
 

 
Abstract—This work proposes a new coordinated ambulance 

routing model suitable for implementation during the COVID-
19 pandemic. This model is different from the existing model, 
where it was conducted uncoordinatedly, so that mismatch 
between supply and demand may occur. In general, high 
number of unserved requests and travel distance are 
unwanted. Therefore, this work proposes a model consisting of 
three steps: hospital-patient allocation, ambulance-patient 
dispatching, and ambulance pickup-delivery sequencing. The 
proposed model consists of two objectives: minimizing the 
number of unserved patients and minimizing total travel 
distance. It is developed by using cloud-theory-based simulated 
annealing. The simulation result shows that the proposed 
model outperforms the existing uncoordinated model in 
number of unserved patients, total travel distance, and average 
travel distance. It creates zero unserved patients if the total 
number of patients does not surpass the total number of slots 
in all hospitals. It produces 12 to 19 percent lower total travel 
distance and 27 to 29 percent lower average travel distance 
than the uncoordinated model. 

 
Index Terms—ambulance routing problem, COVID-19, 

metaheuristic, simulated annealing 
 

I. INTRODUCTION 

HE outbreak of coronavirus disease, which began at the 
end of 2019, has resulted in medical facilities and 

equipment shortages. Many hospitals, for example, in the 
US, reported shortages of crucial equipment, such as 
ventilators and personal protective equipment for the 
medical staff [1], [2]. The government of Indonesia has 
allocated 132 referral hospitals with 1,350 isolation rooms 
for the infected patients. Unfortunately, this number was 
still not enough to cover the 267 million population [3]. 
China also faced a shortage of medical staff and beds, 
especially during the peak of the pandemic, when Wuhan 
Union Hospital faced approximately 800 patients every day 
[4]. The shortage in hospital rooms made some patients 
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being treated in the back of the ambulance [5]. 
Ambulance plays a significant role during the COVID-19 

pandemic. In general, the ambulance is an integral part of 
the emergency medical service (EMS) system [6]. This need 
increases during the pandemic [7]. Ambulance becomes the 
most critical transportation mode that takes COVID-19 
patients from their houses to the hospital [8]. The advanced 
life support (ALS) techniques can also be performed in the 
ambulance while taking the patients to the hospital. In 
France, some mass transportation resources are transformed 
into collective critical care ambulances to accommodate 
many patients [9]. 

In general, the EMS is conducted centralized. A patient 
calls a single general number. Then, the EMS central will 
dispatch an ambulance to pick up this patient. 
Unfortunately, in some countries, this mechanism is neither 
centralized nor coordinated. A patient must contact the 
hospital directly to check whether an available bedroom or 
ambulance exists. In many cases, a patient must call several 
hospitals one by one due to the shortage of these facilities. 
Besides, a patient must contact several private ambulance 
providers one by one too due to the shortage of these 
facilities. 

In some cases, the chartered ambulance is expensive 
enough and not affordable for low-income patients [8]. This 
uncoordinated mechanism may trigger several problems. 
The customer may fail to find an available hospital or 
ambulance, even though at least one room in the hospital or 
ambulance that can serve them still exists. This problem is 
called a mismatch problem. 

A study conducted on this problem is known as the 
ambulance routing and allocation problem. This study is part 
of studies in EMS [10]. Even though many studies have 
been conducted on the ambulance routing problem (ARP), 
the model that is suitable for implementation during the 
COVID-19 pandemic is rare. Many studies on ambulance 
routing problems were implemented in the case of disasters 
where there are many injured people in a particular area, and 
an ambulance can pick up several patients simultaneously 
[11], [12]. In the COVID-19 pandemic, there are several 
unique circumstances. First, an ambulance can handle only a 
single patient simultaneously. This circumstance makes the 
shuttle one-by-one mechanism should be applied [13]. 
Second, many patients are spread over a wide area [8].  

