
 

Abstract— To track the ground objects through a single 

aerial vehicle doesn’t give better results especially when the 

speed of the object is very fast. To solve this issue, this research 

article presents Improved Grey Golf Optimizer (IGWO) 

approach to track the ground moving objects through multiple 

Unmanned Aerial Vehicles (UAVs). In this manuscript, target 

tracking is modeled by expressing the target model, sensor 

coverage region, restricted region, and space constraints. In 

IGWO algorithm, only the globally best position is considered 

for the tracking which provides better results as well as faster 

response.  The algorithm also reproduces the wolf pack's 

destructive strategy and social hierarchy to find the optimal 

solution for the system. To validate the effectiveness of the 

proposed system various scenarios with different ground 

vehicle motion has been tested. Three UAVs simultaneously 

track the ground object, its direction, and motion along the 

followed path. In future work, the adaptive approach can be 

used to identify obstacle detection for UAVs and ground 

objects. 

 
Index Terms—Unmanned aerial vehicle (UAV), Multi-UAVs, 

Improved grey wolf optimizer (IGWO), tracking 

I. INTRODUCTION 

NMANNED Aerial Vehicles (UAVs) progressively 

demands and utilized in military and civilian fields [1] 

in previous decades for example in rescue and search 

assignment [2], surveillance [3], inspection, and exploration 

[4]. Unmanned vehicles attain high flexibility and safety with 

low cost as compared to manned vehicles. Many studies 

focus on improving levels of unmanned vehicles in terms of 

autonomy and aptitude. Recently, multi-UAVs target 

tracking becomes a hot research topic [5] including the 

technology of target tracking by multi-sensor fusion [6], path 

planning, and image processing [7]. The study focuses on 

problematic trajectory optimization to preserve the moving 

target being sensed by UAV.  

The performance of multiple UAV tracking improves 

expressively as compared to the case in which a single UAV 

performs the task. During the flight mission, vehicles share 

information thus the sensor coverage also increases [8]. The 

two modes of target tracking are the centralized approach and 

the decentralized approach. In the centralized approach [9], 

the center node assigns the missions to proxies in the team as 

in this manuscript. Similarly in the decentralized approach 

[10], every proxy plans its path based on the information 

from other vehicles. 

Various studies propose path planning algorithms for the 

target tracking of UAVs. In reference [11], the paper presents 

non-linear disturbance, observer-based standoff tracking, and 

guidance for multi-fixed-wing UAVs. Moreover, the 

disturbance observer approximates the wind disturbance. 

Similarly, the Lyapunov guidance vector recompense effect 

of wind and monitors the target. The simulation results show 

the flight experiments to explain the performance of the 

proposed scheme. About [12], this study proposes a swarm 

intelligence-based optimization algorithm to improve the 

tracking trajectory of UAVs. It helps in maintaining the 

distance between the UAVs and also improves the tracking 

process. Another improved bat algorithm is proposed in this 

manuscript to overcome the drawbacks like poor stability.  

The experiments are conducted with the preferred distance 

between the UAV and target. The experimental results show 

effective results in tracking. Similarly in [13], target 

searching and path planning is the main issue to be focused 

on. This manuscript proposes an online distributed algorithm 

for searching and tracking. This study also proposed a 

quantum probability model to define the target position. 

Furthermore, it derived the tree algorithm to solve the 

optimal route. Experiments and different analyses elaborate 

on the accuracy and effectiveness of the proposed scheme. 

Finally, in reference [14-15], the study focuses on the 

tracking problem of multi-UAVs based on formation control. 

It also defines the methodology of formation control to show 

the effective tracking results of the target. It also adopts the 

formation control method based on the leader-follower 

system. The MATLAB simulation proves the formation 

control and tracking strategy of the proposed scheme.  

The main contribution of this manuscript is that it designs a 

novel algorithm that solves the challenging problem of 

tracking. Firstly, this manuscript models the problem by 

considering the target model, sensor coverage region, 

restricted region, and space constraints. Secondly, this 

manuscript utilizes an improved grey wolf optimizer (IGWO) 

as the tracking problems solver. Finally, the simulation 

results show the fitness of the proposed algorithm which 

describes its betterment and reliability.  

The manuscript is planned as follows. The introduction is 

presented in section 1. The problem definition and its 

proposed solution are defined in section 2. Section 3 defines 

state of the art. Section 4 defines the mathematical 

formulation. Section 5 defines the proposed scheme i.e. 

