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Harbour Oscillation with Bottom Friction

Ikha Magdalena, Member, IAENG, Hany Qoshirotur Rif’atin, and Alvedian Mauditra Aulia Matin

Abstract—Theoretically, wave resonance occurs in a harbour
when the period of the wave coincides with the harbour’s
natural resonant period. However, when bottom friction is
considered, the resonant period could be affected. Therefore,
a model is formulated to simulate the propagation of waves in
harbours with bottom friction and used to investigate resonance
phenomena in this special case. The governing equations used
are the shallow water equations, which are modified to include
the friction generated by the interaction between the waves and
the harbour’s topography. Analytical and numerical approaches
are implemented to derive resonant period from the developed
model for three geometric harbour types. To validate the
numerical model, comparisons against the analytical solutions
are provided. Results from both methods turn out to be in
very good agreement. The effects of the friction on resonance
are analyzed. It is found that bottom friction works well to
prevent resonance in rectangular harbours but functions poorly
in harbours with triangular profiles.

Index Terms—harbour oscillation, Resonance phenomenon,
Bottom friction, Resonant period, Shallow water equations

I. INTRODUCTION

HEN long waves enter a semi-closed basin connected

to the open sea, long-period oscillations called har-
bour oscillations occur. This phenomenon often occurs in
bays, inlets, and fjords, and they may pose dangers to moored
ships. Even slight vertical displacements can be followed
by significant horizontal harbour currents, whose periods
may coincide with the natural resonant period of the ships’
swaying motion. Harbour procedures are also disturbed.
At worst, such occurrences cause property damage and/or
human casualties. Estimating the frequency and amplitude of
harbour oscillations is a necessity in the process of designing
effective mitigation methods.

The existing literature on this topic includes field mea-
surements [1], [2], experimental studies [3], [4], analytical
explorations [5], [6], and studies combining experimental and
analytical approaches [7]. Using a multiple-scale perturbation
method, Wu and Liu [6] have demonstrated that initial
ocean wave groups were able to induce a small-frequency
resonant reaction. For cases of harbours of regular shapes,
constant depths and friction-less bottoms, linear solutions are
well-known [8]-[11]. However, many harbours are of non-
regular geometric shapes and have bottoms made of rough
material. By formulating the solution as a superposition wave
source, Hwang and Tuck [5] were able to derive analytical
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approaches for harbours of unspecified plan shape and fixed
depth. Lee [7] addressed the same problem using an integral
equation. Lee’s method approximated the harbour shape by
utilizing a matrix equation to define a piece-wise linear
boundary of the system. Then, Gerber [12] modified this
approach to incorporate dissipation, but only for harbours
with flat bottom.

Existing studies [13] provide practical guidelines for pre-
dicting the natural resonant periods of harbours based on
experimental measurements. Previous analytical studies for
harbours with standard shapes and sustained depth corrob-
orate these results. In earlier studies, we have also investi-
gated seiches and harbour oscillations in basins of various
two-dimensional geometric shapes [14]-[19]. However, the
bottom friction factor has only been considered for the
case of seiches in closed basins [20]. The case of harbour
oscillations, which occur in semi-closed basins, have not
yet been investigated. This study is critical in order to
provide a solution in harbours with the potential to ex-
perience resonance. Without building additional time- and
resource-intensive structures, resonance may be prevented
by spreading gravel or other types of rough material over
harbour bottoms. The results of this study can factor into
considerations on whether or not rough material would be an
effective resonance-prevention measure for planned harbour
projects.

In our current research, we focus on semi-closed basins
constructed using rough materials, taking into account the
friction generated by wave movements over the rough base of
these basins. This is done in order to closely approximate real
harbours. Modern harbour decks are often supported by piles
or cantilevered in the direction of the open sea over gabion
blocks, resulting in the creation of basins with rough bottoms.
A semi-closed rectangular basin can be used to represent
harbours with these structural features. Decks may also be
supported by natural beaches or sloping revetments, which
are walls of masonry or other material erected specifically to
provide structural support. A semi-closed parabolic basin can
be used to investigate wave propagation near decks supported
by beaches, since they often develop concave profiles as they
are worn down by waves [21]. We can use a semi-closed
triangular basin to approximate decks supported by sloped
revenants, as revenants are often arranged to form inclined
planes. The materials that make up these structures—often
rocks, sand, and wood—are far from smooth, causing there
to be friction between their surfaces and the water. Current
studies that include analytical results for resonant behavior
in these modern harbours neglect this friction effect.

