
 

Abstract—Skip lot sampling plans can be applied to 

manufacturing process to reduce sample size and inspection 

costs in the lot. In this paper, the objective is to propose the 

Empirical Bayes approach based on weighted squared error 

loss (WSEL) and K-loss (KL) functions in skip lot sampling 

plan with resampling (SkSP-R) on variables sampling plan for 

lot inspection with normally distributed data, assuming 

unknown mean and unknown variance. The proposed plans 

are also compared to traditional plans including skip lot 

sampling plan 2 (SkSP-2) and SkSP-R with single sampling 

plan (SSP) as a reference plan. The probability of acceptance 

(Pa), average sample number (ASN), and average total 

inspection (ATI) are considered as criteria for comparison. 

Afterwards, the proposed plan is applied to real data, 

amplified pressure sensor process. The results indicated that 

the proposed method yielded the smallest ASN and ATI but 

the highest Pa. 

 

Index Terms—Empirical Bayes, WSEL function, KL 

function, SkSP-R 

I. INTRODUCTION 

N acceptance sampling plan is a tool used for     

production inspection in the lot, which is an aspect of 

statistical quality control. The advantages include reduction 

of sample size and costs for inspecting products in 

monitoring processes. The types of acceptance sampling 

plan include attributes sampling plans and variables 

sampling plans. The quality characteristics for attributes are 

specified by defective and non-defective units, whereas the 

quality characteristics for variables are measured on 

continuous scales that often provide more information 

concerning production in the lots than attributes [1]. The 

types of plans include single sampling plan (SSP), double 

sampling plan (DSP), multiple sampling plans (MSP), 
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sequential sampling plan (sequential SP) and skip lot 

sampling plan (SkSP). The variable sampling plan can be 

applied in several parts of industry. The research can also 

be seen as follows. Jun et al. [2] studied SSP and DSP for 

variables in Weibull distribution to aid decision making for 

sudden death testing. Lee [3] developed control chart for 

variables sampling plan based on process mean.  

The SkSP is applied widely throughout industries for 

quality inspections of products in the lots since it can be 

done at lower cost compared to single sampling plan. SkSP 

is also more efficient than traditional methods [4]. Dodge 

[5] initially developed the SkSP, while Dodge and Perry [6] 

proposed the SkSP-2. Vijayaraghavan [7] illustrated the 

parameter selection of the SkSP-2 based on Poisson model. 

Balamurali and Subramani [8] developed optimal 

parameters for the SkSP-2 with DSP as the reference plan. 

Aslam et al. [9] presented optimal parameters for the SkSP-

2 based on the truncated lifetime test. Koatpoothon and 

Sudasna-na-Ayudthya [10] compared the SkSP-2 based on 

Pa, ASN, ATI and average outgoing quality (AOQ), with by 

attributes skip lot sampling plan V (SkSP-V). 

Veerakumari1 and Kokila [11] considered the SkSP-2 for 

destructive testing of the production in the lot. Balamurali 

and Subramani [12] studied the SkSP-2 by variables with 

SSP by variables as a reference plan when data are 

normally distributed under both known and unknown 

variances, using Pa, ASN, ATI and AOQ as criteria of 

comparison. The research involving SkSP-R can also be 

seen as follows. Govindaraju and 

Ganesalingam [13] developed a resampling plan for 

attributes with SSP as a reference plan. Aslam et al. [14] 

studied the resubmitted lot in variables sampling plan based 

on process capability index (PCI), where data are normally-

distributed with unknown mean and variance. Hussain et al. 

[15] considered the ASN of the SkSP-R which is compared 

with the SSP and the SkSP-2 with the SkSP-V. Kurniati et 

al. [16] developed resubmitted sampling plan for variables 

based on one-sided PCI. Aslam et al. [17] presented the 

optimal parameters of the SkSP-R for variables where data 

follow normal distribution under known and unknown 

variances. Balamurali et al. [18] considered the SkSP-R for 

destructive and non-destructive testing of cost items.  

Hussain et al. [19] developed the SkSP-R in PCI for optimal 
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parameters based on symmetric and asymmetric proportions 

of defective units. Aslam et al. [20] studied accelerated life 

testing with the SkSP-R when data follow Weibull 

distribution. Balamurali and Mahalingam [21] developed 

resampling procedure in SkSP-2. Balamurali et al. [22] 

demonstrated the optimal parameters of the SkSP-R using 

DSP for attributes as a reference plan. 