IGWO. The simulations are done in section 6. Section 7 

presents the conclusion of this manuscript. 
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II. PROBLEM DEFINITION AND PROPOSED SOLUTION 

This section of the manuscript defines the problem 

definition and proposed solution used in this research article. 

During the tracking mission of multi-UAVs, the trajectory 

optimization problem [16] is considered. Thus the main focus 

is to solve these problems and maintain the target being 

spotted as much as possible. To solve all these problems, the 

study designs and adopts the IGWO method. Similarly, it also 

models the target tracking problem by considering the target 

model, sensor coverage region, and space constraints. The 

designed algorithm attains better performance and efficiency 

by introducing some enhancement approaches.  

III. STATE OF THE ART 

This section defines the recent trends in this field. In 

reference  [17], the study proposes a path planning method 

for tracking moving targets. The movement of the target, 

turning rate, and speed are considered as inputs. The 

environment attains the obstacles which becomes the line of 

sight (LOS) of the sensor. It also focuses on the energy saving 

of the system with the help of sensors and control inputs. 

Furthermore, the study proposes the model; Distributed 

Model Predictive Control (DMPC) to attain the best path for 

individual UAVs. In [18-19], the study explains the UAV 

searching for a moving target with known speed and heading 

towards its path. The roads are detached with ground sensors 

to detect the motion of the target. It presents the Recursive 

Forward Search (RFS) method. The method scales ailing in 

problem constraints that are the number of nodes and evader 

path. The results show the applicability of the proposed 

scheme. About [20], the study solves the target tracking 

problem of a ground target. The study proposes an ant colony 

optimization (ACO) algorithm to plan an effective track for 

the target. It also defined the predicted meeting point to solve 

moving target problems. Finally, simulations results show a 

comparison of the designed scheme with other schemes. The 

proposed method plans an effective and optimal path and 

solves the improbability problems. It also improves the 

multi-UAV path planning. Finally, in [21-22], the study 

proposes a path planning method with a team of UAVs. The 

proposed scheme offers to plan trajectories and provides 

coordination between vehicles. The novel method namely 

non-linear formulation is proposed to overcome all the 

changes. This method is integrated with hardware and 

software. The study also provides computational results in 

field and simulation experiments. Results show that the 

proposed method attains the capability to make optimal 

trajectories.  

IV. MATHEMATICAL FORMULATION 

This section of the manuscript explains the multi-UAV’s 

tracking target in the formulated form. This section 

comprises UAV kinematics and dynamics [23], target model, 

sensor coverage & restricted region, and space limitations 

among UAVs. 

A. UAV Kinematics and Dynamics 

Considering the kinematics of UAVs in two-dimensional 

space. The UAV’s kinematics geometry is demonstrated as 

the dynamical system in discrete-time and can be attained by 

the following equation. 

 

�̅�𝑖(𝑡 + 1) = 𝑓(�̅�𝑖(𝑡), 𝑢𝑖(𝑡)      (1) 

∴ 𝑖 = {1, … . , 𝑛𝑈𝐴𝑉} 
 

Whereas �̅�𝑖(𝑡) = [𝑥𝑖(𝑡), 𝑦𝑖(𝑡), 𝜓𝑖(𝑡)]
𝑇 . 𝑛𝑈𝐴𝑉  defines the 

number of UAVs. 𝑥, and 𝑦 denotes the position along the 

axes, 𝜓  denotes the heading angle and 𝑢  represents the 

control input vector. The time step is represented by 𝑡 and 𝑖 

denotes that the variables belong to 𝑖𝑡ℎ UAV. Fig. 1 shows 

the kinematics geometry of UAV in which 𝑎 signifies the 

acceleration and 𝑣 represents the velocity. The kinematics of 

UAV related to the inertial frame can be written as 

 

{
 
 

 
 
�̇�𝑖(𝑡) = 𝑣𝑖 . 𝑠𝑖𝑛(𝜓𝑖(𝑡))

�̇�𝑖(𝑡) = 𝑣𝑖 . 𝑐𝑜𝑠(𝜓𝑖(𝑡))

�̇�𝑖(𝑡) =
𝑎𝑖(𝑡)