In this paper, we model the movement of waves in each
geometric configuration by using the linear shallow water
equations (LSWEs). The SWEs have been used in several
previous studies to investigate wave propagation in various
scenarios. For instance, Magdalena et al. [22] used linear
shallow water equations to model wave shoaling. Moreover,
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other researchers extended this work by considering rigid and
porous obstacle on modelling fluid flows [23], [24]. Rif’atin
and Magdalena [25] have also applied the two-layer shallow
water equations to study internal wave propagation over sub-
merged breakwaters. Andadari and Magdalena [26] have im-
plemented the non-linear shallow water equations to simulate
wave run-up. In addition to shallow water equations, there
are numerous other models used to simulate traveling waves
with different conditions. For example, a non-hydrostatic
model was used to evaluate wave run-up phenomena and
dissipation caused by porous structures [27], [28]. Two-
dimensional non-hydrostatic Euler equations were solved
using a two-layer approximation in the vertical direction to
model a transient wave generated by bottom motion [29].
In addition, the local fractional Boussinesq-type, Burgers-
type, and Korteweg-de Vries-type equations have been used
to investigate traveling wave solutions for several cases [30]—
[37]. Techniques that deal with the difficulties presented by
the higher-order and nonlinear terms of Bousinessq-type and
Burgers-type equations [38]-[40] as well as Korteweg-de
Vries-type equations [41], [42] can be found in the literature.
Several models can be used to evaluate resonant waves
over topographies with bottom friction. However, the linear
shallow water equations were chosen for this study, as they
are sufficient for modeling the resonant period and amplitude
of the wave. We do not investigate the wave profile or the
wave’s non-linear properties. Moreover, linear shallow water
equations are significantly easier solve, both analytically and
numerically. Their ability to model resonance accurately has
also been proven by several previous studies [14], [15],
[20]. The shallow water equations are therefore considered
appropriate for this study. Analytical approaches are used
to determine the resonant period for each case with bottom
friction. We also formulate a numerical scheme that can
be used in scenarios of arbitrarily shaped geometry. The
analytical and numerical solutions will be examined and
compared to evaluate the impacts of a friction coefficient on
reducing wave resonant period and its maximum amplitude.

This paper is structured in the following way. In Section 2,
we present the model we use to describe physical movements
of a wave, while the derivations of the analytical natural
resonant period in each type of basin with friction are
explained in Section 3. We present a computational scheme
based on the staggered finite volume method in Section 4.
The computational results are shown and compared to those
of the analytical solutions in Section 5. A brief conclusion
is then provided in Section 6.

II. MATHEMATICAL MODEL

Here, a model of wave flow over rough topography is
constructed using the well-known Linear Shallow Water
Equations (LSWEs). First, we consider a wave propagating
into a harbour as depicted in Figure 1. In this scenario, we
assume that the harbour has a rough bottom. The incoming
wave travels from the ocean to the harbour, thus entering the
domain from the right. Meanwhile, the left-side border of the
domain represents a rigid wall. The term 7(x,t) describes
the elevation of the surface wave, u(x,t) denotes the wave
velocity in horizontal direction, and h = 7+d is the thickness
of the water body. Here, we presume that the value of 7 is
much smaller than h, so we may rewrite the water thickness

wall

Fig. 1. Wave flow over a rough topography described by the Shallow Water
Equations.

as h ~ d, where d is the water depth measured at the
undisturbed water condition.

We now modify the LSWEs to take into account bottom
fiction induced by wave-topography interaction. The adjust-
ment is done by incorporating C'ru, an element representing
bottom friction, into the momentum equation [43]. Conse-
quently, the model can be written as

ne + (hu), =0, (1)
Uy + gne +Cru =0, 2)

in which g(= 9.81m/s?) denotes acceleration due to gravity
and C} is the friction coefficient.

