
 

  

Abstract—Iterative decoding is quite useful for decoding 

Hamming product codes. The idea behind the method is to 

divide the entire decoding process into sequence steps, such that 

later phases can use the output of previous stages to produce 

their results. Hard-decision iterative decoding is easy to 

implement, has low complexity and can correct many error 

patterns with quantities of error bits greater than half the 

minimum distance of the code. However, the existing 

hard-decision iterative decoding methods fail to correct the 

errors up to half the minimum distance of the code due to the 

existence of stall patterns. In this paper, a new hard-decision 

iterative decoding method is proposed to overcome this 

limitation. The proposed method is implemented and assessed 

based on error bit experiments and channel experiments 

(including the Gaussian channel and binary symmetric channel). 

The results show that the proposed method outperforms other 

methods. 

 
Index Terms—Hamming Product Codes, Iterative Decoding, 

Hard Decision, Stall Pattern, Gaussian Channel, Binary 

Symmetric Channel. 

 

I. INTRODUCTION 

roduct coding techniques enable the constituting of long 

and powerful code using short component codes, which 

were first introduced in 1954 by Elias [1]. Product codes have 

many good characteristics [2]. One of them is that product 

codes can correct burst errors. Clearly, all burst error patterns 

that meet the number of row (column) errors less than half the 

minimum distance of the column (row) are correctable. In 

addition, product codes can handle random errors when the 

number of mistakes in each row (column) is less than or equal 

to half the minimum distance of the current row (column) 

codes. Another vital characteristic is that the covering radius 

of a product codes is much larger than half the minimum 

distance of the code [3,4]. This provides the possibility of 

correcting partial error patterns whose number is greater than 

half the minimum distance of the code using a proper 

decoder. 

Decoding methods for product codes can roughly be 
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divided into hard-decision decoding and soft-decision 

decoding. The hard-decision decoding method, also called 

the iterative decoding method, was initially suggested by 

Elias in [1] and then presented adequately in [5]. Decoders 

derived from this idea have high efficiency and can rectify 

most error patterns up to half the minimum distance. 

However, an iterative decoder's performance is limited 

because it fails to correct all error patterns whose weight is 

less than half the minimum distance [6]. These error patterns 

are named stall patterns. Many improved iterative decoding 

methods have been proposed [6-12] to overcome this 

disadvantage. Soft-decision decoding methods have better 

decoding results than hard-decision decoding methods, but 

they tend to have high complexity. Additional information 

indicates that the reliability of each input data point is 

required in a soft-decision decoding method. Methods such 

as those presented in [6,13-14] are derived from this idea. 

A Hamming product code is one of the most attractive 

product codes since it comprises Hamming codes. Hamming 

codes provide easier coding schemes and simpler hardware to 

correct errors, yet only for single-bit errors [15-16]. The 

hard-decision decoding of Hamming product codes is a 

heated topic in this field; therefore, many different decoding 

methods used in Hamming product codes have been 

proposed in the past, such as those presented in [8-12,17]. 

However, these methods are based either on extended 

Hamming codes instead of the standard Hamming code or on 

methods that fail to correct all error patterns up to half the 

minimum distance. 

The main contribution of this paper is that we have 

proposed a novel hard-decision decoding method for 

Hamming product codes whose component codes are all 

Hamming codes rather than extended Hamming codes. 

Furthermore, this decoding method can correct all error 

patterns that do not exceed half the minimum distance of the 

code. 

The remainder of this paper is organized as follows: Some 

preliminary concepts are introduced, and some important 

related works are briefly reviewed in section 2. Then, the 

proposed method is described in section 3. Next, section 4 

presents the experimental results. Finally, the conclusion and 

future work are given in section 5. 

II. PRELIMINARY CONCEPTS AND RELATED WORKS 

A. Basic Concepts 

In coding theory, a linear block code C can be represented 

by ( ), ,n k d , where n is the length of the code, k is the length 

of the message bits (also named the dimension in some 

literature) and d is the minimum Hamming distance, which 

A New Hard-decision Iterative Decoding 

Method for Hamming Product Codes 

Xunhuan Ren, Jun Ma, Viktar Yurevich Tsviatkou, Valery Kanstantinavich Kanapelka 

P 

Engineering Letters, 30:3, EL_30_3_04

Volume 30, Issue 3: September 2022

 
______________________________________________________________________________________ 



 

can be calculated using the following formula: 

( ) , , ) 1, , ,H i jd min d C C i j k i j= =        (1) 

where 
Hd  is the Hamming distance, which is easy to 

compute using formula (2). 