This work proposes a coordinated ambulance routing 
model suitable for the COVID-19 pandemic based on this 
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problem. The objective is to minimize the number of 
unserved patients and travel distance. Available ambulances, 
as well as the hospital, can serve patients who request 
service. This model is developed as a multi-depot 
capacitated vehicle routing problem covering pick up and 
delivery. As for the vehicle routing problem, the 
circumstance is developing a route for the vehicle to visit 
specific nodes in the system in the most efficient way to 
minimize total travel distance [14] or cost [15]. It can be 
seen as a pickup and delivery problem (PDP) because the 
ambulance conducts both pickup and delivery activities 
during its trip [16]. It adopts a cluster-first route-second 
approach where in general, the model consists of clustering 
and routing processes [10]. 

Then, this model is optimized by using a cloud-theory-
based simulated annealing algorithm. The reason is that the 
simulated annealing is a well-known metaheuristic 
algorithm used in many combinatorial optimization studies, 
especially in vehicle routing problems, such as in [11] and 
[14]. The cloud-theory-based simulated annealing is chosen 
because of the advantage of achieving a solution faster as a 
population-based solution than in its basic form [17]. The 
simulated annealing algorithm is chosen because of its 
effectiveness in finding the global optimization and avoiding 
local optimal local traps [18]. 

The novelties or contributions of this work are as follows. 
1) This work proposes a centralized and coordinated 

ambulance routing problem with multiple hospitals and 
ambulance providers. 

2) The capacity of the hospitals is considered in the 
decision process, where it was neglected in most 
studies conducting ambulance routing problems. 

The remainder of this paper is organized as follows. The 
shortcoming studies due to the ambulance routing problem 
are explored in section two. Section three presents the 
proposed model, consisting of the system architecture and 
the mathematical model. The simulation scenario and the 
simulation result are shown in section four, while the 
findings and more profound analysis are discussed in section 
five. The conclusion and future research potentials are 
summarized in section six.  

II. RELATED WORKS 

The ambulance routing problem is a well-known study 
and an integral part of the emergency service. It has a 
critical mission to save injured people and reduce mortality 
when a disaster occurs [10], such as volcano eruption, flood, 
storm, earthquake, etc. Its main objective is transporting a 
set of patients or requests to appropriate emergency centers 
[11], such as hospitals. In other words, the main objective of 
ARP is determining the most effective route for the 
ambulance to serve a set of requests [19]. Besides locating 
and dispatching, the routing process is one aspect of the 
ambulance management system. The patient will be taken to 
the nearest hospital [20]. 

ARP is also a derivative of the vehicle routing problem 
[11], specifically the pickup and delivery problem [10]. In 
general, it is a kind of the assignment problem, in which its 
objective is to assign a set of jobs to a group (limited 
number) of resources [21]. In general, its objective 
parameters are time or cost [21]. Then, this problem is 

optimized by many well-known optimization algorithms, 
such as genetic algorithm [22], tabu search [23], simulated 
annealing [24], Dijkstra [25], particle swarm optimization 
[12], and so on. Many studies in ambulance routing problem 
are formulated by using mixed-integer linear programming 
(MILP) due to its characteristic as discrete combinatorial 
optimization, such as in [13] and [20]. This method consists 
of two aspects: objective and constraints.  

Although ARP is similar, there are many studies on ARP 
due to their specific circumstances. The examples are as 
follows. Knyazkov et al. [25] developed an ARP model with 
complex road circumstances (topology, traffic jams, and so 
on) in Saint Petersburg, Russia. Rabbani et al. [12] 
developed an ARP model where the patients are classified 
into three categories: seriously injured, slightly injured, and 
dead. Zeng et al. [20] developed an ARP model for 
coordination among stakeholders, such as EMS providers, 
hospitals, and traffic operators. The summarization of the 
shortcoming studies in the ambulance routing problem is 
shown in Table 1. These studies are sorted chronologically. 
Moreover, the proposed work is added in the last row to 
state its position. 
 