In this study, Equations (1, 2) are solved analytically and
numerically for harbours of three common geometric types:
(a) Rectangular harbour with depth of h(zx) = hq,
(b) Triangular harbour with depth of h(z) = h1 7,
(© Sg:mi-parabolic harbour with depth of h(xz) = hy(1 —

)

in which h; is the maximum depth of each topography.

III. ANALYTICAL SOLUTIONS

This section explains the analytical solution for equations
(1) and (2), obtained using separation of variables. The
solution allows us determine the wave’s natural resonant fre-
quency as it travels across harbours of various topographies.
Assuming that the wave is monochromatic, we may define
two functions F'(z) and G(x)

n(x,t) = F(z)e ™ 3)
u(z,t) = G(x)e ™. “)

The wave resonant frequency w can then be determined by
analytically solving differential equations in terms of F'(x).
The following cases may now be observed.

(a) Rectangular harbour with depth h(z) = hy
In this case, h(z) = h;. Equations (3) and (4) are
then substituted into (1) and (2). Thus we obtain the
following equations describing the motion of the wave
in a rectangular harbour.

—iwF (z) + h1G(z) =0, ®)
—iwG(z) + gFy(z) + C;G(z) = 0. (6)

Algebraic manipulation then yields the following ex-
pressions.

Gw) = 2 el ™
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(b)

9
Gy(z) = ——Fu.(2). 8
(@) = 5 Poel®) ®)
With substitution, the equation (4) may be written as
. hig
—iwF F,
WF@) + e Pal@) =0, O)
From this we obtain F'(x).
F(x) = 1 4 cpe™ ", (10)

The wave number k follows the dispersion relation k? =
% We can then derive the above expression with

respect to x to obtain
Fy(z) = ik(c e — cpe™ 7).

(1)

The boundary condition F,(0) = 0 implies ¢; = cs.
The boundary condition F'(L) = 0 allows us to find

kL.
Cl(eikL + e—ikL) _ 07
2cos(kL) = 0.
Thus kL = w with n € N. We choose n =1 in

order to arrive at a fundamental solution. This gives us

w? +iwCy ;T
ghl 27

and thus )
5 . meghy
Crw=—5. 12
Wit iCw = — 75 (12)
Let w3 = ﬂig};l be the squared wave frequency when

there is no friction force involved.

w :Aoj: \/A02 +w02,

with Ay = | — %| Since Ag and wy are equal to or
larger than zero and w > 0,

w= A+ /A3 + wi.

Triangular harbour with depth h(z) = hy .

As in the rectangular case, we can obtain equations to
describe the wave’s motion by substituting the defined
expression for h(z) and equations (3) and (4) to (1) and
(2).

13)

(14)

—iwF + hGy + h,G =0, (15)
—iwG + gF, + CyG = 0. (16)
And thus
G(z) = ﬁf’x, (17)
Golt) = —Fua (18)
iw — CYy

We then substitute these equations into (15) to obtain

—iwF + — }igcf Fog+ —2 gl =0 19

The solution to this second-order differential equation
is

F(z) = c3Jo(a(z)) + caYo(a(x)). (20)

(©

Jo(a(z)) is the zeroth-order first kind Bessel function,
Yo(a(x)) is the zeroth-order second kind Bessel func-

tion, and o(x) = 2,/ %TCH The first derivative

of F(x) is

a(z)

F.(z) = c3Jh (a(x))% + c4Yo (a(2)). (21)

The boundary conditions are defined as F,(0) = 0 and
F(L) =0, and it is known that lim,_,~ Y7 (2) = «(0),
therefore ¢4 = 0. This allows the first boundary con-
dition to be satisfied. To find c3, we use the boundary
condition F'(L) = 0. Observe that

C3J1 (a(L)) = 0,

Jl (a(L)) = 0,
a(L) = 2.4048,
of iw(—iw + cy) ’
hig
which gives us
2
2.4048v/h
w%mqw:(iﬁw) (22)