𝑣𝑖

�̇�𝑖(𝑡) = 𝑎𝑖(𝑡)

                (2) 

 

 
Fig 1:  Kinematics of UAV 

 

From equations (1), �̅�𝑖(𝑡 + 1) can be rewritten as 

 

�̅�𝑖(𝑡 + 1) = [

𝑥𝑖(𝑡)

𝑦𝑖(𝑡)

𝜓𝑖(𝑡)
] + [

𝑣𝑖 . 𝑠𝑖𝑛⁡(𝜓𝑖(𝑡)

𝑣𝑖 . 𝑐𝑜𝑠⁡(𝜓𝑖(𝑡)
𝑎𝑖(𝑡)

𝑣𝑖

] . ∆𝐸   (3) 

 

The UAV’s motion can be inhibited by the maximum and 

minimum velocities ( 𝑣𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝑣𝑖 ≤ 𝑣𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ), the 

minimum radius (𝑟𝑚𝑖𝑛𝑖𝑚𝑢𝑚), and maximum control input 

which can be represented as (𝑢𝑚𝑎𝑥𝑖𝑚𝑢𝑚 =
𝑣2

𝑟𝑚𝑖𝑛𝑖𝑚𝑢𝑚
). 

B. Target Model 

The dynamics of the target have been defined in Fig. 2 and 

the target will be demonstrated as a point mass. Consider the 

altitude of point zero. The state vector at the time step 𝑡 can 

be written as 

 

�̅�𝐸(𝑡) = [�̅�𝐸(𝑡), �̅�𝐸(𝑡)]
𝑇⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

 

Whereas �̅�𝐸(𝑡) = (𝑇𝐸𝑥(𝑡), 𝑇𝐸𝑦(𝑡))  and �̅�𝐸(𝑡) =

(𝑣𝐸𝑥(𝑡), 𝑣𝐸𝑦(𝑡)) . 𝐸  signifies the target variables, �̅�𝐸(𝑡) 

denotes the position and �̅�𝐸(𝑡) represents the target velocity 

vectors. Similarly, subscript 𝑥  and 𝑦  represent the 

projections. 
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Fig 2. Dynamics of target 

The target dynamics measured is specified by 

�̅�𝐸(𝑡 + 1) = �̇̅�𝐸(𝑡)∆𝑘 + �̅�𝐸(𝑡)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

Whereas ∆𝑘  denotes the sampling time. The ground 

vehicle dynamics can be inhibited by the turning maximum 

velocity (𝑉𝑚𝑎𝑥𝑖𝑚𝑢𝑚)  and minimum turning 

radius (𝑟𝑚𝑖𝑛𝑖𝑚𝑢𝑚
𝐸 ) . The angle 𝜗𝐸(𝑡)  among the velocity 

vector and x-axis can be attained by the following equation. 

 

𝜗𝐸(𝑡) = 𝑡𝑎𝑛−1 (
𝑣𝐸𝑦(𝑘)

𝑣𝐸𝑥(𝑘)
)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

 

The course vector indicates the direction where the target 

is moving. Therefore the values of the angles are 𝜗𝐸(𝑡) = 0, 

𝜗𝐸(𝑡) =
𝜋

2
, 𝜗𝐸(𝑡) = 𝜋  and 𝜗𝐸(𝑡) =

3𝜋

2
 in east, north, west, 

and south simultaneously.  

C. Sensor coverage region (SCR) 

In the mission of target tracking, the target point should be 

within the coverage region of the sensor. The body-fixed 

sensor is usually installed on the UAVs. It will compensate 

for the change in observation angle attained by the variation 

in the attitude of the vehicle. So, the coverage region will also 

be circular. However, a body-fixed sensor with the variation 

in attitude, the region also changes which leads to more 

complications. This section defines these above-mentioned 

issues and the model of sensor coverage. Fig.3 (a-b) shows 

the coverage region of the sensor in straight and turning 

flights concurrently. 