Bayesian statistical techniques are applied widely in 

various sampling plans which is an alternative to the 

classical approach. They are important for statistical 

inferences, such as the parameter estimation and hypothesis 

testing. In the Bayesian approach, the form of prior 

distributions and their parameters (hyper-parameters) are 

usually assumed to be known. In contrast, the Empirical 

Bayes (EB) approach assumes unknown hyper-parameters 

which are estimated from observable data [23]. This can be 

seen in Krutchkoff [24], Casella [25], Lu [26], Cui and 

George [27], Khaledi and Rivaz [28], Maswadah [29], 

Petrone et al. [30] and Lemon [31]. Ganesan et al. [32] 

developed Bayesian in sequential probability ratio test for 

monitoring processes of sensor data. Guure and Ibrahim 

[33] considered the estimation of Weibull parameters with 

maximum likelihood and Bayesian methods using interval-

censored survival data. Gimlin and Breipohl [34] studied 

Bayesian approach which can be applied to non-sequential 

SP and sequential SP for acceptance sampling plan. The 

application for SkSP with the Bayesian method can be 

demonstrated as follows. Phelps [35] developed Bayesian 

method in SkSP for destructive testing based on Poisson 

distribution. Aslam et al. [36] exhibited the Bayesian 

method for attributes in resubmitted lots where data are 

assumed to be gamma-Poisson distribution. Suresh and 

Umamaheswari [37] developed the Bayesian method in 

SkSP-2 based on a conditional repetitive group sampling 

plan under the Poisson model. Suresh and Umamaheswari 

[38] presented the Bayesian approach in the SkSP for 

destructive testing based on the Poisson model. Rajeswari 

and Jose [39] developed the SkSP-2 with the Bayesian 

modified chain sampling plan as a reference plan. Nirmala 

and Suresh [40] studied Bayesian methods in SkSP-V with 

multiple deferred states (0, 2) as a reference plan. Seifi et 

al. [41] studied variables sampling plan with resubmitted 

lot based on PCI and Bayesian method. Veerakumari et al. 

[42] illustrated the Bayesian method in SkSP-V with 

conditional repetitive group sampling plan.  

Rabie and Li [43] studied Burr-X distribution with 

hybrid censored data. The Bayesian and the expectation of 

the Bayesian estimate is considered under LINEX and 

squared error loss functions. Li et al. [44] proposed EB 

method using resampling in microarray data analysis which 

resulted in reduction of Type I and II error rate. Tinochai et 

al. [45] studied EB method for variables SkSP-V with 

normally distributed data in two cases of unknown mean 

but known variance and known mean but unknown 

variance. Tinochai et al. [46] developed EB approach in 

sequential sampling plan under a squared error loss (SL) 

and precautionary loss (PL) functions when data follow 

normal distribution under known mean and unknown 

variance. Jampachaisri et al. [47] considered EB approach 

in sequential sampling plan under SL and PL functions 

when data follow normal distribution, assuming unknown 

mean and unknown variance. In addition, EB method can 

be performed based on various loss functions, such as 

weighted squared error loss (WSEL) and K-loss (KL) 

functions, for making a decision about quality assurance of 

products in the lot. The WSEL function is a symmetric loss 

function which can be used for the parameter estimation 

with invariant property, whereas KL function is an 

asymmetric loss function and suitable for underestimated or 

overestimated circumstances [48]. Researches related to 

WSEL and KL functions can be seen as in Ali et al. [48], 

Ali et al. [49], Fan et al. [50], Rezaeian and Asgharzadeh 

[51]. 

Furthermore, the resampling procedure is utilized for 

quality inspections of products in the lots when decision 

making cannot be made on initial inspection and the quality 

of the lot is thus rejected by producer, which result in 

discarding the first inspected sample. Then, the decision 

making will depend on next inspection, which is time 

consuming and increased cost of inspection. The SkSP-R 

sampling plan can be used to reduce procedure of 

inspection when the history of products indicates good 

quality. Thus, if quality of products in previous lot is good, 

then the EB method in SkSP-R by variables sampling plan 

can be applied to estimate hyper-parameters using the 

observed data, yielding the acceptance probability obtained 

from the posterior distribution of defective proportion [52]. 

