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Abstract—The concept of generalized augmented Lagrange
multiplier was introduced originally for nonlinear programming
problems. In this paper we further study this concept in the
framework of convex cone constrained optimization problems.
In particular we establish the relation of optimal solution
sets between the primal problem and augmented Lagrange
minimization problem. Some discussions on related concepts
such as saddle points and exact penalty are given as well.

Index Terms—Cone constraints, augmented Lagrange multi-
pliers, exact penalty function, localization principle.

I. INTRODUCTION

IN this paper we manly consider the following convex
cone constrained optimization problem

min
x∈Q

f(x)

s.t. G(x) ∈ K,

where Q ⊆ X is a nonempty closed set, K ⊆ Y is a closed
convex cone, f : X → R, G : X → Y , and X,Y are Banach
spaces, respectively. This model includes the standard non-
linear programming, second-order cone programming, semi-
definite programming, etc.

For a fixed y ∈ Y , the perturbation problem of (P ) is
defined as

min
x∈Q

f(x)

s.t. G(x) + y ∈ K.

Denote by v(y) the optimal value of (Py), i.e.,

v(y) := inf
x∈Q
{f(x) + δK(G(x) + y)}.

Clearly, v(0) reduces to the optimal value of primal problem
(P), i.e., v(0) = val(P ).
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The concept of augmented Lagrange multiplier was intro-
duced in [1]. More precisely, a vector λ ∈ Y ∗ is said to
be an augmented Lagrange multiplier of (P ) if there exists
r ≥ 0 such that

vr(y) ≥ vr(0) + 〈λ, y〉, ∀y ∈ Y,

where vr(y) := v(y) + rσ(y). This means that the perturba-
tion function has a linear support at zero. In other words, λ∗

belongs to the subdifferential of vr at zero provided that vτ is
convex. The existence of augmented Lagrange multiplier has
been studied in different circumvents, such as semi-infinite
programming [1, 2], second-order cone programming [3],
matrix programming [4], convex cone programming [5–7].
However, a linear support may be failing to hold in general
for nonconvex programming problems. This difficulty is
remedied by considering the possibility of some types of
nonlinear support at zero. It naturally leads to the concept
of generalized augmented Lagrange multiplier; see [8]. In
[8], the related theoretical results are mainly focused on
the standard nonlinear programming, i.e, K := {0}l × Rm− ,
a convex polyhedral set. In this paper, we further extend
these results to more general framework, i.e., K is a non-
polyhedral convex cone, which includes second-order cone,
positive semi-definite matrix cone, homogeneous cone, as
special cases.

The existence of augmented Lagrange multiplier is
closely related to the important concept of saddle points.
In particular, (x∗, λ∗) is a global saddle point of (P) if and
only if x∗, λ∗ are the optimal solutions of the primal and
dual problems respectively, and meanwhile the zero dual
gap property holds. Some related works can be found in
[9–15]. However, in some practical case, it is impossible
to know the real solution in advance. In addition, some
types of approximating problems have to be solved in
order to deal with the constraints. The usual approaches
include penalty function methods and augmented Lagrange
multiplier methods; see [16–25] for more information.
To overcome the numerical difficulty caused as penalty
parameter is too large, it makes sense to study the exact
penalty and exact augmented Lagrange function. For
example, we hope infx L(x, λ∗, r) = val(P ) for some
λ∗ and r > 0. This is equivalent to saying that λ∗ is an
augmented Lagrange multiplier. If λ∗ = 0, then it reduces to
the exact penalty function. In this paper, we further establish
the relation of optimal solution set between primal problems
and augmented Lagrangian relaxed problems. Finally, the
existence of generalized augmented Lagrange multiplier is
discussed by using exact penalty and the analysis technique
called localization principle which was introduced in [26].
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II. PRELIMINARIES

Definition 1. Let σ : Y → R+ := [0,+∞). We say that σ
has a valley at zero provided that σ is continuous at 0 with
σ(0) = 0 and inf{σ(y)| ‖y‖ ≥ ε} > 0 whenever ε > 0.

Definition 2. A vector λ ∈ Y ∗ is said to be a generalized
augmented Lagrange multiplier of (P ), if there exists r ≥ 0
such that

vr(y) ≥ vr(0) + φ(λ, y), ∀y ∈ Y,

where φ : Y ∗ × Y → R has the following properties:
(B1) φ is continuous with φ(·, 0) = 0;
(B2) If x ∈ Q satisfies G(x) /∈ K, then there exists a vector
u0 ∈ Y ∗ such that

sup
ξ∈K

φ(τu0, ξ −G(x))→ −∞ as τ → +∞.