TABLE I 
SHORTCOMING STUDIES IN AMBULANCE ROUTING PROBLEM 

Authors Objectives Methods 
[25] minimize travel time Dijkstra algorithm 
[10] minimize travel distance petal algorithm, particle 

swarm optimization 
[11] minimize travel time simulated annealing, 

tabu search 

[23] minimize the latest service 
completion time (make-
span) 

genetic algorithm, tabu 
search 

[22] maximize total served 
requests 

genetic algorithm 

[12] minimize latest service 
completion time (make-
span), reduce casualties 

non-dominated sorting 
genetic algorithm 
(NSGA II), multi-
objective particle swarm 
optimization (MOPSO) 

[20] minimize travel time, 
minimize cost, minimize 
late arrival penalty 

mixed-integer linear 
programming (MILP) 

[26] maximize cured patient multi-agent, blockchain 
technology 

[13] maximize the number of 
served requests, maximize 
the number of prioritized 
requests 

0-1 knapsack problem, 
discrete binary gaining-
sharing knowledge-
based optimization 

[24] minimize total travel time simulated annealing 
this work minimize travel distance 

(total and average) and 
minimize the number of 
unserved patients 

cloud theory-based 
simulated annealing 

 
Based on the summarization in Table 1 and the 

exploration before, there are three aspects in many ARP 
studies: circumstance, objective, and method. Every study is 
conducted in a specific circumstance. The circumstance 
becomes the main reason for every study due to the variety 
of circumstances in ARP.  

Even though many studies on ARP already exist, the 
potential of studies in it is still broad, especially related to 
this emerging COVID-19 pandemic. Most of the studies 
were conducted in a disaster scenario. Meanwhile, the 
authors can find only two ARP studies conducted on 
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COVID-19. The first study used a single hospital scenario 
[13]. It is unclear about the implementation of this model in 
a multiple-hospital multiple-ambulance scenario, whether 
there exists coordination among parties or not. Besides, the 
patient’s home-hospital distance and prioritization were the 
only parameters considered in this work [13].  

The second study conducted multiple hospital scenarios 
and used a multi-agent system (coalition mechanism) in 
hospital selection [26]. Moreover, this work also has 
considered the ambulance and hospital capacity in the 
decision-making process. However, the ambulance 
dispatching and requests scheduling mechanism remain 
unclear due to the lack of a mathematical model. Besides, 
this work also lacked experimental or simulation results that 
analyze the performance of the proposed model. 

Based on this explanation, there is a potential in the 
ambulance routing problem study, mainly conducted during 
the COVID-19 pandemic. In the COVID-19 pandemic, the 
patients are spread in a city, district, or province area. 
Besides, there are many hospitals with a limited number of 
available beds. Moreover, many ambulance providers 
belong to a particular hospital or independent ambulance 
provider. Without coordination among parties, it is difficult 
for patients to find the most appropriate ambulance and 
hospital. Ironically, the study or model in the ambulance 
routing problem that can solve this problem directly has not 
existed yet. 

III. PROPOSED MODEL 

The ambulance routing model can be viewed as an input 
and output system. This proposed model consists of three 
entities: hospitals, ambulances, and patients. They become 
the system’s input. Every entity has a specific location. Each 
hospital consists of a certain number of available beds. This 
system has several outputs: the patient-hospital allocation, 
patient-ambulance allocation, and ambulance pickup-
delivery sequence. This system is illustrated in Fig. 1. 

 

 
Fig. 1. System diagram. 
 

Relation among entities is as follows. The relationship 
between hospitals and ambulances is many-to-many. An 
ambulance can take a set of patients to several hospitals. On 
the other hand, a hospital may receive patients from several 
ambulances. The relationship between ambulances and 

patients is one-to-many. An ambulance may serve several 
patients while a patient will be served by an ambulance. The 
relationship between hospitals and patients is one-to-many. 
A hospital may receive several patients while a hospital will 
serve a patient. This model adopts a coordinative approach. 

This proposed model can be viewed as a multi-depot 
vehicle routing problem, especially a vehicle routing 
problem with mixed deliveries and pickup [16]. It also can 
be viewed as a shuttle ambulance [13]. As a vehicle routing 
problem, each ambulance will be given a set of patients that 
must be served. The ambulance starts from its depot, 
executes requests one by one, and then returns to its depot 
[15]. There are two processes conducted for every patient: 
picking up a patient from his house and then taking the 
patient to his selected hospital [25]. Due to the ambulance 
capacity being only one patient, a patient will be picked up 
first before being delivered. 

