
 

 

  

Abstract— This study considers the performance of three 

object tracking algorithms, namely Circulant Structure of 

Tracking-by-Detection with Kernels (CSK), Distribution Fields 

for Tracking (DFT), and Locally Orderless Tracking (LOT). 

These methods are used to track containers in five video 

recordings of container loading and unloading. At each video 

frame change, the three methods are implemented to detect 

and track moving containers. The comparison is aimed to 

evaluate the tracking performances of the three methods for 

this instance by means of seven performance indexes, i.e., 

Frame per Second (FPS), Sample Accuracy, Average IoU, 

Average IoG, Object Tracking Accuracy (OTA), Precision, and 

Recall. The experimental results are presented in terms of the 

average accuracy, IoU, IoG, OTA, Precision, and Recall of the 

sample. Based on the results, tracking methods using DFT are 

recommended over those using CSK or LOT, even though its 

average frame rate is slower compared with CSK. 

Optimization is applied to each method by using simulated 

annealing to find their optimal parameters. The results show 

that DFT and LOT perform best, while CSK is not able to 

track the containers. DFT especially yields better performance 

on four of the videos. 

 

Index Terms—CSK, DFT, LOT, object tracking, video 

tracking, simulated annealing. 

I.  INTRODUCTION 

HE container unloading system is an important element 

of goods transportation systems based on the sea lane. It 

maintains the quality of the distribution of goods, so they are 
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dispatched on time to the next party. However, the loading 

and unloading process can be compromised when the 

control system does not operate accurately, precisely, and 

smoothly. This can result in the quality of goods decreasing 

or even damage to goods when they experience a strong 

enough shock. In addition, the distribution will be delayed, 

which will be detrimental to every party involved, from 

distribution chain members to end consumers. Increasing 

global trade adds to the urgency of this problem. Cargo 

transportation increases by six percent every year. 

Accordingly, container traffic also rises every year. For 

example, at Klaipeda port, container traffic increased by 11 

percent in 2014 [1].  

In manual loading and unloading of containers, various 

problems can be encountered due to lack of experience of 

the crane operator. For example, incorrect speed can cause 

the load to be damaged and threaten the safety of workers 

and equipment. Errors due to oscillations can hinder the 

process of changing direction [2]-[4]. As a result, ships have 

to stay longer in the port, resulting in higher container 

transportation costs. To make container transportation safer 

and faster, and to reduce transportation costs, container 

loading-unloading must be improved [1]. 

One way out of this problem is to implement a control 

system with sensors that provides accurate container 

monitoring and tracking. According to Yoshikawa et al. [5], 

the accelerometer, a commonly used position detector to 

overcome oscillations, is insufficiently accurate because it 

produces an error of 20 to 30 mm. Using a 2-dimensional 

PSD camera and an LED light produces an error of 10 mm. 

A position detector using a 2-dimensional CCD camera and 

laser light yields 4 mm accuracy, but its accuracy is reduced 

due to interference from sunlight and rain [5]. 

Several object tracking methods for designing container 

motion monitoring have been developed, for example CSK 

[6], DFT [7], and LOT [8]. Artificial intelligence methods 

have been applied, i.e., improved mean shift [9]-[12], fuzzy 

logic system [13]-[18], deep learning [19]-[25], and neural 

network [26]. The present study focused on tracking 

container movement by means of the CSK, DFT, and LOT 

techniques. The container to be tracked was a standard 

container used in ports, with dimensions 5.9 m   2.34 m   

2.38 m. In this study, video images of containers were used, 

recorded during the daytime as well as the nighttime, with 

the container far removed as well as close by. This was done 

to determine the performance of the models under each of 

these conditions, which is the actual state of container 
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implementation in ports. This study further investigated 

each method by parameter variation and optimization based 

on a simulated annealing algorithm. 