( ) ( )( ), ,2  H i j im jmd C C sum mod C C= +          (2) 

 The code rate, also named the information rate in some 

studies, is used to describe the redundancy degree of one 

given code. 

  /R k N=                        (3) 

 The detection and error correction capability of a linear 

block code depend on the value of distance d. If a linear block 

code C is given and its distance is d, then this code can detect 

dt  bit errors and correct 
rt  bit errors, which can be calculated 

using the following formula. 

1dt d= −                      (4) 

( )( )1 / 2rt floor d= −                (5) 

 Hamming codes are a type of binary linear block code. Its 

code length n is 2 1r − , length of message bit k is 2 1r r− −  

and distance d is 3, and r is an integral greater than 2. 

Therefore, Hamming codes can correct all patterns with a 

1-bit error and can detect all patterns with two errors. 

 The product codes can be easily constructed using two 

codes. Given a linear block code A with 

parameters ( )1 1 1, ,n k d and another linear block code B with 

parameters ( )2 2 2, ,n k d , their product codes P A B=   can be 

obtained after conducting the following steps. 

Step 1: Lay the 
1 2k k  message bits on a matrix whose 

number of rows is 
2k  and number of columns is 

1k . 

Step 2: Encode the 
2k  rows with the encoding rules of code 

A. 

Step 3: Encode all columns with the encoding rules of code B. 

The whole process of the construction of product codes is 

shown in Fig. 1. 
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Fig. 1.  Construction of product codes 

 

The parameters of the final product code are 

( )1 2 1 2 1 2, ,n n k k d d . 

Since Hamming product codes are constructed using two 

Hamming codes whose code distance is three, the distance of 

Hamming product codes is nine. Therefore, a suitable 

hard-decision decoder for Hamming product codes should 

correct all errors less than or equal to 4 and can correct as 

many errors as possible greater than 4. 

B. Related Works 

The hard-decision decoding method for product codes is 

an iterative decoding method. 

The two-step method is the most primitive decoding 

method proposed in [17], which is described as follows. 

Step 1: Calculate the syndrome of all columns of the received 

code, and correct all possible errors according to the 

decoding method corresponding to the column encoding 

method. 

Step 2: Calculate the syndrome of all rows of the code, and 

correct all possible errors according to the decoding method 

corresponding to the row encoding method. Then, we can 

obtain the final estimated code. 

This decoding method can properly correct many error 

patterns beyond half the minimum distance of the code. 

However, it fails to fix all error patterns within half the 

minimum distance of the product code. As a result, this 

method may suffer decoding failure from stall patterns when 

applied to Hamming product codes. 

Three-step decoding methods, such as those presented in 

[8-10,12], employ an erasure process to relieve the influences 

of stall patterns. However, to identify some stall patterns, 

they introduce component code with a larger code distance, 

detecting some uncorrectable errors. These uncorrectable 

errors can provide approximate reference information for 

conducting erasure later. These methods can correct more 

error patterns than two-step decoding, but they are still not 

able to amend all error patterns less than or equal to half the 

minimum distance of the product codes. This is because the 

minimum distance of the product codes increases with 

increasing component code. For Hamming product codes, 

some known methods introduce the extended Hamming code 

as component codes partly or wholly. In [8,9], the author 

constructed a Hamming product code with one extended 

Hamming code and one Hamming code so that the row code 

could detect all uncorrectable double-bit errors. Associated 

with their elaborate three-step iterative decoding, in which 

the row status vector and column status vector are used to 

provide the reference information for erasure, the method can 

properly decode some stall patterns with four-bit errors. 

However, their approach is still not able to correct the 

mistakes up to half the minimum distance of the product code. 

Moreover, all component codes used in [10,12] are extended 

Hamming product codes. Their capability of error 

correctness is further improved, but they still fail to correct 

errors up to half the minimum distance of the code. 