In Fig.3 (a), UAV is flying in a straight flight and the SCR 

will be circular and the center axes equal the position of the 

UAV. The radius 𝑟 = 𝑐. 𝑡𝑎𝑛𝛼  whereas 𝛼  denotes the field 

angle of the sensor. Similarly, in Fig.3 (b) UAV is flying in a 

rotating flight and the SCR will be elliptic attaining angle 𝛽 

which signifies the roll angle. The center of the coverage 

region can be written as 

𝑥𝑂−𝑛 =
1

2
𝑐[𝑡𝑎𝑛(𝛼 + 𝛽) − 𝑡𝑎𝑛⁡(𝛼 − 𝛽)]+𝑥𝑢𝑎𝑣    (7) 

𝑦𝑂−𝑛 = 𝑦𝑢𝑎𝑣      (8) 

 

The long and short axes are denoted by (𝑙, 𝑚) of the elliptic 

area and can be expressed as 

𝑙 =
1

2
𝑐[𝑡𝑎𝑛(𝛼 + 𝛽) − 𝑡𝑎𝑛⁡(𝛼 − 𝛽)]    (9) 

𝑚 = 𝑐. 𝑡𝑎𝑛𝛼                     (10) 

 

The coordinates in an inertial frame (𝑥, 𝑦)  can be 

transmuted to (𝑥𝑛, 𝑦𝑛) as follows 

 

[
𝑥𝑛
𝑦𝑛
] = [

𝑐𝜓 𝑠𝜓
−𝑠𝜓 𝑐𝜓

] [
𝑥 − 𝑥𝑂−𝑛
𝑦 − 𝑦𝑂−𝑛

]     (11) 

 

Whereas 𝑐  denotes 𝑐𝑜𝑠  and 𝑠  denotes 𝑠𝑖𝑛 . The SCR in 

𝑥𝑂−𝑛 and 𝑦𝑂−𝑛 can be written as  

𝑅𝑆𝐶𝑅 = [(𝑥𝑛 , 𝑦𝑛) |
𝑥𝑛
2

𝑙2
+

𝑦𝑛
2

𝑚2]      (12) 

 

 
Fig 3 (a).  SCR in a straight flight 

 

 
Fig 3 (b). SCR in a rotating flight 

 

D. Restricted region 

Obstacles vary in size which helps in building the 

restricted region [24-25]. For the safety of the flight, UAVs 

must avoid these obstacles. Usually, the obstacles like 

building with circular or rectangular areas attaining height 𝑐 

are considered restricted areas. Consider the tall 

obstacles/buildings 𝑊  attaining the origin 𝑂ℎ  whereas ℎ =
[1, … . ,𝑊]. The distance among the UAV and boundary of an 

obstacle is denoted by 𝐷𝑥−𝑂ℎ . The distance is zero when the 

plane (𝑥, 𝑦) falls inside of the obstacle. Finally, the restricted 

region can be 

𝐻𝑐 = {(𝑥, 𝑦)𝜖𝑆2|𝐷𝑥−𝑂ℎ ≤ 0}     (13) 

E. Space limitation between UAVs 

The UAVs usually collide with each other when they are 

very close. Therefore, the distance between them should be 

larger than the innocuous distance i.e. (𝐷𝑚𝑖𝑛𝑖𝑚𝑢𝑚). During 

the flight, communication takes place between UAVs to 

exchange information. Thus, the distance among them should 

not be larger than (𝐷𝑚𝑎𝑥𝑖𝑚𝑢𝑚 ). Fig. 4 shows the spacing 

limitation where 𝑃1 and 𝑃2 are the paths. It can be modeled as  

𝐷𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥𝑖𝑚𝑢𝑚. 

 

 
Fig 4.  Space limitation between UAVs 
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V. IMPROVED GREY WOLF OPTIMIZER (IGWO) 

The GWO method is a very intelligent and efficient 

optimization algorithm. It attains good stability, accuracy, 

and search capability. It also applies to many engineering 

problems to solve various issues. But in GWO, an untimely 

convergence problem is still present. Thus, this manuscript 

presents a new method namely Improved Grey Wolf 

Optimizer (IGWO) with some improvement strategies. 

A. Grey Wolf Optimizer (GWO) method 

Wolfs are considered extroverted animals with helpful 

work and group hierarchy. The four positions of grey wolf 

population from high to low are Lambda (λ), Mu (μ), Xi (ξ), 

and Rho (ρ). Frequently, the higher grade provides 

instructions for the lower grade. This higher-grade also 

asserts the recommendation of a lower grade. In these 

above-mentioned positions, λ is considered as the best first 

solution. Similarly, μ and ξ are both considered as the second 

and third solutions respectively. ρ signifies all other solutions. 