II.   CIRCULANT STRUCTURE KERNELS (CSK) OF TRACKING-

BY-DETECTION 

This section discusses the CSK technique from [6]. In 

this method, phase correlation is used as a sequential 

detector to track containers. First, classifier training is 

carried out by sampling the window in the position 

considered as the target location. A bounding box is applied 

to this first frame. The Fourier domain is used to estimate 

the classifier response in all locations. Then, the position 

with the best response is selected. This simple tracking and 

detection process are a strength of CSK because the 

computation process is very fast. First, the tracking process 

creates a window. Then, the cosine window is applied to 

reduce the discontinuity [27]: 

 

( ) ( / ) ( / ), ,raw

ij ijx x 0.5 sin i n sin j n i j 0,...,n - 1 = −  =   

( ) ( )( )
( )

2 2
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mn

  − − + −
 

=  =
 
 
 

 
    (1) 

where 
rawx , x  and n  are the original image, the converted 

image, and the image size n n , respectively. y ,  , and 

m  are the classifier output, the spatial bandwidth parameter 

and the target size m n , respectively. ( , )i j  and 
' '( , )i j  

are the target location and the predicted location, 

respectively. Fourier transforms on overlapping windows in 

two neighboring frames are applied to calculate the 

classifier output, which is defined as: 

1( ( )y F F k−= ʘ ( ))F                 (2) 

where ʘ, F and 
1F −

 are the element-wise product, 

Fourier transform and its inverse, respectively. For each 

image x , in the form of an 1n  vector, its samples are 

expressed as [27]: 

( , ), 0,...., 1i
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(3) 

where z ,  , ik  and 
iP  are the object window, the kernel 

function, the elements of k , and the permutation matrix, 

respectively. The permutation matrix cyclically moves the 

image vector x  by one element. The kernel used is a 

Gaussian kernel, as expressed in Eq. (3). The parameter   

is trained as in Eq. (4), where   is a constant given by: 

1[ ( ) / ( ( ) )]F F y F k −= +  

( )1f p   = − +  
    (4) 

The first frame is used to compute the model  . To the 

next alpha frames ( f ), interpolation ( ) is applied [27] 

by using the alpha values before p  and the new alpha  . 

The CSK method provides a closed-form solution for 

calculating various kernels in all image locations in an 

efficient way that fully utilizes the structure of the problem. 

The formula is precise and easy to calculate. In summary, 

the description of the CSK algorithm for video object 

tracking is expressed in the algorithm below and Fig. 1 [6]. 

 

Algorithm 1 CSK 

 

Input: Image from the frame of video  
( )nI  

Output: Response y  in the form of a Gaussian kernel 

1. Extract a window using the input image by (1) 

2. Assign a label to each sample 

3. Calculate ik  and  using (3) and (4) 

4. Determine the response ( y ) based on Fourier 

transform (2) 

5. Use (4) to train a new model (  and x ) 

 

 

 
Fig. 1. CSK flowchart. 
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III. DISTRIBUTION FIELDS FOR TRACKING (DFT) 

Visually following common objects generally assumes 

that a gradient descent in the alignment function will 

achieve the global optimum. The general procedure for 

achieving the criteria of the objective function is to blur the 

image. However, the blurred image will distort the 

information in the image, which could cause the target to 

become undetectable. One method to overcome this side 

effect is to construct an image descriptor using a distribution 

field (DF) representation, which allows cleaning the 

objective function without damaging any information 

concerning pixel values [7].  

The Distribution Fields Tracking (DFT) method 

investigated in [7] conserves the object’s spatial structure by 

creating a distribution of each pixel. A distribution field has 

(2 )N+ dimensions. The width and height are the first two 

dimensions. The other N  dimensions are the feature space.  

If the image is in greyscale, then it has 3D feature spaces 

with size  m n b   where m , n  and b  are the width, 

height, and intensity of the grey color, respectively. If the 

image has a higher dimensional feature, then it also has a 

higher DF. If the image is in RGB color, then the image will 

have five DF dimensions, i.e., the width, height, and color 

intensity for red, green, and blue of each pixel. Every 

element of the matrix is the probability of a pixel taking its 

attribute values. This creates a probability distribution as 

defined by Eq. (5) [28]: 

 

1 ( , )
( , , )

0

if I i j k
df i j k

otherwise

==
= 


`            (5) 

 

where i  and j  are the object location expressed by the row 

and column index, and k  denotes the pixel values. 

Furthermore, k  gives the sign to the k -th layer of the DFs. 

In each DF, the total of the elements in each column is 1, 

where each pixel creates a probability distribution. 

Subsequent to the acquired initial DFs, both the image 

and the feature spaces will enter a smoothing process. In Eq. 

(6), a 2D Gaussian filter is applied to do convolution on 

each layer of the 3D DFs [28]. 

 

( ) ( )*s sdf k df k h=                 (6) 

 

where k , sh , and * are the index of the k -th layer of the 

DFs,  a 2D Gaussian kernel with standard deviation s , and 

the convolution operator, respectively. For a grayscale 

image, a 1D Gaussian filter is applied in Eq. (7) to do 

convolution on the 3 dimensions of the DFs [28]. 