The illustration of this process can be seen in Fig. 2. In 
Fig.2, there are two hospitals, two ambulances, and five 
patients. Every ambulance has its depot. Ambulance one 
serves patients one, two, and three. Patients four and five are 
served by ambulance two. Hospital one receives patients one 
and five. Hospital two receives patients two, three, and four. 
After patient three arrives at hospital two, ambulance one 
returns to depot one. After patient five arrives at hospital 
one, ambulance two returns to depot two. 
 

 
Fig. 2. Illustration of the coordinative ambulance routing model with 
multiple hospitals and ambulance providers. 
 

As a vehicle routing problem, especially a multi-depot 
capacitated pickup and delivery problem, several 
assumptions used in this model are as follows. 

 The number of hospitals is known at time zero [27]. 
 The number of ambulances is known at time zero [27]. 
 The number of patients is known at time zero [28]. 
 The capacity of every hospital is known at time zero 

[27]. 
 There is no request cancellation during the scheduling 

and routing process [28]. 
 The number of patients cannot surpass its maximum 
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capacity [28]. 
 A patient is served only by a hospital. 
 All ambulances are identical in capacity and speed 

[29]. 
 Every ambulance starts from and returns to its depot 

[29], [30].  
 A patient is served only by an ambulance [31]. 
 An ambulance visits a patient only once [31]. 
This proposed model consists of three processes. These 

processes are conducted sequentially. The first process is 
allocating the patients to the nearest possible hospital. The 
second process is dispatching patients to the ambulance. The 
third process is sequencing patients in every ambulance. In 
other words, this model adopts a cluster-first route-second 
approach. This work uses taxicab distance or Manhattan 
distance to calculate the distance between two objects. The 
reason is that the taxicab distance provides a better actual 
distance rather than a straight line as in the Euclidean 
distance [32].  

There are several annotations used in the mathematical 
model. These variables are as follows. 

a ambulance 
A set of ambulances 
Aav ambulances pool 
ase selected ambulance 
c hospital capacity 
cave hospital average capacity 
d distance 
dpi pickup distance 
dde delivery distance 
dre return distance 
fh hospital fitness function 
fa ambulance fitness function 
h hospital 
H set of hospitals 
Hav hospitals pool 
hse selected hospital 
k constant (Boltzmann constant) 
l location 
nap ambulance current capacity 
nmaxap ambulance maximum capacity 
oh hospital clustering objective 
oa ambulance routing objective 
p patient 
P set of patients 
Pra set of randomly picked patients 
pse selected patient 
s patient’s status (0 = unserved, 1 = served) 
solbest current best solution 
solcur current solution 
T current temperature 
Δfa ambulance fitness gap 
Δfh hospital fitness gap 
The first process is conducted to cluster the patients to 

their nearest possible hospital. Its objective is to minimize 
the total hospital-patient distance. This objective is 
formalized by using (1) to (3).  
 

                   (1) 

 

           (2) 

 
              (3) 

 
The explanation of (1) to (3) is as follows. Equation (1) 

states that the first process’s objective is to minimize the 
hospital fitness function. Equation (2) explains the hospital 
fitness function is the total distance between the served 
patients and their selected hospital. Then, (3) states that the 
set of served patients consists of patients where their status 
is 1. 

This mechanism is conducted stochastically. In the first 
process, each patient will be allocated to a hospital that is 
still available, and its location is the nearest to the patient. In 
the beginning, an available hospitals pool is generated. If the 
pool is not empty, a hospital is selected randomly to be 
allocated to the specified patient. This process is formalized 
by using (4) and (5). 
 