Therefore, EB in SkSP-R by variables sampling plan can 

reduce cost of inspection, producer risk and consumer risk 

in resampling step.  

The aim of this paper is to utilize the EB approach in 

SkSP-R (EB in SkSP-R) based on WSEL and KL functions 

for variables sampling plan. The SkSP-R can also be 

applied to both continuous sampling plan and decision 

making about quality inspection of bulk products. Its 

advantages are to reduce the cost of product inspection in 

manufacturing process such as pressure sensor process. This 

paper mainly focuses on normal-distributed data, with 

unknown mean and unknown variance. The proposed plans 

are compared to SkSP-2 and SkSP-R with SSP as a 

reference plan. The Pa, ASN and ATI are considered as 

comparison criteria. The SSP by variables, SkSP-2 and 

SkSP-R by variables are given in Section 2, Section 3 and 

Section 4, respectively. Section 5 shows the use of EB in 

SkSP-R based on WSEL and KL functions by variables 

sampling plan. Section 6 covers the simulation and results, 

Section 7 expresses practical applications, while 

conclusions are drawn in Section 8. 

II. SINGLE SAMPLING PLAN BY VARIABLES (SSP BY 

VARIABLES) 

This plan depends on two parameters according to 
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sample size  n  and acceptance criterion (K). The lot is 

accepted if z K and rejected if z K  where 

( )z USL X    using standard deviation  s  for 

unknown   and USL representing an upper specification 

limit. The two parameters  ,  n K can be specified as 

follows. 

  

1 2

2
2

1 ,
2 p p

Z ZK
n

Z Z

 
  

       

       (1) 

       2 1 .
p pZ Z Z Z

K
Z Z

 

 





         (2) 

The criteria for comparison are acceptance probability in 

the lots, denoted as Pa, and average sample number (ASN) 

inspected per lot which is used for making decision to 

accept or reject the lot. When the lot is rejected, the average 

number of items (ATI) inspected per lot is considered under 

100% inspection of items [53]. Thus, criteria of comparison 

for SSP by variables can be defined as following:   

           ,aP p P Z z                 (3)

     ASN ,p n                   (4) 

       ATI .p n N n Q             (5)  

Suppose that 1Q P   where P  is the acceptance 

probability of a lot for the SSP by variables and p  is the 

proportion of defective units in the lot. 

III. SKIP LOT SAMPLING PLAN 2 (SKSP-2) 

The SkSP-2 involving only two stages: a normal 

inspection and skipping inspection stage. It depends on two 

parameters, where i is consecutive lots on the reference 

plan and f is the proportion of lots (0 < f < 1). In this paper, 

the SkSP-2 is compared to the SSP by variables, regarded 

as the reference plan. The criteria for comparison of the 

SkSP-2 are the Pa, ASN and ATI [54] that can be given as 

follows. 
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Let 1 ,Q P  where P is the acceptance probability of a lot 

with the SSP by variables and p  is the proportion of 

defective units in the lot. 

IV. SKIP LOT SAMPLING PLAN RESAMPLING (SKSP-R) 

The SkSP-R plan is based on three main stages for 

inspections as follows: normal inspection, skipping 

inspection and resampling stage which is different from 

SkSP-2. It consisted of considered by four parameters 

including i, f, k and r, where k is consecutive lots on 

skipping inspection when k < i, k = i, k > i and r is the 

number of times in the lots which are submitted for 

resampling [55]. The procedures of the SkSP-R sampling 

plan are provided as follows (Fig 1).  

1)   Start at normal inspection; the lots are inspected one by 

one with the reference plan.   

2)   If i  consecutive lots are continuously accepted from the 

normal inspection then switches to skipping inspection 

stage.  

3)    For the skipping inspection, a sampled lot is inspected 

randomly only a fraction (f) of the lots that continue 

until the sampled lot is rejected. 

4)    If a sampled lot is rejected from skipping inspection 

stage and kth last sampled lots have been accepted 

consecutively and then go to the resampling for 

immediate next lot. 

5)    On the resampling stage, the lot is inspected with a 

reference plan, if the lot is accepted then switch to 

skipping inspection. However, if the lot is rejected then 

resampling r times. When the (r-1)th times have not 

been accepted, then the lot is rejected on resampling 

stage. 