 

(i, j) (i, j)*ss s fdf df h= ,              (7) 

 

where the 1D Gaussian kernel with standard deviation 
f  is 

denoted by 
fh . In order to integrate the total of each 

column of the DFs to 1, uniform distributions fill up the 

missing information outside the boundaries [7].  

 

 

 
Fig. 2. DFT flowchart. 

 

A hierarchical approach is applied to improve performance. 

Small sets of DFs are used to represent the target, where 

each is DF constructed by applying ever-increasing 

parameter values that govern the size of the spatial blur. 

These DFs contain information on various frequencies. In 

each frame, a coarse-to-fine approach is used. The most 

refined DF is utilized to start searching until it accomplishes 

a local minimum. This position then becomes the beginning 

of searching in the second DF. The DFT algorithm for video 

object tracking is briefly stated in Algorithm 2. Here, sh is a 

2D Gaussian filter built with s , while 
fh is built with 

f . 

A brief description of the DFT algorithm is given in the 

flowchart in Fig. 2. 

 

Algorithm 2 DFT 

 

Input: V  = video sequence 

 

• I = patch comprising target in frame 1 

• s = spatial smoothing parameter set 

• 
f = brightness smoothing parameter 
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• b  = brightness bin number (b = 16) 

•  = mixing parameter (   = 0.95) 

Output: ( , ) fx y {target positions at each frame f  in V } 

1: Initialization of 
( )( )* * , 1,.. | |i

model s i f sd explode I h h i =   

2: Initialization of target location ( , )x y  to center of patch I 

3: for f = 2 | |V→  do 

4:  for I =1 | |s→  do 

5:   
( )( )* *i

f s i fd explode I h h=  

6:   
( , )

( ', ') argmin ( ( , ), )i i

1 f model
x y

x y L d x y d=  

7:   ( , ) ( ', ')x y x y=  

8:  end for 

9:  (1 ) ( , )model model fd d d x y = + −  

10: end for 
 
 

IV. LOCALLY ORDERLESS TRACKING (LOT) 

The LOT technique was first introduced in [8]. LOT is a 

method for tracking and detecting algorithms that calculate 

the number of local interferences on an object. The tracker 

can focus on a deformable object directly without prior 

assumptions. This provides a probability model of the 

object’s movements over time, using the earth mover’s 

distance with two parameters to organize pixels and color 

shifting. These parameters are adjusted during tracking. 

LOT operates Locally Orderless Matching (LOM) in 

order to the track object. LOT applies the Bayesian method 

with particle filtering (PF), where the probability of a 

particular particle coming from the object being tracked is 

concluded using LOM. Algorithm 3 shows how it works. 

The probabilistic noise for one pixel ( | , )rP p q   needs 

to be defined first before defining the probability between 

patches ( | , )rP P Q  . The standard distance of EMD is 

calculated by ( , ) ( | , )d p q log p q= −  . Then, by 

resolving the EMD problem, ( | , )rP P Q   can be 

calculated. 

Super pixels are used instead of raw pixels to reduce the 

burden of computation in calculating EMD. Super pixels can 

be obtained using Region of Interest (ROI). Super pixels 

generate signatures that are a representation of the target and 

candidate patches. There are M  clusters in a signature, 

whose locations, i.e., mass geometric center and average 

appearance, give a representation of each [8]. 

The target’s state at each frame is acquired using PF. For 

every instance of N  particles, a signature is built. Then,  

between each of the signatures, 1{ }N

k kP = , EMD is computed, 

as well as the target signature, 0Q , with standard distances. 

Then, the weights can be calculated using the EMD scores 

 
1

N

k k
EMD

=
 in the formula 

. kEMD

k e
 −

= . The weighted 

sum of all particles is then known as the new target state [8]. 

 

 
 

Fig. 3. LOT flowchart. 