             (4) 

 
                 (5) 

 
Hereafter, this first process is optimized by using a cloud-

theory-based simulated annealing algorithm. A specific 
number of patients will be picked randomly to be reallocated 
in every iteration. Then, the hospital fitness function is 
recalculated. If the new hospital’s fitness is better than the 
hospital’s current best fitness, this solution becomes the new 
hospital’s current best solution. This reallocation and 
replacement mechanism is formalized by using algorithm 1. 
 
algorithm 1: hospital reallocation and replacement 
1 begin 
2   Pra = {p|p∈P ∧ p=U(P)} 
3   for p in Pra : 
4   begin 
5     reallocate(p) 
6   end for 
7   Δfh = fh(solcur) – fh(solbest)  
8   if Δfh < 0 then 
10     solbest = solcur 
11   else 
12   begin 
13     if U(0,1) < exp(-Δfh / (kT)) then 
14       solbest = solcur 
15     end if 
16   end if 
17 end 
 

The explanation of algorithm 1 is as follows. The specific 
number of patients are selected randomly to enter the 
patients’ pool. This process follows a uniform distribution. 
The reallocation mechanism for every patient in the 
patients’ pool follows (4) and (5). The replacement of the 
current best solution follows the rule in the simulated 
annealing algorithm. If the current solution is better than the 
best solution, then this current solution becomes the new 
current best solution. Otherwise, the replacement occurs 
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based on the stochastic process that depends on the hospital 
fitness gap, constant, and current temperature. The 
individual (solution) with the lowest total hospital-patient 
distance at the end of the process becomes the final solution. 

After the hospital-patient allocation process ends, the 
following process is the patient-ambulance dispatching 
process. This process is conducted simultaneously with the 
third process, the patient sequencing process. These 
processes aim to minimize the total travel distance. This 
objective is formalized by using (6) to (11). 
 

                   (6) 

 

                  (7) 

 

         (8) 

 

     (9) 

 

      (10) 

 
    (11) 

 
The explanation of (6) to (11) is as follows. Equation (6) 

shows that the objective is to minimize total travel distance. 
The total travel distance accumulates all ambulance 
distances, as shown by (7). Equation (8) shows that the 
ambulance distance consists of pickup distance, delivery 
distance, and return distance. Equation (9) shows that 
pickup distance is the distance between the ambulance depot 
to the first patient of the ambulance or the distance between 
the current patient and the previous patient’s hospital. 
Equation (10) shows that the delivery distance is the 
distance between the patient location and the patient’s 
hospital location. Equation (11) shows that return distance is 
the distance between the last patient’s hospital location and 
the depot location of the ambulance. 

In the beginning, the maximum ambulance capacity must 
be determined first. The ambulance’s maximum capacity is 
the number of patients transported by an ambulance in a 
single trip. As mentioned previously, these patients are 
picked up and delivered one by one. This ambulance’s 
maximum capacity is formalized by using (12). Equation 
(12) tries to make the number of patients carried by 
ambulance equal to or almost equal to other ambulances. 
 

     (12) 

  
The next step is dispatching every served patient to the 

ambulance. Like the first process, all available ambulances 
are collected into the ambulance pool for every patient. The 
sequence of the served patients is scrambled first. Then, an 

ambulance is picked up randomly to be dispatched to the 
specified patient. This process follows a uniform 
distribution. This step is determined by using (13) and (14). 
Equation (13) shows that the ambulance pool consists of 
ambulances whose current capacity is below its maximum 
capacity. Equation (14) shows that the selected ambulance is 
picked up randomly from the ambulance pool, following a 
uniform distribution. 
 

      (13) 

 
              (14) 

 
Hereafter, this ambulance-patient dispatch and sequence 

processes are optimized using cloud-theory-based simulated 
annealing (CSA). There are two operations in every 
iteration: inter-ambulance patient interchange and intra-
ambulance patient interchange. The fitness value, i.e., total 
travel distance, is improved by conducting these operations. 
The inter-ambulance patient interchange is interchanging 
two patients’ positions between two ambulances, and the 
intra-ambulance patient interchange is interchanging two 
patients’ positions in the same ambulance. These processes 
are formalized in algorithm 2. Process in algorithm two is 
conducted in every iteration. At the end of the process, the 
individual (solution) with the lowest total travel distance 
becomes the final solution. 
 
