed the use of yet another deep
learning-based method called the Restricted Boltzmann Ma-
chine (RBM) model. After the initial normalization and seg-
mentation of signals, the RBM is used to extract the essential
features, which are then passed to a SoftMax activation
function. They classified the heartbeats into 4 distinct types
achieving an accuracy of 98.61%. We mention the drawback
of using specialized hardware and large datasets for this
method to be useful, which our paper tries to solve.

Nirmala et al. (19) used Dual-Tree Complex Wavelet
Transform (DT-CWT) to extract features and then further
passed them to a neural attention mechanism to improve
on the capturing of temporal patterns from the extracted
features. The attention-based model was trained using 8
different arrhythmia classes and achieved an accuracy of
98.5%.

Convolutional neural networks are well-researched meth-
ods for arrhythmia classification. Bambang Et al. (20)
showed how a 1 dimensional CNN could be used to detect
atrial fibrillation detection with an accuracy of 96.36%. This
study consisted of 3 normal, AF and non-AF and was trained
on 8232 records based on 8 different datasets. Mohammad et
al. (21) similarly used a CNN to classify the MIT BIH dataset
into 5 different classes instead, obtaining an overall accuracy
of 95.2%. Ozal et al. (22) further extended the number of
classes to 17 and obtained an accuracy of 91.33% using a
1D convolutional neural network. The study’s objective also
extended to the time taken per classification, which averaged
at 0.015s per sample. They thus proposed using this model
for mobile devices and cloud computing. Mengze et al. (23)

use a 12 layer deep one dimensional CNN to classify the
signals into 5 distinct classes. They achieve an accuracy of
97.2%, which is higher than other CNN, random forest and
SVM based methods.

III. RESEARCH METHODOLOGY

A. Data Analysis & Pre-processing

The dataset being used in this study is the popular MIT-
BIH Arrhythmia database (11) created by teams at Beth
Israel Deaconess medical centre and MIT between the years
1975 and 1979. This database contains two-channel ambula-
tory ECG recordings samples of 47 patients resulting in 48
hours’ worth of data. There are a total of 5 output classes
representing different types of human heartbeat patterns,
which are:

« Non-Ectopic Beats (N) - These represent normal healthy
human heartbeats.

o Supraventricular Ectopic Beats (S)

o Ventricular Ectopic Beats (V)

e Fusion Beats (F)

o Unknown Beats (Q)

A graphical representation of each pattern is demonstrated
in Figure 3.The distribution of the different classes in the
dataset has been provided in Figure 4.

For the analysis and the application of various machine
learning methods on this dataset, the data was cropped into
smaller subsets resulting in a new dataset. This dataset has
a total of 109,446 samples. Each ECG sample has been
clipped and down-sampled to a 188 point dimension, i.e.,
each sample has a length of 188. In the scenario where
there are fewer points available, the samples are padded
with zeroes to maintain uniform sample lengths. The dataset
samples are representative of the electrocardiogram signals
of the heartbeat, ranging from normal heartbeats to those
afflicted by different arrhythmia’s and myocardial infarction,
commonly known as a heart attack.

It is evident from the distribution chart (Figure 2) that the
dataset is largely imbalanced and should ideally not be used
in this state for any analysis to be conducted on it. Hence,
the data is re-sampled to provide an equal distribution of data
across both test and training datasets. Each sample after this
step accounts for 20% of the distribution. Next, Gaussian
noise is added to each sample to increase the generality of
the algorithms during the training phase.

B. Training

We have applied four different time series models on the
given ECG data. Figure 1 illustrates a general pipeline of
the proposed work.:

1) Time Series Forests: Classical random forest models
are not popularly known to be used on time series data but
can be modified to do the same. They can be considered
robust and efficient models to classify time series data.

Our application is a multi-class classification problem that
classifies the ECG data into five classes. The forest consists
of various time series trees (7), which summarise data
intervals based on a few features. The time-series data is
broken up into intervals of random length. However, the
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Fig. 2. Tllustration of the architecture of the proposed work.
Mon-Ectopic Beat Supraventricular Ectopic Beat Ventricular Ectopic Beat
10 10 10
08 08 0.8
@ 1] @
T 06 T 0s T 0s
= = =
5 04 s 04 5 0.4
02 0z 0.2
00 0.0 0.0
0 5 50 75 100 125 150 175 0 25 50 75 100 125 150 175 033 50 75 100 125 150 175
Time Time Time
Fusion Beat Unknown Beat
10 10
08 08
@ 1]
T 06 T 0s
- =
= =
5 04 s 04
02 0z
00 0.0
0 3 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Time Time
Fig. 3. Graphical Representation of each class in the database.