2
Let w3 24098vM19 ) be the wave resonant

frequency over a friction-less surface. Applying the
quadratic formula and the information that w > 0, we

now have

w:A0+\/A(2)+w02, (23)
with Ay = | — 1],
Semi-parabolic harbour with depth h(z) = hq1(1 — f—z)

When we substitute h(z) as well as the equations (3)
and (4) to (1) and (2), we obtain equations (15) and (16).
This time, however, h(z) = hy(1 — zz) and h,(x) =
’2”” hi. We can then find the solution to the second-
order differential equation (19),

F(z) = csP, (L>+CGQV< ) (24)
with v = —% 1—\/W+1 . Here, the

functions P and Q are the Legendre function of the first
and second kind, respectively.

From the first derivative of F(z) and the boundary
condition F,(—L) = 0, we can see that

s (PrsC0+2 (1)) s Qa1+, (1)) 0.

Since Q,(—1) = oo for v =0, 1,2, ..., the value of ¢
must be zero. In order for a non-trivial solution to be
found, the following must apply:

Pyi(1) = =Py (-1).

We know that P,(—1) = (—1)7 for every v =
0,1,2,..., and thus equation (25) will always be ful-
filled. We choose the smallest non-zero value of ~, 1,
to obtain the fundamental solution.

(25)
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This allows us to obtain

1 < \/4L2(w2 + iwCy)
N B TR (il Sl Mt VA
2 ghl

and thus

H)l,

29]11 (26)

2
Let w? = 2%# be the squared resonant wave frequency

when friction is ignored. Solving Equation (26) with the
knowledge that w > 0, we obtain

w=Ag+ /A3 + w3.

IV. NUMERICAL METHOD

w? 4+ 1Crw =

27)

We apply a finite volume method on a staggered grid to nu-
merically solve the modified LSWEs model. Let [0, L] be our
observation domain. The numerical domain is then divided
into 0 = w12, %1,%3/2, T2, -+, TNz—1/2: TNaxs TNat1/2 = L
as illustrated in Figure 2.

mass momentum

Ui-1/2 Uit1/2
—_— e ——

n; Ni+1
X3/2--- Xi—172 Xi

0=x1, X Xiv1/2 Xig1 ----- Xnx

Fig. 2. Description of the finite volume method on a staggered grid.

The mass conservation equation (1) is approximated at
cells centered on points labeled x; ;. Meanwhile, momen-
tum equation (2) is computed at cells centered on points
labeled x; 1/, with i =0,1,2,3,..., Nz —1, Nz. Values of
n and h are computed only at x;, (full-grid points) using
equation (1) which is the mass conservation equation. Values
of u are calculated only at z; /o (half-grid points) using
momentum equation (2). The resulting numerical scheme is
written below.

n+1

n =0 n (hu)?+1/2 - (hu)?—uz —0 (28)
At Az N
ntl . n n+1 n+1
Uir1/2 — Wit/ Mig1 — n+1
A7 +g Az + C’fuiﬂ;"l/2 =0 (29

Notice that the scheme requires the value of hu at half-grid
points x; /2. However, h is only defined at full-grid points.
Thus a first-order upwind method is proposed to approximate
value of h is at every half-grid point. The mathematical
expression for the method is as follows.

" h?, for uﬁrl >0,
= 2
i3 T b, foru?, <0 (30)
2

Now, we have a numerical scheme consisting of equations
(28) and (29), which is complemented by equation (30).
Together, these expressions allow us to obtain a numerical
solution for our model. Note that the friction term Cju is
approximated implicitly by C' fu?jll/z. This is done to avoid
a more restrictive stability condition. The stability condition
for this scheme is the same as that for the LSWEs without
bottom friction. This condition, obtained using Von Neumann
stability analysis, is expressed as \/ghi % < 1. Moreover,
the numerical scheme detailed in equations (28) and (29) has
no damping error [44].

Wave elevation at the end of the harbour (m)

100

0 10 20 30 40 50 60 70 80 90

Time (s

Fig. 3. Resonance phenomenon in a rectangular harbour with different
values of C'y.