6)    If the lot is rejected on resampling procedure then 

replace defective units with non-defective units and 

return to normal inspection. 

The criteria for comparison of the SkSP-R are the Pa, 

ASN and ATI which can be calculated as follows. 
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Fig. 1. The procedure of the SkSP-R sampling plan. 

 

Let 1 ,Q P  P is the acceptance probability of a lot with 

the reference plan, proportion of defective units in the lot at 
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AQL, denoted as
1p  and at RQL, denoted 

as
2.p Furthermore, Pa is considered of two points, the 

producer’s risk   and the consumer’s risk 

 , respectively. The Pa at the 
1p  and 

2p are given by 

     1   1 ,aP p                              (12) 

         2   .aP p                            (13) 

V. PROCEDURE FOR PAPER SUBMISSION EMPIRICAL BAYES 

BASED ON WSEL AND KL FUNCTIONS IN SKSP-R   

In this paper, the EB in SkSP-R based on WSEL and KL 

functions is considered with data normally-distributed, 

 2, ,X N   with unknown mean    and unknown 

variance  2 . The proportion of defective samples in a lot 

is given by 

    | 1 ,p P X USL F USL               (14) 

where USL is an upper specification limit, 

 W USL     and  F W  is a cumulative distribution 

function of standard normal distribution [56].   

The Bayesian approach consisted of an unknown 

parameters , and its distribution called prior probability 

density function. Assuming prior distribution,   | ,    

and hyper-parameter  are known. The likelihood function 

is written as  .L  Therefore, the posterior distribution,
 

 |h x  is given by 
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|

L
h x L

M x

   
   




        (15) 

If the hyper-parameter    is unknown, but can be 

estimated from the observed data, called EB approach [57]. 

The hyper-parameter can be specified from the marginal 

distribution of ,x  given by 

       | | | ,M x     f x d


          (16) 

where  |M x   denotes the marginal distribution of .x  

A. Unknown mean    and unknown variance  2  

Let  2, ,X N   where   and 2  are unknown and 

assuming informative priors on   and 2 :  2,N         

and  2 ,IG a b  where the hyper-parameters 

2,  ,  a  and b  are unknown.  

The hyper-parameters can be estimated from the 

marginal likelihood distribution, written as 

       2 2 2 2 2
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Equation (17) does not have a closed form, the hyper-

parameters thus cannot be estimated directly by classical 

method, such as maximum likelihood method (ML). 

Alternatively, the hyper-parameters 2,  ,  a   and b  are 

determined using Gibbs sampler [58]. After that, the 

estimators 
2ˆ ˆ ˆ,  ,  a   and b̂ will be substituted into the 

posterior distribution function.  

The posterior distribution function of   and 2 is 

provided as 

         2 2 2 2, | , | | , | , .h x L x a b             

Thus, 
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It can be seen that the joint posterior distribution functions 

of   and 2 do not have a closed form, which can also be 

obtained using Gibbs sampler. Furthermore, the estimation 

of parameters   and 2 for WSEL and KL function can be 

presented in the next section. 

B. The EB based on WSEL Function for Estimation of   

and 2  

The WSEL function provided as 

     
 

2

;  ,
T

L T






                 (19)  

where  2,   and T is estimated values of   and 2.  

Then, the EB estimators of   and 2 with respect to 

WSEL function [49] can be obtained as 
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Let  2,u   be any function of   and 2 , the posterior 

expectation can be shown as follows:     

         2 2 2 2

0
, | , , | .E u x u h x d d       

 



   
        (20)   

Due to its complexity, Lindley’s approximation procedure 

is used to estimate the parameters in [59]. The two 

parameters estimators of   and 2 can be obtained from     
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The EB estimator of   with respect to the WSEL can be 

determined as follows.  