TSF algorithm (7) suggests using interval sizes which are
the square root of M to reduce the size of the feature space

from
O(M?)

to
o(M),

where M is the number of time dimension points in each
sample. In our dataset, M has been set to 188 dimension
points.
Next, for each time interval from every sample, three features
are computed, which are:

e Mean — Mean of the values of each dimension point in
the selected interval
Standard deviation — measuring how much the value
of each dimension point varies or deviates from the
previously computed mean of the selected time interval
Slope — Slope of the regression line which best fits the
values of the dimension points for the selected time
interval.

The trees in the time series forest are constructed using
these three features. The split criteria at each node of a tree
are decided using a new metric called Entrance. The paper
on TSF (7) explains that Entrance is the combination of the
entropy gain and an additional measure called Margin to
choose the best split criteria for the node. Hence, the TSF
is a collection of multiple time series trees and classifying a
sample into a particular class based on the majority of trees
present in the forest.

Hence, time series forest can be considered a modification
of the random forest algorithm and can be summarised by
the following steps:

1) Splitting the series into multiple intervals.

2) Extracting features (mean, standard deviation and

slope) from each interval.

3) Training a decision tree on the extracted features.

4) Ensemble steps 1 — 3.

2) Random Interval Spectral Ensemble (RISE): RISE
models draw inspiration from tree-based ensemble algo-
rithms, for example, time-series forests (TSF). Like the TSF
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Fig. 4. Class distribution before and after resampling.

Algorithm 1: Build time series forest, T = (X,y)

1: Let K represent the number of trees, p the minimum
interval length, M the length of the series
2: Let F' + [F}, Fy, ..., Fi] be the different trees in a

forest
3: R« \/M
4: 1+ 1
5. while ¢ < K do
6: s a matrix with r rows and 3r columns
7. for j <+ 1tor do
8: b < randomBetween(1, m — p)
9: e < randomBetween(b + p, m)
10: for t < 1to R do
11: St,3(j—1)+1 — mean(a?t, b, 6)
12: 5¢,3(j—1)+2 < standardDeviation(z, b, €)
13: St,3(j—1)+3 < slope(xt, b, e)
14: end for

15:  end for

16:  buildTree(s, y)
17 14+11+1

18: end while

model, the algorithm constructs a random forest classifier
using random intervals from data. TSF computes the time
domain statistical summary features by calculating each
interval’s mean, variance, and slope. On the other hand, RISE
only creates a single interval for each tree instead of multiple
and computes spectral features for this interval instead of a
statistical summary. The length of this interval is chosen as
a power of 2. The first tree is a special case in which the
interval is of the same length as the time series, i.e. the whole
series is taken as the first tree interval(24).

Power Spectrum (PS) features, Auto Correlation-based
Features (ACF), or a combination of the two can be used
here. Each interval is transformed using the Fast Fourier
Transform (FFT) and ACF. This help make RISE faster as
compared to the Partial Auto Correlation Function (PACF)
and Auto-Regressive (AR) model features used in the origi-

7%

Ventricular
ectopic beats

@ Orignal =Resampled

20% 20%

1%

Fusion beats Unknown beats

nal RISE algorithm(25)(26)(24).

This paper uses a combination of both PS and ACF
features to train the model. RISE with a combination of
PS and ACF is known to produce significantly better results
than other spectral ensembles in terms of speed and do not
significantly affect the accuracy. RISE also tends to control
the run time by creating adaptive models of the time required
to build each tree, proving helpful when large intervals are
present (8).

Algorithm 2: Build RISE, T = (X, y)
1: Let M be the length of training series, K the number
of trees, and p the minimum interval length
2: Let F < [Fy, F5, ..., Fi] be the different trees in a
forest in the forest
141
while : < K do
if = 1 then
r— M
else
r < powerOfTwolnterval(p, M axInterval)
end if
10 T+ Tb:b+7]
11: s < retrieveSpectralFeatures(7")
12:  buildRandomTreeClassifier(s, y)
13: 1+ 1+1
14: end while

R A A

3) WEASEL: WEASEL uses several novel ideas to
achieve a Time Series Classification (TSC) model, which is
invariant to noise or distortion present in the time series data
and can be easily scaled to classify a large number of time
series samples of varying lengths.

WEASEL first uses windows of multiple lengths for a
single time series to generate sub-time series of varying
lengths. Each such window is then transformed using Fourier
transforms and selects discriminative features that help dif-
ferentiate the different time series data classes using the
Analysis of Variance (ANOVA) F-test. An ANOVA(27) test
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in simple words helps to understand the difference between
the independent variables, or in this case, the features, and
how does it affect the dependent response variable. Also, to
retain the temporal order in a time series, WEASEL includes
a bi-gram model, which helps encode the order relationship
of the time series data in the model. Finally, to reduce
the large number of features generated, WEASEL uses a
Chi-squared statistical test to determine relevant features,
eliminating insignificant features whose absence does not
affect the model’s classification accuracy. As a result, the
feature-set obtained is highly effective in differentiating
between the different time series classes, then used in a fast
logistic regression model to make predictions. The logistic
regression model proves to be much quicker than other
complex classification algorithms due to its simplicity and
provides good classification accuracy, a merit of the feature
set obtained.