 

Using the flow concerning the final candidate signature and 

the target signature, 0Q , the noise 

distribution parameters ML  are calculated, which is 

regulated by Gaussian noise model  

 ,prior priorPrior A L
  =  and a moving average (MA) 

parameter ( MA ). Each element of the Gaussian noise 

model has weight { , }prior prior
LA

Priorw w w
 

= . Then the final 

parameters n can be computed with [8]. A brief 

description of the LOT algorithm is given in the flowchart in 

Fig. 3. 
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              (8) 

 

Algorithm 3 LOT 

 

Input: Frame 
( )nI , target signature 0

0 1{ , w } ,QMq

i i iQ q ==  

noise parameters 
( 1)n− , particle states 

( 1)

1{ }n N

i iX +

=
 

1. Partition ROI in  
( )nI  into super pixels SPI  

2. For each particle 
( )n

kX  do: 

(a) Form signature 
1{ , } using 

k
Pk

Mk p

k i i i SPP p w I==  

(b) Compute standard distances using: 

  
( 1){ } ( , ) ( | , )k k n

k ij i j i jd d p q log p q −= = −   

(c) Calculate 0( , , )k k kEMD EMD P Q d  

(d) Particle weight calculation
. kEMD

k e
 −

=  

3. Weight normalization s.t. 
1

N

ii


=  

4.  Compute new target position 
( )

( )

1

nNn

Target ii i
X X

=
=   

5. Form a new target signature TP , then calculate EMD 

flow , 0( , , )i j T Tf EMD P Q d  

6. Update parameters 
( )n   according to (8)  

7. Draw particles 
( 1)

i 1{ }n N

iX +

=  

 

V.   SIMULATED ANNEALING 

Simulated annealing is a non-linear optimization method 

inspired by a metallurgical process called annealing. 

Annealing is the process of cooling and hardening hot metal, 

which is initially liquid until it reaches a solid state. 

Simulated annealing begins with the creation of test points 

obtained randomly based on a probability distribution that 

depends on the current temperature [33]. If the latest point 

has a better cost function, then it will become the next point. 

However, if the latest point of the cost function is worse 

than the previous point, then that point will be rejected 

unless it accomplishes the acceptance function as stated in 

Eq. (9). 

 

1
(Accept )

1 exp
max( )

cP S

T

=
 

+  
 

,         (9) 

where   is the difference between the new and the previous 

cost functions, and T is the current temperature as a 

candidate for the next point. A lower temperature value 

indicates a smaller probability. The algorithm will 

systematically decrease the temperature as the iteration 

increases and at the same time save the point that has the 

best cost function. The temperature of the next iteration is 

calculated with Eq. (10). 0T  is the initial temperature and k  

is the annealing parameter [33].  

 

0 0.95kT T=                   (10) 

VI.   PROPOSED METHODOLOGY  

This study compared three methods, i.e. CSK, DFT, and 

LOT, to assess their ability to track moving objects in video 

recordings. The focused object of tracking is the movement 

and orientation of containers that are in the video 

recordings. Containers in video recordings sometimes have 

different colors and orientations while moving. We used 

different and more complex performances than only the 

spatio-temporal context for contrasted object tracking [29].  

The process was divided into three stages. The first stage 

was conducted by applying the default parameters of the 

three methods to track containers in order to compare the 

tracking performance of the default parameters. The default 

parameters can be considered to describe the general 

capabilities of the detector. The second stage was conducted 

to investigate the effect of changing the parameters of each 

method on the performance of the tracker. Parameter 

variation can be done as a reference for further research for 

the development of tracking algorithms specifically in the 

field of container loading and unloading automation. The 

best tracking method was studied further to identify the 

optimum parameters of the methods in improving container 

tracking accuracy. The third stage was the optimization of 

CSK, DFT and LOT using a simulated annealing algorithm. 

In the first stage, video recordings of containers with 

different orientations and distances were used for container 

tracking. To achieve the objectives of this study, five video 

recordings were collected with containers under different 

lighting conditions and shooting angles. From each video, 

four frames were sampled with their respective detection 

results from the three methods used. Each detection result 

was calculated to assess the accuracy of its capability in 

tracking containers, so that an accuracy value was obtained 

for each method on four frames from each video. In 

addition, to measure the computational speed of each 

method, the frame rate was calculated in frames per second 

(FPS), i.e., the speed of the object tracking process across all 

video frames. The frame rate represents the speed at which 

sequential images turn up on the screen. The proposed 

methodology in this paper is shown in Fig. 4 in the form of a 

flowchart. 