Notice that K is a closed convex set. For any x ∈ Q
satisfying G(x) /∈ K and ξ ∈ K, by the Strong Separation
Theorem of convex sets in [27], there exist a nonzero vector
u0 and a scalar ε > 0 such that

〈u0, ξ −G(x)〉 < −ε, ∀ξ ∈ K. (1)

Next let us introduce two simple examples satisfying the
assumptions (B1) and (B2) required in Definition 2.

(a) Let
φ(x, y) := 〈Ax, y〉,

where A is a positive definite matrix. Obviously (B1) is valid
due to φ(x, 0) = 〈Ax, 0〉 = 0. Pick u′0 := A−1u0. It then
follows from (1) that

φ(τu′0, ξ −G(x)) = 〈τAu′0, ξ −G(x)〉
= τ〈u0, ξ −G(x)〉
< −τε.

Hence

sup
ξ∈K

φ(τu′0, ξ −G(x))→ −∞ as τ → +∞.

(b) Let θ(·) be a continuous and strict increasing function
on R with θ(0) = 0. Define

φ(x, y) := ‖x‖θ(xT y).

Taking into account the monotonicity of function θ and the
fact uT0 (ξ −G(x)) < −ε appeared in (1), we obtain

φ (τu0, ξ −G(x)) = ‖τu0‖θ
(
τuT0 (ξ −G(x))

)
= τ‖u0‖θ

(
τuT0 (ξ −G(x))

)
≤ τ‖u0‖θ(−τε)
≤ τ‖u0‖θ(−ε),

whenever τ ≥ 1. Note that θ(−ε) < 0 by the strict
monotonicity of θ. Hence

sup
ξ∈K

φ(τu0, ξ −G(x))→ −∞ as τ → +∞.

For (x, λ, r) ∈ X × Y ∗ × R+, the augmented Lagrange
function of (P ) is defined as

L(x, λ, r) (2)

:= inf
x∈Q,y∈Y

{
f(x) + δK(G(x) + y)− φ(λ, y) + rσ(y)

}
.

Definition 3. A point (x̃, λ̃) ∈ Q×Y ∗ is said to be a global
saddle point of the generalized augmented Lagrangian L, if
there exists r ≥ 0 such that

L(x̃, λ, r) ≤ L(x̃, λ̃, r) ≤ L(x, λ̃, r), ∀x ∈ Q,λ ∈ Y ∗.

Furthermore, if the above inequalities hold for all x ∈
BX(x̃, δ)∩Q, then (x̃, λ̃) is said to be a local saddle point of
L, where BX(x̃, δ) denotes a ball centered at x̃ with radius
δ > 0.

The dual function and dual problem of (P ) are defined
respectively as ϕ(λ, r) := inf

x∈Q
L(x, λ, r) and

sup
(λ,r)∈Y ∗×R+

ϕ(λ, r). (3)

Note that

sup
(λ,r)∈Y ∗×R+

ϕ(λ, r) = sup
r∈R+

sup
λ∈Y ∗

ϕ(λ, r).

Hence it is natural to introduce the following r-dual problem
by fixing the parameter r in advance, i.e.,

sup
λ∈Y ∗

ϕ(λ, r∗) = sup
λ∈Y ∗

inf
x∈Q

(x, λ, r∗). (4)

Denote by val(D) and val(Dr) as the optimal value of the
above dual problems (3) and (4) respectively.

III. DUAL THEORY

Proposition 1. If x is feasible for (P ) and (λ, r) ∈ Y ∗×R+,
then

ϕ(λ, r) ≤ val(Dr) ≤ val(D) ≤ val(P ) ≤ f(x). (5)

Furthermore, λ ∈ Y ∗ is a generalized augmented La-
grangian multiplier of (P ) if and only if there exists some
r ≥ 0 such that

ϕ(λ, r) = inf
x∈Q

L(x, λ, r) = val(P ). (6)

Proof: Since x is feasible, then 0 ∈ K − G(x). Hence
it follows from (2) that

L(x, λ, r) = inf
y∈K−G(x)

{f(x)− φ(λ, y) + rσ(y)}

≤ f(x),

where the inequality is due to φ(·, 0) = 0 and σ(0) = 0.
Taking the infimum over x ∈ Q yields

ϕ(λ, r) = inf
x∈Q

L(x, λ, r) ≤ inf
x∈Q

G(x)∈K

f(x) = val(P ) ≤ f(x).