Algorithm 3: Build WEASEL, T = (sample, I)
1: Let I represent the number of Fourier values to keep
2: b < empty BagOfPattern
3: for all w in AllWindowLengths do
4. AllWindows + slidingWindow(sample, w)
normalize( AlIW indows)

5
6:  for all (prevWindow, window) in AW indows do

7: word < quantTransform(window, I)

8: bag[w + word].increaseCount()

9: prevWord < quantTransform(prevWindow, I)
10: baglw + prevW ord + word)].increaseCount()

11:  end for

12: end for

13: return ChiFeatureSelect(bag)

4) KNNs: KNN is a simple classification algorithm that is
often used as a baseline for various classification problems,
as it classifies samples simply by comparing them with their
neighbours. The sample is labelled as the class with the
most frequency in the first k closest neighbours, which are
considered the most similar to the sample.

The standard KNN algorithm, however, makes use of
the Euclidean Distance measure to determine the similarity
of the input sample with all the other samples present in
the dataset. While this metric is suitable for cross-sectional
data, it is not ideal for time series data classification. Two
time-series samples can have a similar structure but have
different phases, i.e., the two waves are displaced along time.
Therefore, the Euclidean distance metric will compute the
difference between values corresponding to the same instance
and hence might not determine whether the two phase-shifted
time series are similar.

The use of dynamic time warping (DTW) makes the
k-nearest neighbours’ algorithm suitable for application to
time series data. The distance between any two samples is
measured using DTW, which measures the similarity between
sequences that may be displaced relative to each other along
time or may have different speeds or lengths.

KNNs with DTW is used to establish a baseline accuracy
quickly and easily for the time series classification problem.
However, this algorithm is computationally very expensive

as it requires a lot of time to compare each time sequence
with all other time sequences and requires a lot of memory
in doing so. Moreover, this algorithm fails to explain why
the sequence was labelled a particular class.

The algorithm is also susceptible to noise in the dataset,
which can severely distort the shape of a time sequence
resulting in it suffering a deviation from its valid class label.

Algorithm 4: K Nearest Neighbors, T = (X, y)
1: Let N be a list of neighbors
2: DistMatriz < calculateDistancesUsingDWT(X, y)
3: N < identifyKNN(Dest Matrix)
4: Label + findMode(N)
5: return Label

Algorithm 5: Dynamic Time Warping, Input: (X, y)
1: Let S be a two dimensional matrix with N x M
dimensions
S[0][0] « 0
for i +— 1 to M do
S[0, 7] « inf
end for
for j < 1to N do
S[4,0] « inf
end for
for i < 1 to N do
for j < 1 to M do
cost + dist(X [i[, y[j])
Sli, j] + cost+
min(S[i, j — 1], S[i — 1,4, S[i — 1,5 — 1]))
13:  end for
14: end for
15: return S[N, M|

R A A i

_ = =
N =2

IV. ANALYSIS AND RESULTS

Each of the mentioned four models has been tested using
different values for the respective hyper-parameters. Plots for
the model’s accuracy vs the different hyper-parameter values
have also been shown. The results for each run have been
gathered and tabulated. The various columns in the tabulated
results are:

o The Estimators column will only be found in the results
of the tree-based algorithms. Estimators refer to the
number of trees used in forest algorithms.

o The Number of samples column indicates the number
of samples over which the model was trained on.

o The Micro precision is micro averaged precision. Micro
averaged precision helps capture the performance of
different models when faced with datasets with class
imbalance. They can account for the imbalance in the
dataset of a multi-class classification problem, hence
providing more insights about the model’s precision and
classifying classes with low samples.

5
YITP

Micro — precision = —z————
Y 1TP;,+ FP,
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o The Macro Precision column is macro-averaged preci-
sion. Macro averaged precision reports the generalised
precision values over the entire dataset. The metric fails
to account for any dataset imbalance in a multi-class
classification problem. It will report a good precision
score even when the poorly performing classes witness
poor precision scores. This is because the metric is the
simple arithmetic mean of the precision scores of each
class. As a result, the low scores will be compensated
by the high-performing classes’ high scores. Hence the
macro-precision might provide misleading inferences
about imbalanced datasets.

Zi’ Precision;

)

o The Micro Recall column is the score computed by
micro-averaging the recall values for all the classes. This
is a better metric to analyse the recall of the model,
classifying an imbalanced dataset into multiple classes.

5
YL TP;

SPTP + FN;

e The Macro Recall is computed by computing a macro-
average of all the recall scores, i.e. finding the arithmetic
mean of the individual recall scores for the various
classes. Like all other macro-averaged metrics, it fails
to account for any class imbalance and is prone to
reporting misleading scores.