 Let  2 1,u     then 
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The likelihood function of   and 2 is given by 
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and joint prior distribution of   and 2 can be provided 

from 
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where   
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Refer to (21), the estimator of   with respect to the WSEL 

reduce to 

   1 2
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After that,  
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Thus, the EB estimator of   based on WSEL can be 

provided as 

 
 1

1
ˆ .

|
WSEL

E x



    

Then, 

 
2 2 2

22
1

2 2

2 2 2 2 2 2

1

1
ˆ ,

ˆ2
ˆˆ ˆˆ1

1
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ2

WSEL
n

i

i

n

i

i

x nx

n n
n n x nx




  

  
  






  
  
     
     
    
           





 

                      (26) 

where ˆMLE x   and 
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The EB estimator of 2 with respect to WSEL can be 

determined as follows. Let    
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From (21), the EB estimator of 2 is shown as follow: 
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Thus, the EB estimator of 2 based on WSEL is given as 

     
81

2

2 2

ˆ ˆ1 1 2
ˆ| 2 2 1 .

2ˆ ˆ

b
E x a

A




 

      
        

     

  (28) 

Engineering Letters, 30:2, EL_30_2_42

Volume 30, Issue 2: June 2022

 
______________________________________________________________________________________ 



 

 

 

 

where 2 2 2

1

ˆ 2 .

n

i

i

A n x nx



 
   
 
 
  Then, the estimators  

ˆWSEL and 
2ˆWSEL will be replaced into the posterior 

distribution function. 

C. The EB based on KL Function for Estimation of  and 

2   

The KL function is studied by Wasan [60] and it can be 

used to estimate a scale parameter of a distribution based on 

positive integer [45]. The form of KL function is provided 

by 
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where  2,   and T  is estimated value of   and 2.  

Then, the EB estimators of   and 2 respect to KL          

function [45] are specified by 
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If  2,u     then  ˆ |E x   and  2 2,u    then 

 2 2ˆ |E x  [47]. Thus, the EB estimator of   and 2 are 

the mean of posterior distribution based on squared error 

loss (SEL) function. It can be shown as follows. 
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If  2 1,u     and    
1

2 2,u   


 then the EB 

estimator of   and 2 are refer to (25) and (28) which are 

the estimators of   and 2 with respect to the WSEL 

function. Thus, the estimators of   and 2 based on KL 

can be obtained as 
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and 
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where ˆMLE x   and 
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 The estimators 

ˆKL and 
2ˆ KL will then be replaced into the posterior 

distribution function. 

Suppose that p is the proportion of defective units then 

the cumulative posterior distribution functions of   and 

2 can be defined as 

     ( | ) ,
p

F p h x d


           (32) 

where  2, .   Therefore, the cumulative posterior 

probability distribution function of   and 2 are used to 

obtain the Pa, ASN and ATI. 

D. Criteria for comparison of the EB in SkSP-R based on 

WSEL and KL functions 

The Pa, ASN and ATI of the EB in SkSP-R are given as 

follows. 
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where l = 1 and 2 which denote the estimators of EB in 

SkSP-R based on WSEL and KL functions, 1Q P   and 
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P  is the acceptance probability of a lot with the reference 

plan. The Pa at the 1p  and 2p  are considered by 

 1 1aP p    and  2 .aP p   

VI. SIMULATION AND RESULTS 

 Data are generated from standard normal distribution 

which is considered unknown mean and variance. The 

number of iterations is given by t =1,000,  =0.05, 

 =0.10, the proportion of defects at 1p = 0.01 and at 2p = 

0.02. The SSP by variables is considered with parameters 

N =1,000, n = 388 which is calculated from (1). The 

SkSP-2 is defined with parameters i = 5, 10, f = 1/5. The 

SkSP- R is specified with parameters i = 5, f = 1/5, k = 3, 5, 

r = 2, 3 and i = 10, f = 1/5, k = 5, 10, r = 2, 3. In this paper, 

the EB in SkSP-R is compared with traditional methods, 

SkSP-2 and SkSP-R with SSP as a reference plan. The Pa, 

ASN and ATI are considered as the criteria for comparison 

and the simulation results of four plans can be shown in 

Table I to Table III. 

 Table I shows a comparison of Pa for EB in SkSP-R 

based on WSEL and KL functions with classical methods; 

SkSP-2 and SkSP-R, at 1p = 0.01 and 2p = 0.02. Obviously, 

the EB in SkSP-R based on WSEL and KL functions when 

fixing at 1p = 0.01 provides that all values of Pa are higher 

than those in classical methods, varied between 0.9980 and 

0.9985. When fixing 2p = 0.02, the result shows that all 

values of Pa for EB in SkSP-R based on WSEL and KL 

functions are smaller than those in SkSP-2 and SkSP-R. 