The formula (5) can be obtained by further taking the
supremum over λ ∈ Y ∗ and (λ, r) ∈ Y ∗ × R+ respectively.

It is known from Definition 2 that λ is a generalized
augmented Lagrange multiplier of (P ) if and only if there
exists r ≥ 0 such that

v(y) ≥ v(0) + φ(λ, y)− rσ(y), ∀y ∈ Y.
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This is equivalently written as

v(0) = inf
y∈Y

{
v(y)− φ(x, y) + rσ(y)

}
= inf
y∈Y

inf
x∈Q

{
f(x) + δK(G(x) + y)− φ(λ, y) + rσ(y)

}
= inf
x∈Q

inf
y∈Y

{
f(x) + δK(G(x) + y)− φ(λ, y) + rσ(y)

}
= inf
x∈Q

L(x, λ, r) = ϕ(λ, r).

(7)
The proof is complete.

Lemma 1. For r ≥ 0, one has

sup
λ∈Y ∗

L(x, λ, r) =

{
f(x), if x ∈ Q, G(x) ∈ K;
+∞, otherwise.

(8)

Proof: This is discussed in two cases of x ∈ F or x /∈
F , where F denotes the feasible region of (P ).

Case 1. x ∈ F , i.e., x ∈ Q, G(x) ∈ K. It then follows
from (7) that L(x, λ, r) ≤ f(x) for all λ ∈ Y ∗. On the other
hand

sup
λ∈Y ∗

L(x, λ, r) ≥ L(x, 0, r) ≥ f(x), (9)

where the last inequality comes from the nonnegativity of σ.
Combining (7) and (9) yields

sup
λ∈Y ∗

L(x, λ, r) = f(x), ∀x ∈ F .

Case 2. x /∈ F , i.e., x /∈ Q or x ∈ Q but G(x) /∈ K. If
x /∈ Q, it is clear from (2) that

L(x, λ, r) = +∞, ∀λ ∈ Y ∗. (10)

If x ∈ Q but G(x) /∈ K, it follows from (B2) that there
exists a vector u0 ∈ Y ∗ such that

sup
ξ∈K

φ(τu0, ξ −G(x))→ −∞ as τ → +∞.

Hence

sup
λ∈Y ∗

L(x, λ, r̃)

≥ L(x, τu0, r)

= inf
y∈K−G(x)

{f(x)− φ(τu0, y) + rσ(y)}

≥ f(x)− sup
ξ∈K

φ (τu0, ξ −G(x))

→ +∞, as τ → +∞.

(11)

Putting (10) and (11) together yields

sup
λ∈Y ∗

L(x, λ, r̃) = +∞, ∀x /∈ F .

According to Lemma 1 we can obtain the following result.

Corollary 1.

v(0) = min
x∈Q

sup
λ∈Y ∗

L(x, λ, r)

= min
x∈Q

sup
λ∈Y ∗
r∈R+

L(x, λ, r), ∀r ∈ R+.

Theorem 1. Let r̃ ≥ 0 be given. The following statements
are equivalent.

(i) (x̃, λ̃) is a global saddle point of L(x, λ, r̃);
(ii) x̃ ∈ Q and λ̃ ∈ Y ∗ are optional solutions of (P ) and

(Dr̃) respectively, and val(P ) = val(Dr̃);

(iii) x̃ ∈ Q and (λ̃, r̃) ∈ Y ∗×R+ are optional solutions of
(P ) and (D) respectively, and val(P ) = val(D).

Proof: Note that (x̃, λ̃) is a global saddle point of
L(·, ·, r̃) if and only if

ϕ(λ̃, r̃) = min
x∈Q

L(x, λ̃, r̃) = L(x̃, λ̃, r̃)

= max
λ∈Y ∗

L(x̃, λ, r̃) = f(x̃)
(12)

and
L(x̃, λ̃, r̃) = max

λ∈Y ∗
min
x∈Q

L(x, λ, r̃)

= min
x∈Q

max
λ∈Y ∗

L(x, λ, r̃) = v(0),
(13)

where the last equalities in (12) and (13) come from Lemma
1 and Corollary 1 respectively. Combining (12) and (13)
ensures that x̃ and λ̃ are optimal solution of (P ) and (Dr̃)
respectively and val(P ) = val(Dr̃).