Macro — precision =

Micro — recall =

5% Recall;
)

o The Accuracy column reports accuracy scores of dif-
ferent models for different configurations of the various
hyper-parameters involved. It tells us how many have
been correctly classified out of all the classified samples.
Another point to note is that the same values are re-
ported for the metrics of micro-precision, micro-recall,
and accuracy due to the nature of micro averages.

o The Time to train column signifies the amount of time
(in seconds) for the model to fit the entire dataset.

o The Time per sample column, on the other hand, pro-
vides the average time taken for the model to predict a
class for an input sample to the model.

Macro — recall =

Keeping in mind the definitions of the various columns,
below are the results provided for the various models run
over the dataset.

A. Time Series Forests

The hyper-parameters being varied here are — Estimators
and Number of Samples.

They are the two main factors that determine the accuracy
of the TSF model. The number of estimators refers to the
number of trees used in the time series forest, and the number
of samples refers to the number of data points in our training
dataset. Regardless of the sample size, the characteristics of
the training data remain the same, all being of length 188
points and running at 125Hz. The class distribution of the
data is also unchanged over the various sample sizes.

A brief analysis of the results in Table I would show that
the micro-precision reports higher values than the macro-
precision, contrary to the general trend of micro-precision

being less than or almost equal to the macro-precision. The
same is observed in the case of micro-recall and macro-recall.

Looking at Table I, one can see that the sample size
of data is more critical to the accuracy than the number
of estimators. Larger sample size with a sparse number of
estimators consistently outperforms a small sample size with
a large number of estimators.

The time required to predict a single sample is highly
correlated with the number of estimators and does not depend
on the sample size. The time to train depends on the sample
size and the number of estimators.
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Fig. 5. TSF results - Accuracy vs. Number of estimators

B. Random Interval Spectral Ensemble

We test this model over a varying number of estimators.
It can be seen in Table II that RISE, like TSF, also reports
higher micro-averages than macro-averages for both the
precision and recall metrics.

RISE classifiers, compared to TSFs, take a much longer
time to train. The experiment in Table II was run on eight
concurrent processes, unlike the TSF experiment, which was
run only on 2. The RISE classifier still takes a lot more time
to train and is slower while predicting samples (Time per
sample).

In comparison, a TSF model would be much more efficient
to run when compared to RISE classifiers. This paper does
not attempt to train RISE classifiers with more than 200
estimators as we do not have the required computational
power.
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Fig. 6. RISE results - Accuracy vs. Estimators
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TABLE I
TSF RESULTS

Time Series Forest
Estimators | Number of samples | Accuracy Precision Recall Time to train | Time per sample
Micro Macro Micro Macro
5 10000 0.89562 0.89562 0.63011 | 0.89562 0.85634 17.57 0.00081
25 10000 0.92403 0.92403 0.67994 | 0.92403 0.89051 84.99 0.00388
75 10000 0.92731 0.92731 0.68503 | 0.92731 0.88728 162 0.01175
100 10000 0.92636 0.92636 0.68384 | 0.92636 0.88752 204 0.01567
200 10000 0.92764 0.92764 0.68631 | 0.92764 0.88818 408 0.03171
5 30000 0.93399 0.93399 0.71601 | 0.93399 0.85385 31.86 0.00078
25 30000 0.950575 0.950575 | 0.76586 | 0.950575 | 0.87486 150 0.00394
75 30000 0.95477 0.95477 0.77821 | 0.95477 0.88441 462 0.01176
100 30000 0.95619 0.95619 0.78238 | 0.95619 0.88696 588 0.01571
200 30000 0.95724 0.95724 0.78702 | 0.95724 0.886205 | 1182 0.03123
5 100000 0.96505 0.96505 0.86382 | 0.96505 0.84041 102 0.00079
25 100000 0.96948 0.96948 0.88571 | 0.96948 0.84103 474 0.00452
75 100000 0.97309 0.97309 0.90377 | 0.97309 0.84973 1452 0.01183
100 100000 0.97374 0.97374 0.90293 | 0.97374 0.85416 1998 0.01589
200 100000 0.97501 0.97501 0.91257 | 0.97374 0.8567 3888 0.03204
TABLE II
RISE RESULTS
RISE Classifier
Estimators | Sample Size | Accuracy Precision Recall Time to train | Time per sample
Micro Macro Micro Macro

5 100000 0.92921 0.92921 | 0.70977 | 0.92921 | 0.76124 | 1327 0.02821

25 100000 0.95742 0.95742 | 0.80425 | 0.95742 | 0.82071 | 7227 0.03714

75 100000 0.96596 0.96596 | 0.85157 | 0.96596 | 0.82987 | 10287 0.09561

100 100000 0.96898 0.96898 | 0.88352 | 0.96898 | 0.82747 | 13417 0.12636

200 100000 0.96692 0.96692 | 0.86028 | 0.96692 | 0.82503 | 27414 0.26895

C. WEASEL D. KNNs

The number of samples is the hyper-parameter being
varied for different test runs of the WEASEL model. We
can observe that an increase in the number of samples in the
dataset does not elicit a proportional increase in the model’s
accuracy. The model accuracy peaks at 10,000 samples and
then observe a decline in the model accuracy with a further
increase in the number of samples in the dataset.