The three main process phases of a grey wolf are as follows 

− Target will be outlined by the package of the wolf. 

− The package of the wolf environs the target. 

− The package of the wolf reaches the target. 

This strategy or phase is considered the best solution. 

Consider wolfs 𝒲  in the population 𝑄𝒲 = [𝑄1, … . , 𝑄𝒲 ,

𝑄𝓌]. The position of the wolf is 𝑄𝒲 = [𝑄𝒲
1 , … . , 𝑄𝑤

𝑝
, 𝑄𝑤

𝜕 ] 

whereas the 𝑄𝑤
𝑝

 is the p-dimensional position of the wolf. 

The following equation is used to model the grasping 

process. 

 

𝑄𝒲
𝑝 (𝑡 + 1) = 𝑄𝑑

𝑝(𝑡) − 𝐾𝒲
𝑝
|𝐿𝒲
𝑝
. 𝑄𝑑

𝑝(𝑡) − 𝑄𝒲
𝑝
(𝑡)   (14)  

 

Whereas 𝑄𝑑
𝑝

 denotes the target position, ⁡𝑡  denotes the 

iteration. The size of the clinch is 𝐾𝒲
𝑝
|𝐿𝒲
𝑝
. 𝑄𝑑

𝑝(𝑡) − 𝑄𝒲
𝑝
(𝑡).  

 

   𝐾𝒲
𝑝
= 2𝐹. 𝑟𝑎𝑛𝑑 − 𝐹     (15) 

𝐿𝒲
𝑝
= 2. 𝑟𝑎𝑛𝑑       (16) 

 

Whereas 𝑟𝑎𝑛𝑑 signifies the values range from 0 to 1. The 

variable 𝐹 decreases with the steps of iteration from 2 to 0.  

 

𝐹 = 2 −
𝑡

𝑡𝑚𝑎𝑥𝑖𝑚𝑢𝑚
      (17) 

 

Whereas 𝑡𝑚𝑎𝑥𝑖𝑚𝑢𝑚  denotes the maximum iteration. 

Equations (14-17) ensure the confined search and exploration 

i.e. global search. Now, during the process, the target position 

𝑄𝑑 becomes the optimization issue i.e. the preferred position 

optimization issue. Still, the solution is unidentified 

throughout the optimization process. The position of the wolf 

𝑄𝜆 , 𝑄𝜇  and 𝑄𝜉  must be closer to the target position. The 

position of the target can be restructured based on the 

following three positions that are as follows. 

 

{
 

 
𝑄𝒲,𝜆
𝑝 (𝑡 + 1) = 𝑄𝜆

𝑝(𝑡) − 𝐾𝒲,𝜆
𝑝
|𝐿𝒲,𝜆
𝑝

. 𝑄𝜆
𝑝(𝑡) − 𝑄𝒲

𝑝
(𝑡)

𝑄𝒲,𝜇
𝑝 (𝑡 + 1) = 𝑄𝜇

𝑝(𝑡) − 𝐾𝒲,𝜇
𝑝
|𝐿𝒲,𝜇
𝑝

. 𝑄𝜇
𝑝(𝑡) − 𝑄𝒲

𝑝
(𝑡)

𝑄𝒲,𝜉
𝑝 (𝑡 + 1) = 𝑄𝜉

𝑝(𝑡) − 𝐾𝒲,𝜉
𝑝

|𝐿𝒲,𝜉
𝑝

. 𝑄𝜉
𝑝(𝑡) − 𝑄𝒲

𝑝
(𝑡)

  (18) 

 

𝑄𝒲
𝑝 (𝑡 + 1) = 0.3 × ∑ 𝑄𝒲,𝑒

𝑝 (𝑡 + 1)𝑒=𝜆,𝜇,𝜉     (19) 

 

B. Improved Grey Wolf Optimizer (IGWO) method 

Social learning and group communication lead to the best 

possible solution in the GWO method. But, the experience of 

each wolf is neglected. Thus, only the globally finest position 

is deliberated. The separate memory is now summed into 

equation (20) as follows 

 

𝑄𝒲
𝑝 (𝑡 + 1) = 𝑗1. 0.3 × ∑ 𝑄𝒲,𝑒

𝑝 (𝑡 + 1)

𝑒=𝜆,𝜇,𝜉

 