Conversely, if x̃ and λ̃ are optimal solution of (P ) and
(Dr̃) respectively, and one has val(P ) = val(Dr̃), then
ϕ(λ̃, r̃) = f(x̃). Note that

L(x̃, λ̃, r̃) ≤ max
λ

L(x̃, λ, r̃) = f(x̃)

= ϕ(λ̃, r̃) = min
x∈Q

L(x, λ̃, r̃)
(14)

and
L(x̃, λ̃, r̃) ≥ min

x∈Q
L(x, λ̃, r̃) = ϕ(λ̃, r̃)

= f(x̃) = max
λ

L(x̃, λ, r̃),
(15)

where the first equation in (14) and the third equation in (15)
follow from Lemma 1. The formula (14) and (15) show that
(x̃, λ̃) is a global saddle point of L(·, ·, r̃).

The similar argument is applicable to the relation between
items (i) and (iii).

Theorem 2. Let r̃ ≥ 0 be given. Then the following
statements hold.

(i) λ̃ is a generalized augmented Lagrangian multiplier of
(P ) with r̃;

(ii) (λ̃, r̃) is an optional solution of (D) and val(P ) =
val(D);

(iii) λ̃ is an optional solution of (Dr̃) and val(P ) =
val(Dr̃).

Proof: (i)⇒(ii) According to Definition 2, λ̃ is a gen-
eralized augmented Lagrangian multiplier of (P ) with r̃ if
and only if

vr̃(0) = inf
y∈Y

{
vr̃(y)− φ(λ̃, y)

}
= ϕ(λ̃, r̃),

where the last step is due to (7). Furthermore, according to
the weak duality theorem between (P) and (D) we know that
(λ̃, r̃) is an optional solution of (D) and the dual gap is zero,
i.e., val(P ) = val(D).

(ii)⇒(i) If (λ̃, r̃) is an optional solution of (D) and zero
duality gap property holds between (P ) and (D), then

ϕ(λ̃, r̃) = sup
λ,r≥0

ϕ(λ, r) = val(D)

= val(P ) = v(0) = vr̃(0).
(16)

Recall from (7) that

ϕ(λ̃, r̃) = inf
y∈Y

{
vr̃(y)− φ(λ̃, y)

}
.
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This together with (16) implies

vr̃(y) ≤ vr̃(0) + φ(λ̃, y), ∀y ∈ Y.

Thus λ̃ is a generalized augmented Lagrangian multiplier of
(P ) by definition.

The similar argument is applicable to the relation between
items (i) and (iii).

The conditions involved in the concept of generalized
augmented Lagrange multiplier can be further weaken to
some neighborhood of the origin provided that the augmented
Lagrangian function is bounded from below.

Theorem 3. A vector λ̃ is a generalized augmented La-
grange multiplier of (P ) if and only if there exist r̃ ∈ R+

and a scalar τ > 0 such that

v(y) ≥ v(0) + φ(λ̃, y)− r̃σ(y), ∀y ∈ τB, (17)

and the function L(·, λ̃, r̃) is bounded from below in Q.

Proof: The necessity is followed by Definition 2 and (6)
in Proposition 1.

We now prove the sufficiency. Since L(·, λ̃, r̃) is bounded
from below on Q, then there exists γ ∈ R such that

f(x) + δK (G(x) + y)− φ(λ̃, y) + r̃σ(y)

≥ L(x, λ̃, r̃) ≥ γ, ∀(x, y) ∈ Q× Y.

Taking the infimum of the above formula over x ∈ Q yields

v(y)− φ(λ̃, y) + r̃σ(y) ≥ γ, ∀y ∈ Y.

Using the fact that σ has valley at zero, for the above τ in
(17) there exists β > 0 such that

σ(y) ≥ β, ∀y /∈ τB.

Pick
r̄ := 1 + r̃ + (v(0)− γ)/β.

Then for each y /∈ τB we have

v(y)− φ(λ̃, y) + rσ(y)

= v(y)− φ(λ̃, y) + r̃σ(y) + (r − r̃)σ(y)

≥ v(y)− φ(λ̃, y) + r̃σ(y) + (r − r̃)β
≥ γ + (r − r̃)β ≥ v(0), y /∈ τB.

This together with (17) means that λ̃ is a generalized
augmented Lagrangian multiplier.

The results obtained in this section are similar to those
given in [26] by replacing the inner produce by more general
function φ.

Definition 4. For any ρ > 0, we say that v(y) has a growth
condition with σ at zero, if there exists a, b ∈ R such that

v(y) ≥ b− aσ(y), ∀y ∈ Y \ρBY .

By utilizing the growth condition, we can obtain a suffi-
cient condition for the existence of generalized augmented
Lagrangian multipliers.