Intersection over Union (IoU) was performed on each 

sample result. An object is called detected if the value of 

intersection over the union in the sample exceeds a 

predefined threshold. The threshold is usually selected as 

0.5, or 50%.  Eq. (11) shows how to calculate the IoU [30]: 
 

area( )

area( )

p gt

p gt

B B
IoU

B B


=


                  (11) 

where 
pB  and 

gtB  are the predicted and the ground truth 

bounding box, respectively. The comparison of the 

intersection area to the ground truth area is a parameter that 

can be used to measure how well an object is detected. It is 

defined as Intersection over Ground Truth (IoG), which can 

be calculated by using  Eq. (12). 
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Fig. 4. Tracking process flowchart.  

 

area( )

area( )

p gt

gt

B B
IoG

B


=                  (12) 

Object Tracking Accuracy (OTA) is a method to evaluate 

the tracking performance of a single object detector. The 

numbers of false positives ( i

fpn ) and false negatives ( i

fnn )  

are used to compute the tracking performance.  
 

)
1

i i

fn fpi

i

i

(n n
OTA

g

+
= −




,                   (13) 

where 
ig  is the number of the ground truth bounding box 

in frame i. OTA indicates to what extent the result overlaps 

with the true bounding box [31]. An OTA value of 1 

indicates that the tracker has successfully detected the object 

and 0 indicates failure.   

Precision is the ability of the model to recognize only 

relevant objects. This is the positive predictive percentage, 

which is given by the following equation: 

 

Precision
all detections

TP TP

TP FP
= =

+
           (14) 

 

Recall is the ability of a model to recognize all the basic 

truths. This is the percentage of true positive detection of all 

ground truths. 

 

Recall
all ground truths

TP TP

TP FN
= =

+
              (15) 

 

 

where TP (true positive) is the number of times the number 

of detections is correct, FP (false positive) is when the 

detection is false, and FN (false negative) is when the 

ground truth is not detected [32]. 

In the second stage, the same five videos were used as 

data to track containers. However, variations of the 

parameters of the CSK, DFT, and LOT methods were 

applied. Six variations of the parameters were utilized for 

each method. The method with the best accuracy was tested 

further to obtain the parameter values that will provide the 

highest accuracy. In CSK, the regularization parameter  , 

as in Eq. (4), was varied in the range 0.00001 to 1. In DFT, 

the parameter  , see line 9 in Algorithm 2, was varied in 

the range 0.65 to 1. In LOT, the parameter  , see line 2d in 

Algorithm 3, was varied in the range 0.01 to 100. The 

details of the applied parameter variations are given in 

Table I. 
 

TABLE I 
CONTAINER TRACKING PARAMETER VARIATION 

CSK (  ) DFT (  ) LOT (  ) 

0.00001 0.65 0.01 

0.0001 0.75 0.1 

0.001 0.85 1 

0.01 0.95 10 

0.1 0.98 50 

1 1 100 

   

VII. RESULTS AND DISCUSSIONS 

CSK, DFT, and LOT were applied and evaluated on five 

videos recorded during the process of moving containers in 

a port [34]-[37]. The three methods were used to track 

containers in every frame of the five videos. The results of 

the application of CSK, DFT, and LOT techniques on four 

frames taken form five videos each to evaluate the accuracy 

of the methods. The results of tracking the five recorded 

video containers are shown in Figs. 5 to 9. Table 2 and Fig. 

10 provide a summary of the tracking results.  

Based on the results of the test with Video 1, shown in 

Fig. 5, the CSK and LOT methods did not succeed in 

detecting the containers. Meanwhile, the DFT method 

managed to track 3 out of 4 samples, or 75%. DFT had an 

IoU of 63.7% and an IoG of 70.2%, both exceeding the 50% 

threshold. It had an OTA of 0.75. The tracking speed for the 

CSK method was quite high at 17.5041 fps in comparison 

with DFT at 0.37314 fps and LOT at 0.11785 fps. 

Based on the results of the test with Video 2, Fig. 6 shows 

that the CSK method was unable to detect the containers. 

The DFT method was successful in tracking four out of four 

samples, or 100%, while the LOT method managed to track 

two out of four samples, or 50%. DFT had IoU 78.6%, IoG 

97.7%, and OTA 1 higher than CSK and LOT. In this case, 

LOT had an IoU of 65.0% and an IoG of 80.9%, both 

exceeding the threshold. On the other hand, CSK had an IoU 

of 0% and an IoG of 0%. The tracking speed of CSK was 

the highest, 56.3764 fps, but this method did not detect the 

container correctly. The speed of the two other methods was 

0.4816 fps for DFT and 0.16312 fps for LOT. 
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Fig. 5. Video 1 – container tracking with CSK, DFT and LOT (from the top), frames 210, 420, 630, 838 taken from [34]. 