algorithm 2: ambulance-patient reallocation 
1 begin 
2   inter-ambulance_interchange() 
3   intra-ambulance_interchange() 
4   Δfa = fa(solcur) – fa(solbest)  
5   if Δfa < 0 then 
6     solbest = solcur 
7   else 
8   begin 
9     if U(0,1) < exp(-Δfa / (kT)) then 
10       solbest = solcur 
11     end if 
12   end if 
13 end 

  
The explanation of algorithm 2 is as follows. Line 2 

represents the patients’ interchange between two selected 
ambulances. Line 3 represents the patients’ interchange 
inside a selected ambulance. Line 4 is used to find the 
fitness score gap between the current and best solutions. 
Lines 5 and 6 show that the current solution becomes the 
best solution immediately only if this current solution is 
better than the best solution. Line 9 and 10 show that the 
current solution may become the best, although its fitness is 
worse than the best solution by using specific probabilistic 
calculations. 

IV. SIMULATION 

This proposed model is implemented into ambulance 
routing simulation to analyze its performance. The 
environment is the Special Region of Yogyakarta, 
Indonesia. It is like a province, and its size is 3,186-
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kilometer square. This region has 5 districts: Yogyakarta 
city, Sleman, Bantul, Kulonprogo, and Gunungkidul. At the 
beginning of the COVID-19 outbreak, only four hospitals 
were referred for COVID-19 patients. During the increase in 
the number of patients, there are now 25 COVID-19 
hospitals in this region. 

This simulation has three observed parameters: number of 
unserved patients, total travel distance, and average travel 
distance. These experimental parameters are considered due 
to several reasons. The first reason is that the objective of 
this work is to minimize the number of unserved patients 
and total travel distance. Besides, both minimizing total 
travel distance (time) [10], [11], [25] and the number of 
unserved patients [13], [22], [26] are used in many 
ambulance routing problem studies as observed parameters. 

In this simulation, the proposed model is compared with 
the existing 0-1 knapsack ambulance routing models [13]. 
The reason for choosing this model is as follows. First, this 
model was developed to handle COVID-19 patients. 
Second, the ambulance could handle a patient only on a 
single trip, so a shuttle mechanism is conducted. Due to its 
simulation scenario where there was only one hospital and 
several patients requested this hospital [13], this model can 
be seen as uncoordinated. Based on this simulation, the 
proposed model, as a coordinated model, will be 
benchmarked with the uncoordinated model [13]. This 
model [13] becomes the only comparing model in this work 
because the other ambulance routing model specified for 
COVID-19 is hard to find. 

In the beginning, a specific number of hospitals and 
ambulances are generated. Their location is distributed 
randomly around the region. It follows a uniform 
distribution. Meanwhile, a certain number of patients are 
also generated. Their location is distributed randomly. It 
follows uniform distribution too. The capacity of every 
hospital is generated randomly. It follows a normal 
distribution. For the uncoordinated model [13], every 
ambulance is dedicated to a particular hospital, and serving 
only this hospital. 

Then, this uncoordinated model is optimized by using 
several well-known metaheuristic algorithms: cloud-theory 
based simulated annealing (CSA), simulated annealing 
(SA), harmony search (HS), and tabu search (TS). The 
reason to choose these algorithms is as follows. SA is 
chosen as the original form of CSA. HS represents a 
metaheuristic that splits the option of choosing exploration 
and exploitation based on stochastic calculation. TS 
represents a non-population-based metaheuristic algorithm 
that focuses on exploiting the best solution but avoids 
redundancy. 

In the proposed model, every patient can be served by any 
available hospital and ambulance. Every patient also 
requests a particular hospital, and they will be served only 
by the ambulance that belongs to the hospital. The hospital 
preferencing is selected randomly, and it follows a uniform 
distribution.  