Therefore, we decided to develop a novel iterative 

decoding method for Hamming product codes. The proposed 

method can correct the errors up to half the minimum 

distance of the code and correct many mistakes beyond this 

range. 

III. PROPOSED METHOD 

The proposed method is a three-step hard-decision 

iterative decoding method in which an erasure operation and 

decision operations are embedded. The major difference 

between our method and others is that we conduct a decision 

operation. 

Our method can be divided into three procedures: the 

decision procedure, decoding procedure and 

erasure-decoding procedure. 

The proposed method first calculates in parallel the 

syndrome of the received code from the direction of the row 
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and column. When errors have occurred in one row or one 

column, this row or column’s syndrome will not equal a zero 

vector. Therefore, it is very convenient to record an error row 

or column in a row or column register using the 

characteristics of the syndrome. Both the row and column 

registers are binary registers, in which 1 denotes that some 

errors exist, and 0 indicates that there is no error. Comparing 

the total number of error rows and that of the error columns 

can provide a reference to decide how to conduct the 

subsequent decoding. This is called a decision procedure. 
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Fig. 2.  Example of a 4-bit error pattern 

 

The decoding process is performed when the total number 

of error rows is not equal to that of the error columns, or if 

they are equivalent, the total number is not less than the 

minimum distance d of the component code. Furthermore, 

suppose the total number of error rows is greater than that of 

the error columns, or they are equivalent but the total number 

is greater than or equivalent to the minimum distance d. In 

that case, it is necessary to conduct a continuous 

row-column-row three-step decoding. However, if the total 

number of error rows is less than that of the error columns, it 

is necessary to conduct a subsequent column-row-column 

three-step decoding. Here, it is noted that each decoding step 

is standard Hamming decoding. 

The erasure-decoding procedure is applied when the total 

number of error rows is less than or equal to that of the error 

columns and this number is less than the component code 

distance d. We flip the bits where the row register and column 

register are all one and follow a row decoding process. To 

further illustrate this procedure, an example is given in the 

following. 

Suppose there are rectangular 4-bit errors that have 

occurred in the received code, and we take the (49,16,9) 

Hamming product constructed from two (7,4,3) Hamming 

codes as an example. 

In Fig. 2, ‘X’ denotes an error bit. The row register and 

column register save the result obtained in the decision 

procedure. Clearly, the total number of ones in the row 

register is equal to that in the column register, and this 

number is 2, which is less than or equal to the minimum 

distance (which is three in this example) of the component 

code. Therefore, for this type of error, we can use the 

erasure-decoding procedure to correct it. The row register 

and column register provide the coordinates where we need 

to conduct the erasure. In this example, since the 
1 5,R R  bit in 

the row register and 
1 3,C C  bit in the column register are one, 

it is necessary to flip all bits whose coordinate values 

are ( )1 1,R C , ( )1 3,R C , ( )5 1,R C  and ( )5 3,R C . Then, 

one-time row decoding is performed to correct the remaining 

error if it exists. 

A flowchart of the proposed method is shown in Fig. 3. 
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Fig. 3.  Flowchart of the proposed method 
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IV. EXPERIMENT AND RESULTS 

A. Experimental Platform 

1. Hardware 

The computations were conducted on a standard PC laptop 

with a Core i7-4720Q CPU (2.6 GHz) and 16 GB of memory. 

2. Software 

All experiments were performed in MATLAB R2017b, 

and partial data were processed in Microsoft Excel 2010. The 

operating system of the PC was Windows 8.1. 

B. Overall structure of the experiments 

To better analyze the performance of the proposed method, 

three different experiments were performed. The first 

experiment was conducted on the Gaussian channel, where 

additive white Gaussian noise (AWGN) was introduced. The 

second experiment was performed on the binary symmetric 

channel (BSC), where we manually set the error probabilities. 

The third experiment explored the error correction 

capabilities of different decoders with a given number of 

errors. We constructed Hamming product codes with 

parameters (49,16,9) and implemented the proposed method, 

two-step decoding method [17], and three-step decoding 

method [12]. 