    

    

    
Fig. 6. Video 2 – container tracking with CSK, DFT and LOT (from the top), frames 107, 214, 321, 427 taken from [35]. 

 

    

    

    
Fig. 7. Video 3 – container tracking with CSK, DFT, and LOT (from the top), frames 324, 648, 972, 1294 taken from [36]. 
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Fig. 8. Video 4 – container tracking with CSK, DFT and LOT (from the top), frames 63, 126, 189, 250 taken from [37]. 

    

    

    
 

Fig. 9. Video 5 – container tracking with CSK, DFT and LOT (from the top), frames 39, 78, 117, 154 taken from [37]. 

 

 
 

TABLE II 

RESULTS OF OBJECT TRACKING 

Video 
Number 

of 
frames 

CSK DFT LOT 

a b c d e f g a b c d e F g a b c d e f g 

1 838 17.5041 0 0.31 0.37 0 0 0 0.37314 75 63.7 70.2 0.75 1 1 0.11785 0 0 0 0 0 0 

2 427 56.3764 0 0 0 0 0 0 0.48160 100 78.6 97.7 1 1 1 0.16312 50 65.0 80.9 1 1 1 

3 1294 133.2383 0 0 0 0 0 0 0.42658 100 87.7 100 1 1 1 0.22524 50 39.7 39.8 0.5 0.5 0.5 

4 250 38.0220 0 0 0 0 0 0 0.31667 100 78.6 89.4 1 1 1 0.10255 0 17.3 24.6 0 0 0 

5 154 62.9757 0 0 0 0 0 0 0.60777 100 75.7 96.1 1 1 1 0.15882 25 50.9 61.3 0.25 0.25 0.25 

Average 61.6233 0 0.1 0.1 0 0 0 0.44120 95 76.9 90.7 0.95 1 1 0.15350 25 34.58 41.32 0.35 0.35 0.35 

 

where: 

a: Frames per second (FPS)    c: Average IoU (%)   e: OTA    g: Recall 

b: Sample Accuracy (%)    d: Average IoG (%)   f: Precision 
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Fig. 10. Comparison of object tracking results. 

 

 

b. Sample accuracy a. Frame rate per second 

c. Average IoU d. Average IoG 

e. OTA f. Precision 

g. Recall 
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Fig. 11. Comparison of average tracking performances. 

 

Fig. 7 shows the outcomes for the test with Video 3. The 

CSK method was not able to detect the containers. The DFT 

method was successful in tracking four out of four samples, 

or 100%. Meanwhile, the LOT method managed to track 

two out of four samples, or 50%. DFT had IoU 87.7%, IoG 

100%, and OTA 1 higher than CSK and LOT. In this case, 

LOT could not detect the containers since IoU 39.7% and 

IoG 39.8% did not exceed the threshold. CSK had IoU 0%, 

IoG 0% and OTA 0. The tracking speed of the CSK method 

was the fastest at 133.2383 fps. The other methods were 

slower (DFT 0.42658 fps and LOT 0.22524 fps) but were 

better in terms of detection accuracy. 

The results for the test with Video 4 can be seen in Fig. 8. 

The CSK and LOT methods were not successful in detecting 

and tracking the containers. The DFT method was 

successful in tracking four out of four samples, or 100%. 

DFT had IoU 78.6%, IoG 89.4%, and OTA 1 higher than 

CSK and LOT. LOT could not detect the containers, with 

IoU at 17.3%, IoG at 24.6%, and OTA 0 not exceeding the 

threshold. CSK had IoU 0%, IoG 0% and OTA 0. CSK’s 

tracking speed was again the highest at 38.022 fps, followed 

by 0.31667 fps for DFT and 0.10255 fps for LOT. 

The test results for Video 5 can be seen in Fig. 9. The 

CSK method was not successful in detecting and tracking 

the containers. The DFT method was successful in tracking 

four out of four samples, or 100%, while the LOT method 

managed to track one out of four samples, or 25%. DFT had 

IoU 75.7%, IoG 96.1%, and OTA 0 higher than CSK and 

LOT. LOT could detect the containers in this case, because 

IoU was 50.9% and IoG was 61.3%, exceeding the 

threshold. CSK had 0% IoU and 0% IoG. The CSK method 

had the fastest container tracking speed at 62.9757 fps, 

followed by DFT at 0.60777 fps and LOT at 0.15882 fps.  