Theorem 4. Assume that v(y) satisfies the growth condition
with σ at zero. If there exist a vector λ̃ and scalars ρ, r̃, τ > 0
such that

v(y) ≥ v(0) + φ(λ̃, y)− r̃σ(y), ∀y ∈ τB, (18)

and

ρσ(y)− φ(λ̃, y) ≥ 0, ∀y ∈ Y \τBY , (19)

then the vector λ̃ is a generalized augmented Lagrange
multiplier of (P ).

Proof: Since v(y) satisfies the growth condition, then by
definition for the above τ > 0 in (18), there exist a, b ∈ R
such that

v(y) ≥ b− aσ(y), ∀y ∈ Y \τBY .

The valley at zero property of σ guarantees the existence of
β > 0 such that

σ(y) ≥ β, ∀y /∈ τB. (20)

Pick
r := (v(0)− b)/β + a+ ρ+ 1.

Hence for each y /∈ τB it follows from (19) and (20) that

v(y)− φ(λ̃, y) + rσ(y)

≥ b− aσ(y)− φ(λ̃, y) + rσ(y)

= b+ (r − a− ρ)σ(y) + ρσ(y)− φ(λ̃, y)

≥ b+ (r − a− ρ)β ≥ v(0).

This together with (18) ensures that λ̃ is a generalized
augmented Lagrangian multiplier.

IV. OPTIMAL SOLUTIONS

Given λ ∈ Y ∗, let us define

r(λ) := inf {r ≥ 0| v(y) ≥ v(0) + φ(λ, y)− rσ(y)} .

It is clear to see that λ∗ is a generalized augmented Lagrange
multiplier if and only if r(λ∗) <∞.

Theorem 5. If λ ∈ Y ∗ is a generalized Lagrange multiplier
of (P), then for any r > r(λ),

arg min
(x,y)∈Q×Y

{f(x) + δK(G(x) + y)− φ(λ, y) + rσ(y)}

= (S, 0).

Proof: It follows from [28, Proposition 1.35] that

(x̄, ȳ) ∈ arg min
x∈Q,G(x)+y∈K

{f(x)− φ(λ, y) + rσ(y)}

if and only if ȳ belongs to

arg min
y∈Y

{
inf

x∈Q,G(x)+y∈K
{f(x)− φ(λ, y) + rσ(y)}

}
(21)

and x̄ lies in

arg min
x∈Q
{f(x) + δK(G(x) + ȳ)− φ(λ, ȳ) + rσ(ȳ)} . (22)

Now we claim that ȳ = 0, i.e.,

arg min
y∈Y

{
inf

x∈Q,G(x)+y∈K
{f(x)− φ(λ, y) + rσ(y)}

}
= {0}. (23)

Since λ ∈ Y ∗ is a generalized Lagrange multiplier, then

v(y)− φ(λ, y) + rσ(y)

= inf
x∈Q
{f(x) + δK(G(x) + y)− φ(λ, y) + rσ(y)}

≥ v(0) = inf
x∈Q
{f(x) + δK (G(x))} , ∀y ∈ Y.
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So

0 ∈ arg min
y∈Y

{
inf
x∈Q
{f(x)+δK(G(x)+y)−φ(λ, y)+rσ(y)}

}
.

(24)
Conversely, pick

y∗ ∈ arg min
y∈Y

{
inf
x∈Q
{f(x)+δK(G(x)+y)−φ(λ, y)+rσ(y)}

}
.

Then

inf
x∈Q
{f(x) + δK (G(x))}

≥ inf
x∈Q
{f(x) + δK(G(x) + y∗)− φ(λ, y∗) + rσ(y∗)},

i.e.,
v(0) ≥ v(y∗)− φ(λ, y∗) + rσ(y∗). (25)

Take ε > 0 satisfying r(λ) + ε < r. Then

v(y∗)− φ(λ, y∗) + rσ(y∗)

≥ v(y∗)− φ(λ, y∗) + (r(λ) + ε)σ(y∗)

≥ v(0), (26)

where the last inequality is due to the definition of
r(λ). Comparing (25) and (26) immediately leads to (r −
r(λ))σ(y∗) = 0, which in turn implies σ(y∗) = 0. So
y∗ = 0 since σ has the valley property. This together with
(24) guarantees the validity of (23).

According to (23), we know ȳ = 0 by (21). Hence
substituting ȳ = 0 to (22) leads to

x̄ ∈ arg min
x∈Q
{f(x) + δK(G(x))− φ(λ, 0)− rσ(0)}

= arg min
x∈Q,G(x)∈K

f(x) = S.