C. Experiment on the Gaussian Channel 

This experiment aimed to explore the performance of all 

three decoding methods on the Gaussian channel. The bit 

error rate (BER) [18,19] and word error rate (WER) were 

measured under different signal-to-noise ratios. During the 

experiment, we repeated 100,000 encoding and decoding 

processes. A flowchart of the experiment for each algorithm 

is shown in Fig. 4. 
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Fig. 4.  Flowchart of the experiment on the Gaussian channel 

 

Fig. 4 shows that all message bits were generated randomly, 

and then the entire code was obtained in the encoding process, 

which was performed according to the method mentioned in 

section 2. Instead of directly sending the code to the channel, 

the code was first changed into a signal that could be 

transferred in the Gaussian channel using binary phase-shift 

keying (BPSK) modulation [20]. In the channel, AWGN was 

added to the signal, which could cause some errors to occur. 

The degree of noise was influenced by the signal-to-noise 

ratio, which was set manually. The signal was first 

demodulated, and then each of the three decoding methods 

was implemented to correct the error and estimate the 

original code on the receiving end. By comparing the 

estimated code with the original code, we could count the 

instances of a decoding error made by the different methods. 

In Fig. 5 and Fig. 6, we present the results of this experiment. 
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Fig. 5.  Bit error rate for the (49,16,9) Hamming product codes on the 

Gaussian channel 
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Fig. 6.  Word error rate for (49,16,9) hamming product codes on Gaussian 

channel 

 

Fig. 5 and Fig. 6 support the view that our method has 

better performance in resisting additive Gaussian white noise 

compared with the other two decoding methods under a 

certain signal-to-noise ratio, as demonstrated by the lower bit 

error rate. For example, to reach a 0.001 bit error rate, the 

signal-to-noise ratio of the proposed method is nearly 6.2 dB, 

which is 0.3 dB smaller than that of the three-step decoding 

method and 0.7 dB smaller than that of the two-step decoding 

method. Similarly, to reach a 0.001 word error rate, the 

signal-to-noise ratio of the proposed method is nearly 7 dB, 
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which is 0.4 dB smaller than that of the three-step decoding 

method and 1.4 dB smaller than that of the two-step decoding 

method. As a result, the proposed method outperforms the 

other two methods on the Gaussian channel. 

D. Experiment on the Binary Symmetric Channel 

Similar to the former experiment, the BER and WER were 

used to evaluate the performance of the decoding methods 

under various noises. The difference between this test and the 

former is that we used the error probability to reflect the 

degree of noise rather than the signal-to-noise ratio. The 

number of encoding and decoding processes was set to 

500,000. Fig. 7 is a flowchart of this experiment. 
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Fig. 7.  Flowchart of the experiment on the binary symmetric channel 

 

Based on Fig. 7, the whole procedure can be divided into 

the encoding process, noise introduction process, decoding 

process, and error analysis process, whose structures are 

similar to those in Fig. 6. Since the channel was a binary 

symmetric channel, there was no need to implement a 

modulation and demodulation process. Additionally, the 

noise was added to the original code, which could randomly 

flip some bits according to the given error probability P. The 

BER and WER were obtained using the three decoding 

methods under different error probabilities, which increased 

from 0 to 0.1. The results are shown in Fig. 8 and Fig. 9. 

The bit error rate and word (frame) error rate increase with 

increasing error probability. However, the error of the 

proposed method is always less than that of the other two 

methods. For example, when the error probability is 0.05, the 

bit error rate and frame error rate of the proposed method are 

approximately 0.001 and 0.005, whereas those of the 

three-step decoding are approximately 0.002 and 0.01, 

respectively. It is also noticed that the two-step decoding 

produces the most errors in both the BER and FER. Therefore, 

it is convincing that the proposed decoding method can 

correct more errors on the binary symmetrical channel. 
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Fig. 8.  Bit error rate for a (49,16,9) Hamming product codes on the binary 

symmetric channel 
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Fig. 9.  Word error rate for a (49,16,9) Hamming product codes on the 

binary symmetric channel 

E. Experiment with a Given Number of Error Bits 

To thoroughly explore the correction capability of the 

three decoding methods, the number of code error bits was 

previously set. Since the current code is a Hamming product 

code with parameter (49,16,9), whose minimum distance is 

nine, it can correct all error patterns that are not greater than 

four. However, as mentioned in section 2, the existing 

hard-decision decoding methods fail to adequately correct all 

stall patterns. Therefore, we enumerated all possibilities of 

the error pattern whose number of errors did not surpass four 

and added it to the code, which was encoded using a random 

message generator by adding the corresponding check bits. 