On the other hand, an increase in the number of samples
results in an expected increase in the time required to train
the model. The model has training times similar to RISE,
much larger than TSF. The best performing configuration,
which witnessed an accuracy of 94.779%, falls short of the
best 96.692% accuracy of the RISE model. However, the
best configuration of WEASEL requires one-sixth of the time
needed to train that of RISE.

Furthermore, WEASEL is the only model that reports
higher or similar macro averages compared to micro averages
for precision and recall.
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Fig. 7. WEASEL results - Accuracy vs. Sample Size

The KNN algorithm was tested using different values of
the number of samples in the dataset used and the number
of neighbours.

The maximum accuracy achieved for the number of neigh-
bours set to 100 was approximately 89%. However, the time
to train per sample of the dataset is much larger than all the
other models, even for the base number of 5000 samples in
the dataset. Another observation is that the time to train per
sample is majorly dependent on the number of samples in
the dataset, with very little dependence on the number of
neighbours the algorithm queries to determine the class of a
particular sample.

One can also observe higher accuracy when using ten
neighbours instead of 100 neighbours in the algorithm for
the corresponding number of dataset samples.

Finally, KNNs with DTW also report higher micro aver-
ages than macro averages.
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TABLE III
WEASEL RESULTS
WEASEL
Sample Size | Accuracy Precision Recall Time per sample | Time to Train (s)
Micro Macro Micro Macro
2500 0.89558 0.89558 | 0.89907 | 0.89558 | 0.89706 | 0.03696 839
10000 0.94779 0.94779 | 0.95199 | 0.94779 | 0.94859 | 0.03771 4525
25000 0.93172 0.93172 | 0.94004 | 0.93172 | 0.93282 | 0.03997 12935
37500 0.91646 0.91646 | 0.92618 | 0.91646 | 0.91322 | 0.04235 21195
50000 0.90763 0.90763 | 0.92379 | 0.90763 | 0.90763 | 0.04612 30393
TABLE IV
KNN RESULTS
K-Nearest Neighbors
Sample Size Accuracy Precision Recall Time per sample | Neighbors
Micro Macro Micro Macro
5000 0.86153 0.86153 0.7516 0.86153 0.85964 0.13077 10
25000 0.89231 0.89231 0.77485 0.89231 0.88188 0.65698 10
30000 0.879518072 | 0.879518072 | 0.885011933 | 0.879518072 | 0.881456095 | 0.796532 10
50000 0.883534137 | 0.883534137 | 0.893715061 | 0.883534137 | 0.885612958 | 1.336411468 10
75000 0.879518072 | 0.879518072 | 0.892954956 | 0.879518072 | 0.881265132 | 1.999505015 10
100000 0.895582329 | 0.895582329 | 0.909117694 | 0.895582329 | 0.897456095 | 2.726337341 10
5000 0.78461 0.78461 0.66766 0.78461 0.840388 0.13389 100
25000 0.84615 0.84615 0.72854 0.84615 0.8513 0.65904 100
30000 0.86153 0.86153 0.75205 0.86153 0.86601 0.77946 100
50000 0.884165 0.884165 0.76455 0.884165 0.8781 1.33083 100
75000 0.89231 0.89231 0.77495 0.89231 0.88227 2.00243 100
100000 0.90131 0.90131 0.798857 0.90131 0.88644 2.63226 100

V. MODEL COMPARISON

In Figure 9, the highest possible accuracy’s of different
models have been plotted against the corresponding time take
taken for each sample by the model. One can infer from
Figure 9 that KNNs not only take the most time per sample
but also report the least accuracy. RISE reports a reasonably
high accuracy with respectable times per sample. However, it
is not as good as the other two models. Although WEASEL
takes a comparable amount of time per sample as TSF, TSF
performs better, as it is able to report higher classification
accuracy.

Consequently, TSF is the best candidate TSC algorithm
for deploying on low-compute portable devices. It reports the
highest classification accuracy of the four ML TSC models
and takes the least time to predict a class for each input
sample. As a result, one may expect the TSF algorithm
to run smoothly on low-compute devices. However, further
performance testing with actual hardware is needed to be
carried out to confirm the same.

Table V showcases the performances of various state-of-
the-art deep learning-based models and compares them to
the proposed work. They compare the accuracy of prediction
over all classes, the type of model use and the number of
classes that the data is classified into. The four machine
learning algorithms presented by the proposed research work
provides comparable accuracy results when compared to the
accuracy scores of the corresponding models.