 Similarly, Table II and III provide the values of ASN 

and ATI for EB in SkSP-R based on WSEL and KL 

functions when compared with traditional approaches at 

fixing 1p = 0.01 and 2p = 0.02, respectively. The results 

indicate that the EB in SkSP-R for both cases at 1p = 0.01 

provide smallest values of ASN and ATI values in all cases. 

The ASN and ATI values are varied about 78-81 per lot and 

79-83 per lot, respectively.  

 It is apparent that the results of the EB in SkSP-R based 

on WSEL and KL functions are similar, yielding the 

highest values of Pa and the smallest values for ASN and 

ATI when fixing 2p = 0.02. In addition, two proposed 

plans result in similar result, yielding is the smallest values 

of Pa, ASN and ATI when fixing 2p = 0.02. 

 As in Fig.2-7, the Pa, ASN and ATI of the EB in SkSP-

R based on WSEL and KL functions are compared with the 

classical approaches; as SkSP-2 and SkSP-R, where the 

proportion of defective units is varied from 0.001 to 0.1 and              

i = 10, f = 1/5, k = 10, r = 3.  

 Fig.2-3 show that the values of Pa for EB in SkSP-R 

based on WSEL and KL functions are compared with 

SkSP-2 and SkSP-R. The results show that higher values of 

Pa occurred with EB in SkSP-R based on WSEL and KL 

functions than the SkSP-2 and SkSP-R and larger 

difference can be detected for EB in SkSP-R based on 

WSEL as the proportion of defective units is higher than 

0.04. It is also evident that the values of Pa for EB in SkSP-

R based on both loss functions are closer to those for SkSP-

R than SkSP-2. 

Furthermore, Fig.4-7 illustrate the values of ASN and 

ATI for EB in SkSP-R based on WSEL and KL functions in 

comparison with SkSP-2 and SkSP-R. It indicates that the 

two proposed plans provide smaller values of ASN and ATI 

than those in SkSP-2 and SkSP-R and larger difference of 

ASN and ATI can be seen with the use of EB in SkSP-R 

based on WSEL than KL. Likewise, the EB in SkSP-R 

based on both loss functions yield the values of ASN and 

ATI closer to SkSP-R than SkSP-2.  

VII. PRACTICAL APPLICATIONS 

Real data about amplified pressure sensor process are 

observed ( n  = 136) with specification limits T = 2.0 V,            

USL = 2.1 V and LSL = 1.9 V [61]. Suppose that AQL( 1p ) 

is 0.001, RQL( 2p ) is 0.002,   = 0.05 and  = 0.10. The 

observations are provided as follows. 
 