+𝑗2. 𝑟𝑎𝑛𝑑. (𝑄𝒲,𝑓𝑖𝑛𝑒𝑠𝑡
𝑝

− 𝑄𝒲
𝑝
(𝑡))      (20) 

 

 
Fig 5.  IGWO process 

 

Whereas 𝑗1 and 𝑗2 denotes the learning factors of societal 

learning and separate memory simultaneously. 𝑟𝑎𝑛𝑑 is the 

random value from 0 to 1. 𝑄𝒲,𝑓𝑖𝑛𝑒𝑠𝑡
𝑝

 signifies the finest 

solution of the grey wolf. Now, the opinion of survival fittest 

is applied with probability 𝑃. The tactic can be expressed as 

 

𝑄𝒲(𝑡 + 1) =

{
𝑄𝒲(𝑡 + 1)⁡⁡⁡⁡⁡⁡⁡⁡𝑒(𝑄𝒲,𝑛𝑒𝑤(𝑡 + 1)) > 𝑒(𝑄𝒲(𝑡)),⁡⁡⁡𝑟𝑎𝑛𝑑 < 𝑑

𝑄𝒲,𝑛𝑒𝑤(𝑡 + 1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                       (21) 
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The last iteration position is 𝑄𝒲(𝑡) . Similarly, 

𝑄𝒲,𝑛𝑒𝑤(𝑡 + 1) denotes the new position. 𝑟𝑎𝑛𝑑 denotes the 

random value from 0 to 1. This tactic results in the finest 

solution. Fig. 5 shows the IGWO process flow diagram.  

VI. SIMULATION RESULTS 

The simulations were carried out in MATLAB software. 

The time requires in the simulation process is 240⁡𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

and the execution time is 1.3⁡𝑠𝑒𝑐𝑜𝑛𝑑𝑠. The area attains the 

size 100⁡𝑚𝑒𝑡𝑒𝑟𝑠⁡ × ⁡1200⁡𝑚𝑒𝑡𝑒𝑟𝑠  with obstacles of 

different sizes and shapes. Consider a scenario in which three 

UAVs target the points with different motions. All vehicles 

achieve the same height approximately290⁡𝑚𝑒𝑡𝑒𝑟𝑠 . The 

initial positions of a vehicle are (0,100), (0,120),  and 

(180,0) in meters simultaneously. The heading angle of each 

vehicle is 40°  and a velocity is considered as 28⁡𝑚/𝑠 . 

Similarly, the acceleration is 3⁡𝑚 𝑠2⁄  and the roll angle is 

30°. The minimum and maximum distance is 40⁡𝑚𝑒𝑡𝑒𝑟𝑠 and 

550⁡𝑚𝑒𝑡𝑒𝑟𝑠⁡ simultaneously. The table below defines the 

parameters of IGWO. 

 
Table I: IGWO Parameters 

𝓦 32 

𝝏 30 

𝒕𝒎𝒂𝒙𝒊𝒎𝒖𝒎 180 

𝒋𝟏 0.5 

𝒋𝟐 0.3 

𝒅 0.7 

 

 
Fig 6 (a).  Trajectories in a 2D plane 

 

 
Fig. 6(b).  Trajectories in a 3D plane 

 

 

 
Fig 7.  UAVs distance 
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(f) 

Fig 8 (a-f).  Control inputs and State variables 
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Fig. (6-8) shows the tracking process of UAVs by using 

the algorithm IGWO. In Fig. 6(a-b), three UAVs avoid the 

hurdles and obstacles and reach the targeted position. Fig. 7 

shows the distance between the UAVs which fulfills the 

space limitations. It means that the communication among 

vehicles will remain kept without any collision. Furthermore, 

Fig. 8(a-f) shows the control inputs and state variables. 

Finally, the designed approach attains excellent performance 

in tracking.  

VII. CONCLUSION 

This manuscript defines the multiple UAVs tracking for 

moving ground targets by using the Improved Grey Golf 

Optimizer (IGWO) technique. The proposed scheme solves 

the trajectory optimization problems with its strong ability 

and performance. This study also considers the dynamic 

constraints of UAVs along with the requirements of the 

mission. It presents the target model with the sensor coverage 

region. The IGWO attains higher searchability, efficiency, 

stability than basic GWO. The simulations results validate 

that the proposed scheme achieves higher performance in 

tracking multiple UAVs with higher robustness and security. 
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