Fig. 10 presents the accuracy of tracking in terms of seven 

performance measures. Fig. 11 summarizes the tracking 

accuracy of each performance by means of the average 

tracking accuracy of each measure. The results show that 

DFT had superior performance compared with CSK and 

LOT on six different accuracy performance measures. 

However, the average frame rate performance of DFT was 

lower than that of CSK and slightly higher than that of LOT. 

In the second stage, the parameters values in CSK, DFT, 

and LOT were varied, as shown in Table 1. The 

performance of each container tracking method after 

parameter variation can be seen in Fig. 12. The results of 

varying parameter   in the CSK method did not produce a 

significant change in tracking accuracy, as it was very low 

when compared to LOT and DFT. The highest average IoU 

and IoG values were obtained at a value of 0.014 (see Fig. 

12a). This means that the prediction of the container 

bounding box only covered a very small area of the ground 

truth and sometimes also gave an IoU of 0, which means 

that the bounding box did not intersect with the ground 

truth. On the basis of the capability to produce true 

positives, none of the containers was successfully tracked 

based on the OTA value, which was 0 at each variation of 

the   value. Therefore, CSK is considered unable to track 

containers properly. 

LOT produced better performance than CSK. LOT 

successfully detected the containers in one or two frames of 

the five videos. This can be seen from the OTA value, which 

ranged from 0.30 to 0.40 (see Fig. 12c). In addition, the IoG 

values ranged from 0.45 to 0.55 and the IoU values ranged 

from 0.35 to 0.45, which indicates that LOT succeeded in 

detecting a container but the container tracking bounding 

box did not completely coincide with the ground truth; about 

0.5 of the ground truth did not fit into the container 

bounding box predictions. Tests with various values for 

parameter   did not show a significant increase in tracking 

accuracy, as indicated by the IoU, IoG, and AOT values, 

which were in the range of 0.30 to 0.55. Parameter value   

= 100 gave a slight increase in IoU and IoG, but it was not 

significant. This tracking performance is too low to be 

considered good, but it did yield the highest IoU and IoG 

values. This means that testing variation of parameter   at 

higher values to improve tracking accuracy could be an 

interesting topic for a future study. As its accuracy was not 

too high, LOT was not tested further in this study. 

Variation of the   value in DFT led to better 

performance than CSK and LOT. This was indicated by 

OTA values in the range of 0.75 to 1, IoU values in the 

range of 0.63 to 0.72, and IoG values in the range of 0.77 to 

0.87 (see Fig. 12b). An OTA value of 1 indicates that in 

each test frame, DFT successfully detected the container. 

The application of variations of the value showed a decrease 

in IoU, IoG, and OTA when the value got closer to 1. The 

value of   regulates the proportion of combinations 

between the initial model and the new observation results. A 

value of   = 1 means that DFT only uses the initial model, 

while a value of   = 0.98 means that DFT only uses 0.02 

information from new observations. This causes a decrease 

in DFT performance when the value of   approaches 1. 

This confirms the importance of information from the 

latest observations in each frame. The default parameter   

= 0.95 was less than optimal, as shown in the graph, as there 

is a decrease in OTA. Therefore, to find the optimal 

parameter value of  , it is necessary to test it over a wider 

range. In addition, this method can be used to assess how the 

initial model and new observations contribute to tracker 

performance. Thus, the value of   was further varied in the 

range from 0 to 1. The results are shown in Fig. 12d. The 

OTA, IoU and IoG values did not experience a significant 

decrease when   was close to 0. This shows that new 

observational data play a very important role in forming 

accurate tracking. Parameter variation led to obtaining the 

optimal parameter for container tracking. The value of   = 

0.65 gave higher IoU and IoG values than the others.  
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Fig. 12. Performance comparison of varied container tracker parameter values (CSK, DFT and LOT). 

 

 

 
 

Fig 13. Optimization of CSK, DFT and LOT using simulated annealing. 

 

 

 
 

Fig 14. Comparison of CSK, DFT and LOT optimization using simulated 

annealing. 

 

 

a. CSK b. DFT 

c. LOT d. DFT (λ=0-1) 
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Fig. 15. Video 1 – container tracking with optimized CSK, DFT and LOT (from the top), frames 210, 420, 630, 838 taken from [34]. 

    

    

    
Fig. 16. Video 2 – container tracking with optimized CSK, DFT and LOT (from the top), frames 107, 214, 321, 427 taken from [35]. 