TSF outperforms most deep learning models, thus verify-
ing its efficacy despite utilising considerably lower hardware
resources and compute for training. RISE and WEASEL also
provide comparable results with several research works, fur-
ther validating the consistency and reliability of the proposed
work.

VI. LIMITATIONS & SCOPE FOR FUTURE WORK

The proposed work has been limited to comparing four
different machine learning (ML) algorithms. Our goal is to
experiment with lightweight algorithms that can potentially
be deployed on portable devices. They should be capable of
providing accurate results in the least amount of time with
a smaller dataset. That is why we aimed to use machine
learning instead of deep learning models such as recurrent
neural high computational requirements and large datasets,
leading them to be less than ideal for healthcare purposes on
portable systems.

However, deep learning models such as recurrent neural
networks (RNN) and convolutional neural networks (CNN)
have been found to give a higher degree of accuracy for our
requirement in some cases. Furthermore, genetic algorithms
have also been used in the past to classify time series data,
which can also be experimented with for ECG classification.
Scope for future work here would include increasing the
accuracy of these machine learning models while honouring
the same time and data constraints specified. Apart from that,
there is a further need to look into different neural network
models which are faster in their approach and may not need
a large amount of data, considering medical data is not as
largely available as other forms.

VII. CONCLUSION

Time series classification is a famous area of research,
with a wide array of algorithms already available and new,
faster, and better algorithms appearing every year. For our
application of ECG classification, we wanted an algorithm
that is robust and light enough to be potentially deployed on
portable devices. We explored four algorithms — TSF, RISE,
WEASEL and KNNs with DTW. TSF outshone the rest of
the three algorithms tested in this paper. To summarise this
comparison:
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TABLE V
RESULT COMPARISON WITH OTHER MODELS

Author/Paper Method Classes | Accuracy
Pandey et al.(28) CNN (SMOTE) 5 98.3
Acharya et al.(29) CNN (11 Layers) 4 94.3
Chi et al.(30) LDA 5 96.23
Oscar. (15) NN 5 98
Roland et al.(16) FFT + NN 6 98.6
Yeh et al.(31) Cluster analysis 5 94.3
Manu et al.(32) MLP 5 94.64
Ping. (33) K-mean & SVM 12 98.92
Ali et al. (34) Conventional ANN 2 92.4
Vasileios. (35) SVM 3 95.35
Mehrdad. (36) Negative corelation learning | 2 96.02
Saroj et al. (18) Stacked RBM 5 98.61
Shririn et al. (17) Block based NN + PSO 5 97
Nimmala et al. (19) Attention based NN 8 98.5
Bambang et al. (20) AFibNet (CNN) 3 96.36
Ozal et al. (22) 1D CNN 17 91.33
Mohammad et al. (21) CNN 5 95.2
Mengze. (23) CNN (12 Layers) 5 97.2
Proposed Work - KNN KNN 5 90.13
Proposed Work - WEASEL | WEASEL 5 94.79
Proposed Work - RISE RISE 5 96.69
Proposed Work - TSF Time series forest 5 97.5

« Using TSEF, we get an impressive accuracy of 97.5%.
TSF reports the highest classification accuracy amongst
all four ML-based TSC algorithms and reports the least
amount of time taken to predict a class for each input
sample.

o« WEASEL takes a comparable amount of time as TSF
to predict a class for each input sample. However, it
reports lower classification accuracies than TSF.

o RISE reports classification accuracies comparable to
TSF; however, it takes more time to predict a sample
for each input class.

o KNNs with DTW report the lowest classification accu-
racy and take significantly more time to predict a class
for each input sample than other algorithms.

The results highlight the potential of TSF to be used in vari-
ous TSC applications, such as in healthcare devices where the
devices can continuously monitor the ECG readings of the
heart, and the model can detect any ailments by classifying
the ECG readings. We also hope that our project also ignites
further research in the application of time series analysis,

especially in the domain of healthcare, with the hope that ML
can help advance existing healthcare technologies and not
only help increase the longevity of human life but also help
in understanding the unexplained aspects of human anatomy.

(1]

(2]

(3]

REFERENCES

G. Moody and R. Mark, “Mit-bih arrhythmia database,”
Feb 2005. [Online]. Available: https://physionet.org/
content/mitdb/1.0.0/

A. Kampouraki, G. Manis, and C. Nikou, “Heart-
beat time series classification with support vector ma-
chines,” IEEE transactions on information technology
in biomedicine : a publication of the IEEE Engineering
in Medicine and Biology Society, vol. 13, pp. 512-8, 09
2008.

S. Singh, S. K. Pandey, U. Pawar, and R. R. Janghel,
“Classification of ecg arrhythmia using recurrent
neural networks,” Procedia Computer Science, vol.
132, pp. 1290-1297, 2018, international Conference
on Computational Intelligence and Data Science.