1.9422 1.9651 2.0230 1.9712 1.9975 2.0164 1.9927 1.9566 

1.9738 1.9541 1.9800 1.9596 1.9811 2.0088 1.9858 1.9677 

2.0001 1.9659 1.9955 1.9842 1.9909 1.9829 1.9684 1.9942 

1.9897 1.9836 1.9891 1.9608 2.0109 1.9912 2.0077 1.9803 

2.0106 1.9885 1.9704 1.9882 1.9689 1.9553 1.9741 1.9825 

1.9640 2.0187 1.9616 1.9865 1.9556 1.9817 1.9774 1.9316 

1.9841 1.9919 1.9737 1.9958 2.0121 2.0021 1.9665 1.9773  

1.9841  1.9570 1.9610  2.0015  1.9750 1.9825  1.9758 1.9682 

1.9668 1.9696 2.0334 1.9656 1.9819 2.0116 1.9754 1.9986 

2.0114 1.9861 1.9743 1.9594 1.9712 1.9849 1.9711 1.9486 

1.9837 1.9424 1.9744 1.9605 1.9719 1.9656 1.9549 2.0174 

1.9779 2.0072 1.9875 1.9781 1.9834 1.9893 1.9276 1.9513 

1.9971 1.9963 1.9375 1.9941 1.9763 2.0108 1.9687 1.9559 

1.9611 1.9729 1.9992 1.9925 2.0073 1.9742 1.9557 1.9726 

1.9964 1.9614 1.9768 1.9991 1.9832 1.9847 1.9849 1.9918 

1.9748 1.9664 2.0035 1.9822 1.9882 1.9809 1.9920 1.9994 

2.0030 1.9786 1.9720 1.9834 1.9726 2.0012 1.9557 1.9874 
 

 The sample mean and standard deviation of this data 

are 1.9807 and 0.0191, respectively. Let i = 10, f = 1/5,                

k = 10, r = 3. Results show that the Pa’s of EB in SkSP-R 

based on WSEL and KL functions when fixing at                     

1p = 0.001 are 0.9998 and 0.9980, respectively which 

provide higher the Pa’s values than 0.9978 and 0.9979 

obtained from SkSP-2 and SkSP-R approaches. When 

fixing at 2p = 0.002 the Pa’s of EB in SkSP-R based on 

WSEL and KL functions are 0.0039 and 0.0041 which is 

smaller than 0.0047 and 0.0045 which obtained from SkSP-

2 and SkSP-R methods, when fixing at 1p = 0.001, the 

ASN of EB in SkSP-R based on WSEL and KL functions 

are 27.2220 and 27.6152, while the SkSP-2 is 29.3090 and 

the SkSP-R is 28.2237, respectively. When fixing at 1p = 

0.001, the ATI of EB in SkSP-R based on WSEL and KL 

functions are 27.3950 and 29.3696, while the SkSP-2 is 

31.3241 and the SkSP-R is 30.3966, respectively. Thus, it 

can see that the ASN and ATI of the proposed plans are 
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smaller than those of classical plans. Similarly, when 

fixing 2p = 0.002, the ASN and ATI of the proposed plans 

are smaller than those of traditional plans. 

VIII. CONCLUSIONS 

In this paper, we propose the EB approach in SkSP-R 

based on WSEL and KL functions when data follow normal 

distribution with unknown mean and variance. The study is  

performed as following:  =0.05,  =0.10, the proportions 

of defects fixing at 1p = 0.01 and at 2p = 0.02. The 

proposed plans are then compared with traditional 

approaches; SkSP-2 and SkSP-R with SSP as a reference 

plan, where Pa, ASN and ATI are considered as criteria for 

comparison. The results show that the EB in SkSP-R based 

on WSEL and KL functions outperforms SkSP-R and 

SkSP-2, providing higher values of Pa and smaller values of 

ASN and ATI than both classical methods. The Pa, ASN 

and ATI of the proposed plans based on WSEL and KL are 

closer to those obtained from SkSP-R than SkSP-2. It can 

see that the proposed plan can be applied to reduce cost and 

time for inspection of products, producer risk and consumer 

risk in manufacturing process. Furthermore, we applied the 

proposed plan to real data, amplified pressure sensor 

process, which yielded similar results with those in the 

simulation. In future research, the EB in the SkSP-R 

approach can be extended to non-normal distribution. 

Alternatively, other approach for parameter estimation, 

such as bootstrapping, can be implemented. 

 

 
Fig. 2. The comparison of Pa for the SkSP-2, SkSP-R and EB     

in SkSP-R (WSEL). 

 
Fig. 3. The comparison of Pa for the SkSP-2, SkSP-R and EB  

in SkSP-R (KL). 

 

 
Fig. 4. The comparison of ASN for the SkSP-2, SkSP-R and EB in 

SkSP-R (WSEL). 

 

 
Fig. 5. The comparison of ASN for the SkSP-2, SkSP-R and EB in 

SkSP-R (KL). 
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Fig. 6. The comparison of ATI for the SkSP-2, SkSP-R and EB in 

SkSP-R (WSEL). 

 

 
Fig. 7. The comparison of ATI for the SkSP-2, SkSP-R and EB in 

SkSP-R (KL). 

 

 

TABLE I 

COMPARISON OF PA FOR THE SKSP-2, SKSP-R AND EB IN SKSP-R BASED ON WSEL AND KL FUNCTIONS AT                                                   

P1 = 0.01 AND P2 = 0.02. 