 

    

    

    
Fig. 17. Video 3 – container tracking with optimized CSK, DFT, and LOT (from the top), frames 324, 648, 972, 1294 taken from [35]. 
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Fig. 18. Video 4 – container tracking with optimized CSK, DFT and LOT (from the top), frames 63, 126, 189, 250 taken from [36]. 

    

    

    
Fig. 19. Video 5 – container tracking with optimized CSK, DFT and LOT (from the top), frames 39, 78, 117, 154 taken from [36]. 
 

 

TABLE III 

CSK OPTIMIZATION DETAIL 

Parameter Optimization 
range (min-

max) 

Default  Optimization Results 

 (1) 0-1 1/16  0.01407 

 (3) 0-1 0.2  0.70405 

 (4) 0-1 0.01  0.40183 

  (4) 0-1 0.075 0.90600 

IoU  0.05684 

   
TABLE IV 

DFT OPTIMIZATION DETAIL 

Parameter Optimization 

range (min-
max) 

Default  Optimization 

Results 

f
h (alg.2.1) 0-1 0.625 0.32581 

s
h (alg.2.1) 0-10 1 8.12897 

s
h (alg.2.5) 0-10 2 7.88552 

  (alg.2.9) 0-1 0.95 0.48185 

IoU  0.748052 

 
 

 

 

TABLE V 

LOT OPTIMIZATION DETAIL 

Parameter Optimization 
range (min-

max) 

Default  Optimization Results 

MA  (8) 0-1 0.3 0.036139 

priorA
 (8) 0-1 0.05 0.989002 

priorL
 (8) 0-1 0.1 0.967029 

prior
A

w


(8) 0-1 0.25 0.969137 

prior
L

w


(8) 0-1 0.25 0.015084 

IoU  0.730843 

 

Simulated annealing was applied to obtain optimal 

models for CSK, DFT, and LOT. First, simulated annealing 

was applied using the default value as optimization 

reference or initial temperature, and 50 iterations of 

searching for optimal parameters. Optimization was applied 

to Video 5 because it had the shortest duration so that the 

optimization computation took less time. The optimization 

objective value was IoU, which was calculated for four 

frames in Video 5. The optimization details of each method 
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along with the search parameter range are described in the 

following. 

The optimization results of the CSK, DFT, and LOT 

methods can be seen in Tables III to V and Figs. 13-19.  The 

range of parameter values was taken around the default 

value of the related parameters. Parameters whose default 

values were between 0 and 1 were given an optimal 

parameter search area in the range of 0 to 1. Parameters 

whose values were 1 or higher were assigned a search area 

in the range of 0 to 10. 

The optimization results from 0 to 50 iterations can be 

seen in Fig 13. The optimization results showed that CSK 

did not show a significant increase in IoU, but DFT and 

LOT did show an increase in IoU when optimized. LOT 

showed an increase from the default value of 0.56 to 0.71 

and DFT from 0.71 to 0.75. This shows that simulated 

annealing was successful in improving the container 

tracking performances of DFT and LOT. 

The optimal parameters obtained from optimization of 

container tracking on Video 5 were then tested on the other 

four videos. The results are shown in Fig. 14. CSK generally 

failed to track the containers with the default parameters. 

The optimized DFT showed better performance, except on 

Video 3, where the default tracking value was better. LOT 

optimization led to better tracking performance on three 

videos. The results with the default parameters were more 

accurate on Video 2 and Video 3. It can be concluded that 

apart from DFT providing more accurate tracking accuracy 

than CSK and LOT, the obtained optimal parameters also 

showed better accuracy and more stable performance than 

the default parameters. 

VII. CONCLUSION 

This paper discussed the influence of parameter variation of 

the CSK, DFT, and LOT techniques for container tracking 

using video images in the process of loading and unloading 

at the port. Based on the test results on five different videos 

(with object tracking capabilities measured in terms of IoU, 

IoG, OTA, precision, and recall), the DFT tracking approach 

is recommended as the best method compared to CSK and 

LOT, even though DFT has a lower average frame rate than 

CSK. Further study was done by testing the change of 

performance of the three methods when the parameter 

values were varied. CSK was unable to detect the containers 

and LOT did not show a significant improvement. Variation 

of parameter   gave better performance compared to the 

default value. Further optimization based on a metaheuristic 

approach by using simulated annealing was also done. The 

optimized DFT had better and more stable performance 

compared to the optimized CSK and LOT. 
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