Using (28), (29), and (30), we simulate wave flow in a
harbour with rough topography. All the simulation results are
then validated with analytical solutions obtained in Section
1.

V. RESULTS AND DISCUSSION

Here, the computational scheme developed in Section
IIT is implemented to replicate wave resonance occurrence
in harbours with rectangular, triangular, and semi-parabolic
profiles. Bottom friction is assumed to be present in every
case. Later in this section, we will analyze the numerical
results to study how resonance occurs in various topography
types, particularly when bottom friction is applied.

The simulations in this section are conducted with an
observational domain of [0,20] m and are observed for
T = 100 s. The observational domain is partitioned into
sections with the length Az = 0.1 m. The time step for each
iteration is At = Ax/+/gH; s. The bottom topography for
each type follows the expression for h(x) stated in Section
3 with a maximum depth of H; = 10 m. To match the
conditions of real harbours, we configure the right boundary
as a hard wall or u(L,t) = 0. At x = 0, we have an
open boundary. A harmonic wave enters the port from this
side with an initial amplitude of A; = 1 m and an angular
frequency of w, in line with the analytical solutions in Section
3. Using these parameters, the simulation results for each
kind of harbour with various values of C; are shown in
Figure (3-5). In each figure, the wave profiles are captured
at the end of the domain (z = 20) at every time step.

Before addressing the aspects visually illustrated in Fig-
ures (3-5), we must first evaluate the numerically-obtained
natural resonant periods of the different harbour types by
comparing them to analytically-derived resonant periods. The
comparisons between analytically-derived and numerically-
obtained resonant periods are outlined in Table (I).

Table (I) presents the analytical values of T7j, calculated
using the analytical solutions of w, with 77 = 27 /w s.
For each harbour shape, we determine the numerical and
analytical 77 with three values of C; and then compare
those two values to analyze the accuracy of our numerical
simulations relative to our analytical solutions. For Cy = 0,
which is the case of a harbour without bottom friction, the
comparison for each harbour was presented in a previous
study [15]. Only a very small error exists between the
analytical and numerical results.
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Fig. 4. Resonance phenomenon in a triangular harbour with different values
of C f-
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Fig. 5. Resonance phenomenon in a semi-parabolic harbour simulated

using the LSWEs computational scheme with different values of C'y.

Now, in the case of bottom friction, there are two
cases presented here: resonance and non-resonance scenarios.
When we run the simulation with C'y = 0.01, as described in
Figures (3-5), resonance is still present. On the other hand,
resonance is not seen in the simulation results where C'y = fo
for each harbour. We set fy = 0.046 for the rectangular har-
bour, fo = 0.054 for the triangular harbour, and fy = 0.052
for the semi-parabolic harbour. The difference in this non-
resonance situation will be explained further in the end part
of this section. However, for the case of resonance, Table (I)
shows that the analytical and computational resonant periods
are in very good quantitative agreement. We are able to
draw this conclusion by first calculating the relative error
using the formula error = |T1"“m;$f;£1t‘;faly“c| x 100%.
The reported errors are the average relative errors between
analytical and numerical 7} for each bottom topography
and all three values of C'y. These values are less than or
equivalent to 0.5%. These relatively small errors indicate that
our numerical scheme models resonance phenomenon very
well.

We now examine how much bottom friction affects res-
onance in each harbour type. This bottom friction effect
can be investigated by looking at two aspects: the minimum
resonance-preventing value of C'y and the changes in growth
rate when C is adjusted. For resonance-preventing values of
Cf, we may analyze this feature from Figures (3-5). These
figures show that resonance occurs even when the friction
coefficient’s magnitude is increased, for example when we
define Cy = 0.01. At some point, however, friction can

TABLE I
RESULTS COMPARISON BETWEEN THE ANALYTICALLY-DERIVED AND
NUMERICALLY-OBTAINED RESONANT PERIODS IN EACH HARBOUR.