Given x ∈ Q, let

Γ(x) := arg min
y∈Y

{
f(x) + δK(G(x) + y)−φ(λ, y) + rσ(y)

}
.

Theorem 6. If λ ∈ Y ∗ is a generalized augmented Lagrange
multiplier of (P), then for any r > r(λ),

S = {x̄| x̄ ∈ arg min
x∈Q

L(x, λ, r), Γ(x̄) 6= ∅}.

Proof: We first show that

S ⊆ {x̄| x̄ ∈ arg min
x∈Q

L(x, λ, r), Γ(x̄) 6= ∅}. (27)

There is nothing to prove if S is empty. Now take x∗ ∈ S.
Then (x∗, 0) ∈ (S, 0). Note that

arg min
(x,y)∈Q×Y

{f(x) + δK(G(x) + y)− φ(λ, y) + rσ(y)}

=

(x̄, ȳ)

∣∣∣∣∣∣∣∣∣
x̄ ∈ arg min

x∈Q

{
inf
y∈Y

f(x) + δK(G(x) + y)

−φ(λ, y) + rσ(y)
}
,

ȳ ∈ arg min
y∈Y

{
f(x̄) + δK(G(x̄) + y)

−φ(λ, y) + rσ(y)
}
.


=

{
(x̄, ȳ)

∣∣∣∣∣ x̄ ∈ arg min
x∈Q

L(x, λ, r),

ȳ ∈ Γ(x̄).

}
.

(28)
Hence it follows from Lemma 5 that x∗ ∈ arg min

x∈Q
L(x, λ, r)

and 0 ∈ Γ(x∗). This shows the validity of (27).
Conversely, pick x∗ satisfying x∗ ∈ arg min

x∈Q
L(x, λ, r) and

Γ(x∗) 6= ∅. Then it follows from (28) and Lemma 5 that
x∗ ∈ S.

V. SUFFICIENT CONDITIONS

Definition 5. [26] Let C ⊆ Y . Define

F (x, r, C) := inf
y∈C
{f(x) + δK(G(x) + y) + δQ(x) + rσ(y)},

where x ∈ X and r ≥ 0. We simplify write F (x, r, C) as
F (x, r) if C = Y . The penalty function F (x, r, C) is exact
if there exists r ≥ 0 such that F (x, r, C) ≥ val(P ) for all
x ∈ Q.

By extending the inner product and norm used in [26] to
more general functions, we can obtain the following results.

Theorem 7. For λ ∈ Y ∗, suppose that there exist τ > 0
and d(λ) ≥ 0 such that |φ(λ, y)| ≤ d(λ)σ(y) for any
y ∈ τBY . Then λ is a generalized augmented Lagrange
multiplier of (P ) for r > r(λ) if and only if the penalty
function F (x, r, τB) is exact and L(·, λ, r) is bounded from
below in Q.

Proof: Necessity. Suppose that λ ∈ Y ∗ is a generalized
augmented multiplier of (P ). Then according to the nonneg-
ative of d(λ) and σ(y), for r > r(λ), we have

f(x) + δK(G(x) + y)− φ(λ, y) + rσ(y)

≤ f(x) + δK(G(x) + y) + (d(λ) + r)σ(y), ∀y ∈ τB.

Taking the infimum over all y ∈ τBY yields

L(x, λ, r)

≤ inf
y∈τBY

{f(x) + δK(G(x) + y)− φ(λ, y) + rλ(y)}

≤ inf
y∈τBY

{f(x) + δK(G(x) + y) + (d(λ) + r)σ(y)}

= F (x, d(λ) + r, τBY ). (29)

By Proposition 1, we know inf
x∈Q

L(x, λ, r) = val(P ), which

together with (29) implies

val(P ) ≤ F (x, d(λ) + r, τBY ).

Therefore, the penalty function F (x, r, τBY ) is exact and
L(·, λ, r) is bounded from below in Q.

Sufficiency. If F (x, r, τB) is exact, then there exists r′

satisfying r′ > d(λ) + r and

F (x, r′ − d(λ), τB)

= inf
y∈τB
{f(x) + δK(G(x) + y) + (r′ − d(λ))σ(y)}

≥ val(P ), ∀x ∈ Q. (30)

Because φ(λ, y) ≤ d(λ)σ(y), we further have

f(x) + δK(G(x))− φ(λ, y) + r′σ(y)

≥ f(x) + δK(G(x) + y) + (r′ − d(λ))σ(y).