Volume 30, Issue 2: June 2022



Engineering Letters, 30:2, EL._ 30 2 36

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[Online]. Awvailable: https://www.sciencedirect.com/
science/article/pii/S1877050918307774

M. Wu, Y. Lu, W. Yang, and S. Y. Wong, “A
study on arrhythmia via ecg signal classification
using the convolutional neural network,” Frontiers in
Computational Neuroscience, vol. 14, p. 106, 2021.
[Online]. Available: https://www.frontiersin.org/article/
10.3389/fncom.2020.564015

A. Das, F. Catthoor, and S. Schaafsma, “Heartbeat
classification in wearables using multi-layer perceptron
and time-frequency joint distribution of ecg,” in
Proceedings of the 2018 IEEE/ACM International
Conference on Connected Health: Applications,
Systems and Engineering Technologies, ser. CHASE
’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 69-74. [Online]. Available:
https://doi.org/10.1145/3278576.3278598

R. Andredo, B. Dorizzi, and J. Boudy, “Ecg signal anal-
ysis through hidden markov models,” IEEE transactions
on bio-medical engineering, vol. 53, pp. 1541-9, 09
2006.

H. Deng, G. C. Runger, E. Tuv, and V. Martyanov,
“A time series forest for classification and feature
extraction,” CoRR, vol. abs/1302.2277, 2013. [Online].
Auvailable: http://arxiv.org/abs/1302.2277

M. Flynn, J. Large, and T. Bagnall, “The contract
random interval spectral ensemble (c-rise): The effect
of contracting a classifier on accuracy,” in Hybrid
Artificial Intelligent Systems, H. Pérez Garcia,
L. Sanchez Gonzilez, M. Castejon Limas,
H. Quintidn Pardo, and E. Corchado Rodriguez,
Eds. Cham: Springer International Publishing, 2019,
pp- 381-392.

P. Schifer and U. Leser, “Fast and accurate time
series classification with WEASEL,” CoRR, vol.
abs/1701.07681, 2017. [Online]. Available: http://
arxiv.org/abs/1701.07681

A. Abouyahya and S. El Fkihi, “An optimization
of the k-nearest neighbor using dynamic time
warping as a measurement similarity for facial
expressions recognition,” in Proceedings of the
International Conference on Learning and Optimization
Algorithms: Theory and Applications, ser. LOPAL
’18. New York, NY, USA: Association for
Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3230905.3230921

G. Moody and R. Mark, “The impact of the mit-bih
arrhythmia database,” IEEE Engineering in Medicine
and Biology Magazine, vol. 20, no. 3, pp. 45-50, 2001.
M. Tsipouras and D. Fotiadis, “Automatic arrhythmia
detection based on time and time—frequency analysis of
heart rate variability,” Computer methods and programs
in biomedicine, vol. 74, pp. 95-108, 06 2004.

S. Karimifard, A. Ahmadian, M. Khoshnevisan, and
M. Nambakhsh, “Morphological heart arrhythmia de-
tection using hermitian basis functions and knn classi-
fier,” vol. 1, 02 2006, pp. 1367-70.

H. Khorrami and M. Moavenian, “A comparative study
of dwt, cwt and dct transformations in ecg arrhythmias
classification,” Expert Syst. Appl., vol. 37, pp. 5751-
5757, 08 2010.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

O. Castillo, P. Melin, E. Ramirez, and J. Soria, “Hybrid
intelligent system for cardiac arrhythmia classification
with fuzzy k-nearest neighbors and neural networks
combined with a fuzzy system,” Expert Syst. Appl.,
vol. 39, pp. 2947-2955, 02 2012.

E. Adams and A. Choi, “Using neural networks to
predict cardiac arrhythmias,” 10 2012, pp. 402-407.
S. Shadmand and B. Mashoufi, “A new
personalized ecg signal classification algorithm
using block-based neural network and particle
swarm optimization,” Biomedical Signal Processing
and Control, vol. 25, pp. 12-23, 2016.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1746809415001743

S. K. Pandey, R. R. Janghel, A. V. Dev, and P. K.
Mishra, “Automated arrhythmia detection from electro-
cardiogram signal using stacked restricted boltzmann
machine model,” 2021.

V. J.. K S. B. M. B. G. S. M. B. L. B.
Nimmala Mangathayaru, Padmaja Rani, “An attention
based neural architecture for arrhythmia detection and
classification from ecg signals,” Computers, Materials
& Continua, vol. 69, no. 2, pp. 2425-2443, 2021.
[Online]. Available: http://www.techscience.com/cmc/
v69n2/43850

B. Tutuko, S. Nurmaini, A. E. Tondas, M. Naufal Rach-
matullah, A. Darmawahyuni, R. Esafri, and A. Sapitri,
“Afibnet: An implementation of atrial fibrillation detec-
tion with convolutional neural network,” 02 2021.