Harbour’s C values Analytical Numerical Error (%)
type T1 (s) Ty (s)
0 8.077 8.087 0.124
Rectangular | 0.01 8.025 8.059 0.424
0.046 7.842 7.917 0.956
0 10.552 10.518 0.322
Triangular 0.01 10.464 10.467 0.029
0.054 10.084 10.176 0.912
Semi- 0 8.971 8.971 0
parabolic 0.01 8.907 8.933 0.292
0.052 8.644 8.730 0.995
TABLE II

CHANGES OF THE GROWTH RATES OF WAVE AMPLITUDE DUE TO
RESONANCE FOR EVERY HARBOUR WHEN Cf = 0 AND Cf = 0.01.

Harbour’s Growth rate (%5_1) Growth rate
type C; =0 ] C; =0.01 | changes (%s %)
Rectangular 24.695 19.463 5.232
Triangular 15.356 12.306 3.050
Semi-parabolic | 19.166 15.071 4.095

stop resonance from occurring, and this resonance-preventing
value of C'y is specific for each harbour shape. A non-
resonance state is indicated by the appearance of a declining
pattern after the wave reaches its peak amplitude. With
regards to this criterion, the port types may be listed in
ascending order of resonance-avoiding C’: rectangular, semi-
parabolic, and triangular. The resonance-avoiding Cy values
of each type are C'y = 0.046, 0.052, and 0.054, respectively.
This result implies that compared to the amount needed
in triangular and semi-parabolic harbours, the amount of
friction required to avoid resonance is fairly low in rectangu-
lar harbours. This suggests that bottom friction works best
as a resonance-preventing measure in rectangular harbours
and it does not work very well in triangular harbours. This
statement is supported by the changes in wave amplitude
growth rates when C'y is varied.

Table (II) displays wave amplitude growth rates in all
harbour types. These growth rates are calculated using two
different values of friction coefficient. The value Cy = 0
represents the absence of friction force and C'y = 0.01 is
used to investigate the case where bottom friction is present.
The amplitude growth rates are calculated using the linear
growth rate formula growth rate = |Cresé,+*sires“| X
|tpl—t1| x 100%. Crestp denotes the value of the last
crest point of each wave in Figures (3-5), while Crest;
is the first crest point of each wave. The terms ¢ and ¢;
refer to values of ¢ that coincide with the appearances of
Crestyr and Cresty, respectively. Table (II) also informs us
how differently the growth rates drop in each harbour type
when we set the same value of Cy = 0.01. When Cf is
constant, the growth rate in the rectangular harbour decreases
the most, followed by that of the semi-parabolic type. The
growth rate in the triangular harbour undergoes the smallest
decline. It can be concluded that bottom friction has more
impact on resonance in rectangular harbours compared to
the other two types. This is consistent with our previous
result, which indicates that a smaller C'y value is needed to
prevent resonance. On the other hand, a greater Cy value
is required to prevent resonance in triangular harbours as
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bottom friction has a smaller impact on resonance. These
conclusions support the previous claims regarding bottom
friction effectiveness for the different harbour types.

VI. CONCLUSION

By modifying the linear shallow water equations and
adding a term representing bottom friction to the momentum
equation, resonance in a harbour with a rough bottom can
be modeled. The model is constructed for three different
harbour types: rectangular, triangular, and semi-parabolic.
The modified model is then solved analytically to determine
the general formula for the natural resonant period of waves
propagating in harbours with bottom friction expressed in
terms of the natural resonant period of waves propagating
in harbours with no bottom friction. The natural resonant
periods for harbours with friction decrease as the friction
coefficient grows. A finite volume method on a staggered
grid is applied to formulate a numerical model of wave
resonance in a rough harbour. The computationally-obtained
resonant periods are then compared against the corresponding
analytical solutions to validate the numerical scheme. The
comparison shows a very good agreement between the two
solutions, with relatively small errors within the range of 0 to
0.5 percent. The results show that a relatively small value of
CY is sufficient to prevent resonance in rectangular harbours.
Thus, bottom friction works best as a resonance-prevention
measure in rectangular harbours. In contrast, the triangular
harbour requires a larger value of Cy to prevent resonance
from occurring, leading us to conclude that bottom friction
performs poorly as a method of resonance prevention in this
type of harbour.
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