Taking the infimum overall x ∈ Q, y ∈ τBY and using (30)
yields

inf
x∈Q

inf
y∈τB
{f(x) + δK(G(x) + y)− φ(λ, y) + r′σ(y)}

≥ inf
x∈Q

inf
y∈τB
{f(x) + δK(G(x) + y) + (r′ − d(λ))σ(y)}

= inf
x∈Q

F (x, r′ − d(λ), τB)

≥ val(P ).

This ensures

v(y)− φ(λ, y) + r′σ(y) ≥ v(0), ∀y ∈ τB.
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Together with the boundedness of L(·, λ, r), we obtain that λ
is a generalized augmented Lagrange multiplier by Theorem
3.

Corollary 2. For λ ∈ Y ∗, suppose that there exist τ > 0
and d(λ) ≥ 0 such that |φ(λ, y)| ≤ d(λ)σ(y) for any y ∈ Y .
Then λ is a generalized augmented Lagrange multiplier of
(P ) for some r > r(λ) if and only if the penalty function
F (x, r) is exact.

Proof: The proof is similar to that of Theorem 7 by just
replacing τB by Y .

Theorem 8. Suppose that λ ∈ Y ∗ is a generalized augment-
ed Lagrange multiplier of (P). Choose a sequence {xn} ⊂ Q
satisfying

L(xn, λ, rn) ≤ inf
x∈Q

L(x, λ, rn) + εn, ∀n = 1, 2, . . . , (31)

where rn → ∞ and εn → 0 as n → ∞. Then any
accumulate point of {xn} is a global optional solution of
(P ).

Proof: According to the definition of L(xn, λ, rn), there
exists {yn} such that

f(xn) + δK(G(xn) + yn)− φ(λ, yn) + rnσ(yn)

≤ L(xn, λ, rn) + εn, ∀n = 1, 2, . . . .

Since λ is a generalized augmented Lagrangian multi-
plier, then inf

x∈Q
L(x, λ, rn) = val(P ) as rn ≥ r(λ). So

L(xn, λ, rn) ≤ val(P ) + εn by (31). Hence

val(P ) = inf
x∈Q

L(x, λ, r(λ))

≤f(xn) + δK(G(xn) + yn)− φ(λ, yn)

+ r(λ)σ(yn)

=f(xn) + δK(G(xn) + yn)− φ(λ, yn)

+ rnσ(yn) + (r(λ)− rn)σ(yn)

≤L(xn, λ, rn) + εn + (r(λ)− rn)σ(yn)

≤val(P ) + 2εn + (r(λ)− rn)σ(yn),

(32)

implying
0 ≤ (rn − r(λ))σ(yn) ≤ 2εn.

Thus (rn − r(λ))σ(yn) → 0 and yn → 0 due to the valley
property of σ. Using this fact to the second step in (32) leads
to

G(x∗) ∈ K and f(x∗) = val(P ).

So x∗ is a global optimal solution.
For a given ε ≥ 0, let us define

E1(ε) := {x ∈ Q|dist(G(x),K) ≤ ε}

and
E2(ε) := {x ∈ Q|f(x) ≤ v(0) + ε}.

Theorem 9. Assume that λ̃ satisfies L(·, λ̃, r) is bounded
from below and the set W (λ̃, r) := {x ∈ Q|L(x, λ̃, r) ≤
v(0)} is bounded for some r > 0. If for each x̃ ∈ S, (x̃, λ̃)
is a local saddle point of L(x, λ, r), then λ̃ is a generalized
augmented Lagrange multiplier of (P ).

Proof: Pick x̃ ∈ S. By assumption, (x̃, λ̃) is a local
saddle point, i.e., there exist δ > 0 and r̃ > 0 such that

L(x̃, λ, r̃) ≤ L(x̃, λ̃, r̃) ≤ L(x, λ̃, r̃), (33)

for all x ∈ BX(x̃, δ)∩Q and λ ∈ Y . Taking into account of
the first inequality above and (8), we know

L(x̃, λ̃, r̃) = f(x̃). (34)

Because L is non-decreasing in r, for any r ≥ r̃

L(x̃, λ̃, r̃) ≤ L(x̃, λ̃, r) ≤ f(x̃), (35)

where the second inequality follows from (7) since G(x̃) ∈
K. Combining (34) and (35) yields

L(x̃, λ, r) ≤ f(x̃) ≤ L(x̃, λ̃, r), ∀r ≥ r̃, λ ∈ Y ∗. (36)

Next let us show that

L(x̃, λ̃, r) ≤ L(x, λ̃, r), ∀x ∈ Q\BX(x̃, δ), (37)

whenever r is sufficiently large. We prove it by contradiction.
If (37) is invalid, then there exist rk → +∞ and xk ∈
Q\BX(x̃, δ) such that

L(xk, λ̃, rk) < L(x̃, λ̃, rk) = f(x̃) = v(0), (38)

where the first equation follows from the fact that
L(x̃, λ̃, r) = f(x̃) for all r ≥ r̃ by (35) and (36).