The simulation is conducted to analyze the increase in the 
number of patients with the observed parameters. There are 
25 hospitals and 50 ambulances. The hospital’s average 
capacity is 20 patients. Meanwhile, the number of patients 
ranges from 250 to 450 patients. In this simulation, there are 

several default variables.  
The parameters implemented in CSA are as follows. The 

population size is 5. The number of iterations is 50. The 
initial temperature is 10°C, while the final temperature is 
1°C. Boltzmann constant is 0.001. In HS and TS, the 
number of iterations is 100. In HS, the harmony memory 
size is 5, and the harmony memory considering rate is 0.5. 
In TS, the number of candidates generated in every iteration, 
and the tabu list size is 10. The simulation result is shown in 
Fig. 3 to Fig. 8. The proposed model is acronymized as a 
prop. Meanwhile, the uncoordinated models are 
acronymized as uc-CSA, uc-SA, uc-HS, and uc-TS, 
respectively, for CSA, SA, HS, and TS models. 
 

 
Fig. 3. Relation between the number of patients and number of unserved 
patients for prop, uc-CSA, and uc-SA. 
 

 
Fig. 4. Relation between the number of patients and number of unserved 
patients for uc-HS and uc-TS. 
 

Fig. 3 and Fig. 4 show that the proposed model performs 
better than all uncoordinated models [13] in minimizing the 
number of unserved patients. The proposed model creates 
zero unserved patients in any number of patients if the 
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number of patients does not surpass the total hospital 
capacity. Therefore, a patient is guaranteed to be served if at 
least one available hospital exists in the system. The 
condition is different in all the uncoordinated models [13]. 
There is a certain number of unserved patients, although the 
total patients are only approximately half of the total 
hospital capacity. The number of unserved patients increases 
due to the number of patients. When the number of patients 
is low (50 percent of the average total capacity), the 
unserved-patients rate is 13 percent. When the number of 
patients is high (90 percent of average total capacity), the 
unserved-patients rate is 17 percent.  

 

 
Fig. 5. Relation between the number of patients and total travel distance for 
prop, uc-CSA, and uc-SA. 
 

 
Fig. 6. Relation between the number of patients and total travel distance for 
uc-HS and uc-TS. 
 

Fig. 5 and Fig. 6 show that the total travel distance 
increases due to the number of patients. The total travel 
distance rises linearly. This trend occurs in both models. 
Benchmarking between models, the proposed model 
performs better in creating a low total travel distance. When 

the number of patients is low (250 persons), the proposed 
model creates a 19 percent lower total travel distance than 
the uncoordinated model. When the number of patients is 
high (450 patients), the proposed model creates a 12 percent 
lower total travel distance than the uncoordinated model.  

 

 
Fig. 7. Relation between the number of patients and average travel distance. 
 

 
Fig. 8. Zoom view of relation between the number of patients and average 
travel distance for uc-CSA, uc-SA, uc-HS, and uc-TS. 
 

Benchmarking between models, the proposed model 
performs better in creating a low average travel distance 
than the uncoordinated model [13]. Fig. 7 and Fig. 8 show 
that the average travel distance decreases very slowly due to 
the increased number of patients, which occurs in both 
models. When the number of patients is low (250 persons), 
the proposed model creates a 29 percent lower average 
travel distance than the uncoordinated model. Meanwhile, 
when the number of patients is high (450 patients), the 
proposed model created a 27 percent lower average travel 
distance than the uncoordinated model. 
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V. DISCUSSION 

Several findings can be obtained based on the simulation 
result. The coordinated model, as proposed in this work, is 
better than the uncoordinated model as in the benchmark 
model [13]. This advantage occurs in all three aspects: 
number of unserved patients, total travel distance, and 
average travel distance.  

The first finding is that the proposed model can minimize 
the number of unserved patients compared to the 
uncoordinated one. This circumstance comes from the 
abstraction of the dedicated relation between hospital and 
patients and between hospital and ambulance. In the 
coordinated model, patients can be served by an ambulance 
and taken to any available hospitals in the system. This 
condition does not occur in the uncoordinated model [13]. In 
the uncoordinated model, patients cannot be taken to other 
available hospitals when their preferred hospital is not 
available. Moreover, patients will fail to be taken to the 
hospital although their preferred hospital is still available 
but does not have a relation with any ambulance in the 
system. The general cause is the mismatch due to the 
dedicated relation. 