                                                                     Pa 

Parameters                              p1 = 0.01                         p2 = 0.02 

i f k r  SkSP-2 SkSP-R 

EB in 

SkSP-R 

(WSEL) 

EB in 

SkSP-R 

(KL) 

 SkSP-2 SkSP-R 

EB in 

SkSP-R 

(WSEL) 

EB in 

SkSP-R 

(KL) 

5 1/5 3 2 0.9979 0.9980* 0.9985 0.9984 0.0043 0.0042* 0.0041 0.0039* 

   3 0.9979 0.9980* 0.9984 0.9982 0.0043 0.0042* 0.0039* 0.0042 

  5 2 0.9979 0.9980* 0.9981* 0.9980* 0.0043 0.0042* 0.0042 0.0040* 

   3 0.9979 0.9980* 0.9982 0.9981* 0.0043 0.0042* 0.0040 0.0041* 

10 1/5 5 2 0.9978 0.9980* 0.9983 0.9983 0.0047 0.0041* 0.0037 0.0038 

   3 0.9978 0.9979* 0.9981* 0.9981* 0.0047 0.0040* 0.0038 0.0039* 

  10 2 0.9978 0.9979* 0.9980 0.9981* 0.0047 0.0042* 0.0044 0.0040* 

   3 0.9978 0.9979* 0.9981* 0.9980* 0.0047 0.0042* 0.0039* 0.0041* 

  Note : * is the estimated value which is different at the 5th decimal position. 
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TABLE II  

COMPARISON OF ASN FOR THE SKSP-2, SKSP-R AND EB IN SKSP-R BASED ON WSEL AND KL FUNCTIONS AT                                       

P1 = 0.01 AND P2 = 0.02. 

  ASN   

Parameters                    p1 = 0.01                  p2 = 0.02.  

i f k r SkSP-2 SkSP-R 

EB in 

SkSP-R 

(WSEL)   

EB in 

SkSP-R 

(KL) 

SkSP-2 SkSP-R 

EB in 

SkSP-R 

(WSEL) 

EB in 

SkSP-R 

(KL) 

5 1/5 3 2 80.6682 79.2961 78.2923 78.2866 83.9587 80.1513 79.1902 79.1304 

   3 80.6682 79.2958 78.2822 78.3414 83.9587 80.1489 79.1191 79.2492 

  5 2 80.6682 78.3458 78.4104 78.3757 83.9587 80.3487 79.5019 79.4199 

   3 80.6682 78.3453 78.3524 78.3746 83.9587 80.3464 79.3630 79.4155 

10 1/5 5 2 83.9251 81.5100 78.4322 78.4794 90.7920 83.0433 79.8257 79.9578 

   3 83.9251 80.5094 78.4278 78.4633 90.7920 82.0384 79.8107 79.9099 

  10 2 83.9251 80.7851 78.8973 78.7564 90.7920 82.1210 80.4597 81.0343 

   3 83.9251 79.7845 78.7178 78.7883 90.7920 81.1167 80.9155 81.1284 

 

TABLE III  

COMPARISON OF ATI FOR THE SKSP-2, SKSP-R AND EB IN SKSP-R BASED ON WSEL AND KL FUNCTIONS AT                                                

P1 = 0.01 AND P2 = 0.02.                                       

                                                              ATI 

Parameters                        p1 = 0.01                                                        p2 = 0.02 

i f k r SkSP-2 SkSP-R 

EB in 

SkSP-R 

(WSEL)   

EB in 

SkSP-R 

(KL) 

SkSP-2 SkSP-R 

EB in 

SkSP-R 

(WSEL) 

EB in 

SkSP-R 

(KL) 

5 1/5 3 2 81.9431 80.5311 79.5213 79.5063 86.6126 82.6483 81.7414 81.5988 

   3 81.9431 80.5308 79.4953 79.6496 86.6126 82.6457 81.5750 81.8821 

  5 2 81.9431 80.5844 79.7378 79.6543 86.6126 82.8519 82.1763 82.0032 

   3 81.9431 80.5811 79.5982 79.6521 86.6126 82.8495 81.8849 81.9966 

10 1/5 5 2 85.2515 83.7484 79.5885 79.6859 93.6619 85.5684 82.1939 82.4219 

   3 85.2515 83.7477 79.5799 79.6534 93.6619 84.5634 82.1708 82.3426 

  10 2 85.2515 81.0278 79.8097 79.9782 93.6619 84.6801 83.1753 83.5525 

   3 85.2515 80.0271 79.9117 80.0338 93.6619 83.6756 83.3787 83.6928 
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