According to (38), we know xk ∈ {x ∈ Q|L(x, λ̃, rk) <
v(0)} ⊂W (λ̃, r). Since W (λ̃, r) is bounded by assumption,
there exists a cluster point of sequence {xk}, say x.

For any x ∈ Q\E1(ε) we have dist(G(x),K) > ε. Hence
for any y ∈ K −G(x), we have

‖y‖ ≥ dist(G(x),K) > ε.

Since σ has valley property, then there exists η > 0 such
that σ(u) ≥ η for all ‖u‖ ≥ ε. Hence

L(x,λ̃, r′)

= inf
y∈K−G(x)

{f(x)− φ(λ̃, y) + r′σ(y)}

= inf
y∈K−G(x)

{f(x)− φ(λ̃, y) + rσ(y) + (r′ − r)σ(y)}

≥ inf
y∈K−G(x)

{f(x)− φ(λ̃, y) + rσ(y)}

+ (r′ − r) inf
y∈K−G(x)

σ(y)

≥L(x, λ̃, r) + (r′ − r)η.

Taking the limit as r′ →∞ yields

lim
r′→+∞

inf
x∈Q\E1(ε)

L(x, λ̃, r)

≥ inf
x∈Q

L(x, λ̃, r) + lim
r′→+∞

(r′ − r)η

= +∞.

Now we show that W (λ̃, r) ⊂ E1(ε) as r sufficiently
large. If not there must exist r′k → +∞ and xk ∈ Q satisfy
xk ∈W (λ̃, r′k) while xk /∈ E1(ε). So by replacing r′ by rk
in (39) we have

v(0) ≥ lim inf
k→+∞

L(xk, λ̃, rk)

≥ lim inf
k→+∞

inf
x∈Q\E1(ε0)

L(x, λ̃, rk)

= +∞,

which contradicts the finiteness of v(0). Thus W (λ̃, r) ⊆
E1(ε) as r > 0 sufficiently large.

Similarly we can show that W (λ̃, r) ⊆ E2(ε) as r
sufficiently large. In fact, if there exist rk →∞ and xk ∈ Q
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such that L(xk, λ̃, rk) ≤ v(0), but x /∈ E2(ε), then according
to (7) we can find ε0 > 0 and yk ∈ K −G(xk) such that

v(0) +
ε

2
≥ L(xk, λ̃, rk) +

ε

2
≥ f(xk)− φ(λ̃, yk) + rkσ(yk)

≥ L(xk, λ̃, r0) + (rk − r0)σ(yk).

(39)

Hence σ(yk) → 0 as k → 0 since rk → +∞. So yk → 0
by the valley-at-zero property of σ, which in turn implies
φ(λ̃, yk)→ 0. It follows from (39) that

v(0) +
ε

2
≥ f(xk)− φ(λ̃, yk).

Since yk → 0 as shown above, then f(xk) ≤ v(0) + ε. So
xk ∈ E2(ε). This proves W (λ̃, r) ⊆ E2(ε).

From the above discussion, we know that

W (λ, r) ⊆ E1(ε) ∩ E2(ε).

So x ∈ E1(ε) ∩ E2(ε). By the arbitrariness of ε > 0, we
have x ∈ E1(0) ∩ E2(0), implying x ∈ S. Hence (x̄, λ̃) is
also a local saddle point of L(x, λ, r) for some r > 0, i.e.,
there exists δ > 0 such that

L(x, λ, r) ≤ L(x, λ̃, r) ≤ L(x, λ̃, r), (40)

for all x ∈ BX(x, δ) ∩Q and λ ∈ Y ∗. By Lemma 1

L(x, λ̃, r) = f(x) = val(P ). (41)

Since xk ∈ BX(x̃, δ) and rk ≥ r for k large enough, by (40)
and (41)

f(x̃) = f(x) = L(x, λ̃, r) ≤ L(xk, λ̃, rk),

which contradicts (38). So (37) holds. Putting (33), (36)
and (37) together shows that (x̃, λ̃) is a global saddle
point of L(x, λ, r) for some sufficiently large r. Recalling
to Theorem 2 obtains that λ̃ is a generalized augmented
Lagrange multiplier of (P ).
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