M. M. Rahman Khan, M. A. Bakr Siddique, S. Sakib,
A. Aziz, A. K. Tanzeem, and Z. Hossain, “Electro-
cardiogram heartbeat classification using convolutional
neural networks for the detection of cardiac arrhyth-
mia,” in 2020 Fourth International Conference on I-
SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-
SMAC), 2020, pp. 915-920.

Ozal  Yildinm, P. Plawiak, R.-S. Tan, and
U. R. Acharya, “Arrhythmia detection using
deep convolutional neural network with long
duration ecg signals,” Computers in Biology
and Medicine, vol. 102, pp. 411-420, 2018.
[Online]. Available: https://www.sciencedirect.com/

science/article/pii/S0010482518302713

M. Wu, Y. Lu, W. Yang, and S. Y. Wong, “A
study on arrhythmia via ecg signal -classification
using the convolutional neural network,” Frontiers in
Computational Neuroscience, vol. 14, p. 106, 2021.
[Online]. Available: https://www.frontiersin.org/article/
10.3389/fncom.2020.564015

A. Bagnall, M. Flynn, J. Large, J. Lines, and M. Mid-
dlehurst, “A tale of two toolkits, report the third: on the
usage and performance of hive-cote v1.0,” 2020.
“Autoregression: Model, autocorrelation and python
implementation,” Mar 2021. [Online]. Available: https:
//blog.quantinsti.com/autoregression/

J. Brownlee, “A gentle introduction to autocorrelation
and partial autocorrelation,” Aug 2020. [Online].
Available: https://machinelearningmastery.com/gentle-
introduction-autocorrelation-partial-autocorrelation/

S. K. Gajawada, “Anova for feature selection
in  machine learning,” Oct 2019. [Online].

Volume 30, Issue 2: June 2022



Engineering Letters, 30:2, EL._ 30 2 36

Available:  https://towardsdatascience.com/anova-for-
feature-selection-in-machine-learning-d9305e228476

[28] S. K. Pandey and R. R. Janghel, “Automatic detection
of arrhythmia from imbalanced ecg database using cnn
model with smote,” Australasian Physical & Engineer-
ing Sciences in Medicine, vol. 42, pp. 1129 — 1139,
2019.

[29] U. R. Acharya, H. Fujita, O. S. Lih, Y. Hagiwara,
J. H. Tan, and M. Adam, “Automated detection of
arrhythmias using different intervals of tachycardia
ecg segments with convolutional neural network,”
Information Sciences, vol. 405, pp. 81-90, 2017.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0020025517306539

[30] Y.-C. Yeh, W.J. Wang, and C. W. Chiou,
“Cardiac  arrhythmia  diagnosis method using
linear discriminant analysis on ecg signals,’
Measurement, vol. 42, no. 5, pp. 778-789, 20009.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0263224109000050

[31] Y-C. Yeh, C. W. Chiou, and H.-J. Lin,
“Analyzing ecg for cardiac arrhythmia using cluster
analysis,” Expert Systems with Applications, vol. 39,
no. 1, pp. 1000-1010, 2012. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/
S0957417411010633

[32] M. Thomas, M. K. Das, and S. Ari,
“Automatic ecg arrhythmia classification using
dual tree complex wavelet based features,’
AEU - International Journal of Electronics and
Communications, vol. 69, no. 4, pp. 715-721, 2015.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1434841114003641

[33] C.-P. Shen, W.-C. Kao, Y.-Y. Yang, M.-C. Hsu, Y.-T.
Wu, and F. Lai, “Detection of cardiac arrhythmia in
electrocardiograms using adaptive feature extraction
and modified support vector machines,” Expert Systems
with Applications, vol. 39, no. 9, pp. 7845-7852, 2012.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0957417412001066

[34] A. Isin and S. Ozdalili, “Cardiac arrhythmia detection
using deep learning,” Procedia Computer Science, vol.
120, pp. 268-275, 2017, 9th International Conference
on Theory and Application of Soft Computing,
Computing with Words and Perception, ICSCCW
2017, 22-23 August 2017, Budapest, Hungary.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S187705091732450X

[35] V. Tsoutsouras, D. Azariadi, S. Xydis, and D. Soudris,
“Effective learning and filtering of faulty heart-beats
for advanced ecg arrhythmia detection using mit-bih
database,” EAI Endorsed Transactions on Pervasive
Health and Technology, vol. 2, no. 8, 12 2015.

[36] M. Javadi, S. A. A. A. Arani, A. Sajedin,
and R. Ebrahimpour, “Classification of ecg
arrthythmia by a modular neural network based
on mixture of experts and negatively correlated
learning,”  Biomedical  Signal  Processing and
Control, vol. 8, no. 3, pp. 289-296, 2013.
[Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1746809412001127

Volume 30, Issue 2: June 2022