The second finding is that the proposed model is proven 
to minimize total travel distance. Once again, this 
circumstance is achieved because of the flexibility in the 
coordinative approach. The total travel distance reduction is 
achieved in three ways. The first way is by allocating 
patients to the nearest available hospital. The second way is 
by dispatching the patients to the most appropriate 
ambulance. The third way is arranging the patients’ 
sequence so that the travel distance of every ambulance can 
be minimized. 

The third finding is that the proposed model is proven to 
minimize average travel distance. The gap in average travel 
distance is more expansive than in total travel distance. This 
circumstance is caused by the difference in the number of 
served patients. The proposed model serves more patients 
than the uncoordinated model. It makes the gap in total 
travel distance narrow. Based on the average travel distance 
comparison, the proposed model is much more efficient 
rather than the uncoordinated model.  

Overall, the collaborative approach is proven better than 
the non-collaborative approach. The collaborative method 
outperforms all non-collaborative methods without 
considering the metaheuristic algorithm chosen to optimize. 
The performance gap between the collaborative method and 
all non-collaborative methods is wide. Contrary, the gap 
among non-collaborative methods is so narrow. It means 
that choosing a collaborative approach should be more 
prioritized than choosing the optimization algorithm. 

The benefit of the collaborative approach comes from the 
nature of resource sharing adopted in this approach. In 
general, every system will face limitations in the resources 
utilized. On the other hand, tasks or jobs can surpass their 
capacity. In the condition that there are multiple providers in 
the system, collaboration may benefit in several ways. First, 
collaboration can improve the utilization of resources. 
Second, collaboration can improve the quality of service. In 
the non-collaborative approach, a patient can only be served 
by their preferred hospital despite the minimum capacity 
and distance. There might exist a hospital near this patient 

that still has enough capacity to serve. This circumstance 
also occurs in ambulances where their availability is also 
limited. Through collaboration, the available ambulances 
can serve more customers beyond their preferred customers. 
The less utilized resources can be assigned to handle the 
over-demand circumstance through resource sharing.  

Simulation result also shows that using various 
metaheuristic algorithms is less significant to improve the 
performance (travel distance and unserved patients) in the 
non-collaborative models. Even though these algorithms 
have been used widely in many optimization problems, the 
narrow problem space or space for improvement is limited. 
Meanwhile, this narrow problem space comes from the 
nature of the non-collaborative approach because the 
number of possible arrangements is less than the 
collaborative ones. 

This work is conducted with several limitations. First, the 
condition of all patients is assumed to be similar so that they 
are treated equally. In the real world, the patient’s condition 
can be classified into several levels to treat them differently. 
Second, all patients, hospitals, and ambulances are 
distributed uniformly. In the real world, the density in every 
area is different. Besides, several aspects such as time 
window, make-span, penalty, and others are not considered. 
In the future, these aspects can be included to improve the 
quality of the model. 

VI. CONCLUSION 

This work has demonstrated that the proposed 
coordinated ambulance routing model is suitable in the 
ambulance management system during the COVID-19 
pandemic. The coordinated model has met its objective in 
minimizing the number of unserved patients and total travel 
distance. Based on the simulation result, this proposed 
model outperforms the existing uncoordinated model in 
three aspects: number of unserved patients, total travel 
distance, and average travel distance. It produces 12 to 29 
percent lower total travel distance than the uncoordinated 
model, and it also produces a 27 to 29 percent lower average 
travel distance than the uncoordinated model. It is proven to 
create zero unserved patients if at least one available 
hospital exists. 

This work can be used as a baseline for future research 
potential. Several studies can be conducted to improve this 
model by concerning the limitations of this work, such as by 
implementing prioritization among patients. In many studies 
on ambulance routing problems, patients are classified based 
on the urgency. Other studies can also be conducted by 
implementing this model in many other locations or cities 
where the demographic characteristics of their people are 
different. Several shortcoming metaheuristic algorithms can 
become optimization alternatives too.  
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