For the error patterns with the number of errors above half 

the minimum distance of the code, it was not feasible to 

enumerate all error patterns because the total number of error 

patterns was considerable. Therefore, we randomly extracted 

a limited number of error patterns from the set whose number 

of error bits was given and added them into the codeword. 

Here, this limited number was set to 300,000. 
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TABLE I 

NUMBER OF ERROR PATTERNS AND NUMBER OF ERROR BITS 

Number of Error Bits Number of Error Patterns 

1 49 (Full) 

2 1176 (Full) 

3 18424 (Full) 
4 211876 (Full) 

5~10 300000 (Not Full) 

 

Table I presents the number of error patterns under 

different given numbers of error bits for (49,16,9) Hamming 

product codes. 

All three decoding methods were used to correct those 

error patterns. Table II summarizes the number of decoding 

mistakes made in different ways under various numbers of 

error bits. 

For easy observation and comparison, we normalized the 

data in Table II to obtain Table III. We then divided the 

number of decoding mistakes by the number of error patterns 

we introduced. The number of error patterns can be seen in 

Table I. 

Table II and Table III show that the proposed method can 

entirely correct errors up to half the minimum distance of the 

Hamming product code. In contrast, the two-step and 

three-step methods fail to correct 9261 (4%) and 1323 (1%) 

error patterns, respectively, when the given number of error 

bits is four. However, when the given number of error bits 

increases from four to ten, all three methods experience 

decoding failure to different degrees. However, the proposed 

method has the best performance because its decoding failure 

rate is the lowest. 

Fig. 10 presents a histogram, which may provide an 

intuitive sense of the superiority of the proposed method over 

the others. 

 
TABLE II 

NUMBER OF DECODING MISTAKES UNDER A GIVEN NUMBER OF ERROR 

BITS. 

Given 

Number of 
Error Bits 

Number of Decoding Mistakes 

Two-step 

Method 

Three-step 

Method 

Proposed 

Method 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 9261 1323 0 

5 55497 10949 5584 

6 126283 37416 18847 

7 201927 90915 54419 

8 256916 165576 133169 

9 283679 232975 221631 

10 294158 272692 271361 

 

TABLE III 

NORMALIZATION OF THE DECODING MISTAKES UNDER A GIVEN NUMBER OF 

ERROR BITS. 

Given 

Number of 
Error Bits 

Normalization of Decoding Mistakes 

Two-step 

Method 

Three-step 

Method 

Proposed 

Method 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0.04 0.01 0 

5 0.18 0.04 0.02 

6 0.42 0.12 0.06 

7 0.67 0.30 0.18 

8 0.86 0.55 0.44 

9 0.95 0.78 0.74 

10 0.98 0.91 0.90 
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Fig. 10.  Histogram of the normalization of the decoding mistakes 

under different given numbers of error bits 
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V. CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a novel iterative 

hard-decision decoding method for Hamming product codes. 

By adding a decision process before directly conducting the 

decoding operation and introducing an erasure process, the 

proposed method can correct all error patterns within half the 

minimum distance of the Hamming product codes. In 

addition, it can correct many errors when the number of error 

bits is above half the minimum distance. Three 

experiments-Gaussian channel tests, binary symmetric 

channel tests and experiments with a given number of error 

bits-were conducted, and two other methods were 

implemented for comparison. The result proves that the 

proposed method can correct more errors than existing 

hard-decision decoding methods. 

In the future, we would like to modify our method, apply it 

to the decoding of extended Hamming product codes and 

explore its performance. The minimum distance of an 

extended Hamming product codes is enlarged, which allows 

for correcting more error patterns compared with an original 

Hamming product codes. Moreover, implementing our 

method on a hardware device is an exciting prospect. 
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