# Hamming Index of the Product of Two Graphs 

Harshitha A, Swati Nayak, Sabitha D'Souza* and Pradeep G. Bhat


#### Abstract

Let $A(G)$ be the adjacency matrix of a graph $G$. Let $s\left(v_{i}\right)$ denote the row entries of $A(G)$ corresponding to the vertex $v_{i}$ of $G$. The Hamming distance between the strings $s\left(u_{i}\right)$ and $s\left(v_{i}\right)$ is the number of positions in which their elements differ. The sum of Hamming distance between all the pairs of vertices is the Hamming index of a graph. In this paper, we study the Hamming distance between the strings generated by the adjacency matrix of various products of complete bipartite and complete graph. We also compute the Hamming index generated by the adjacency matrix of these graph products.


Index Terms-Hamming index, Hamming distance, adjacency matrix, strings.

## I. Introduction

LET $\left(\mathbb{Z}_{2},+\right)$ be an additive group of integers modulo 2 , where $\mathbb{Z}_{2}=\{0,1\}$. For a positive integer $n$, $\left(\mathbb{Z}_{2}\right)^{n}=\left(\mathbb{Z}_{2}\right)\left(\mathbb{Z}_{2}\right) \ldots\left(\mathbb{Z}_{2}\right)$ ( $n$-factors). Each $s \in\left(\mathbb{Z}_{2}\right)^{n}$ is an $n$-tuple $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ with each $s_{i}$ is either 0 or 1 which is referred as a string. The number of $1^{\prime} s$ in each string is known as weight of that string. The Hamming distance between two strings $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ and $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ of equal length is the number of positions at which $s_{i} \neq t_{i}, 1 \leq i \leq n$, denoted by $H_{d}(s, t)$. For the vertices $u_{i}, v_{j}$ of a graph, $H_{d}\left(u_{i}, v_{j}\right)=H_{d}\left(s\left(u_{i}\right), s\left(v_{j}\right)\right)$. A graph $G$ is called a Hamming graph [1], [2], if each vertex $u_{i} \in V(G)$ can be labeled by a string $s\left(u_{i}\right)$ of fixed length such that $H_{d}\left(s\left(u_{i}\right), s\left(v_{j}\right)\right)=d_{G}\left(u_{i}, v_{j}\right), \forall u_{i}, v_{j} \in V(G)$, where $d_{G}\left(u_{i}, v_{j}\right)$ is the distance between the vertices $u_{i}$ and $v_{j}$ which is the number of edges in the shortest $u_{i}-v_{j}$ path.

Hamming weight analysis of bits has a significant role in information theory, coding theory and cryptography. The minimum Hamming distance is used as error detecting and error correcting codes. The Hamming distance is also used in biological systematic as a measure of genetic distance. For more information on Hamming graphs, one can refer [3], [4], [5]. Motivated by the work on Hamming graphs, in this paper, we study the Hamming index of the product of two graphs with respect to its adjacency matrix.
The paper is organized as follows. The authors present the preliminaries in section 2. The Hamming indices of different product graphs are evaluated in section 3 .

[^0]The research method used is document analysis to study the previous research. The work is developed from a qualitative descriptive approach with deductive reasoning.

## II. Preliminaries

Let $G$ be a simple graph. The degree of a vertex $u_{i} \in$ $V(G)$ denoted as $d e g_{G} u_{i}$ is the number of edges incident with $u_{i}$. We denote two vertices $u_{i}$ adjacent to $v_{j}$ by $u_{i} \sim v_{j}$ and $u_{i}$ not adjacent to $v_{j}$ by $u_{i} \nsim v_{j}$. Neighbors of a vertex $u_{i}$ are the vertices $v_{j}$ such that $u_{i} \sim v_{j}$. A common neighbor of two vertices $u_{i}, v_{j}$ is a vertex $w_{k}$ such that $w_{k} \sim u_{i}$ and $w_{k} \sim v_{j}$, denoted by $N\left(u_{i}, v_{j}: G\right)$ and a non-common neighbor of the vertices $u_{i}, v_{j}$ is a vertex $w_{k}$ such that $w_{k} \nsim$ $u_{i}$ and $w_{k} \nsim v_{j}$. The adjacency matrix $A(G)$ of a graph $G$ is a square matrix $A(G)$ of order $n$, whose elements are $a_{i j}$, where $a_{i j}$ is 1 if $v_{i} \sim v_{j}$ and is 0 if $v_{i} \nsim v_{j}$ in $G$.

Definition 1: [6] The Hamming index $H_{A}(G)$ of a graph $G$ of order $n$ is defined as

$$
H_{A}(G)=\sum_{1 \leq i<j \leq n} H_{d}\left(u_{i}, u_{j}\right)
$$

Example 1:


Figure 1. The Graph $G$.

Strings generated by $A(G)$ of graph $G$ in Figure II are $s\left(u_{1}\right)=01000, s\left(u_{2}\right)=10101, s\left(u_{3}\right)=01010, s\left(u_{4}\right)=$ 00101, $s\left(u_{5}\right)=01010$. Hamming index of $G$ is $H_{A}(G)=$ 28.

The graph products have been widely studied from different perspectives. These have applications in many branches like coding theory, network designs and chemical graph theory. Now we give definitions of various graph products. For more information on graph products, refer [7], [8], [9], [10].
The corona product $G \circ H$ of two graphs $G$ and $H$ is a graph obtained by taking one copy of $G$ and $|V(G)|$ copies of $H$ and joining $i^{\text {th }}$ vertex of $G$ to each vertex in $i^{\text {th }}$ copy of $H, i=1,2, \ldots, n$ [7].

The Cartesian, tensor, strong and symmetric product of the graphs $G$ and $H$ consist of $V(G) \times V(H)$ vertices.

In the Cartesian product $G \square H$, two vertices $\left(u_{r}, v_{k}\right)$, $\left(u_{s}, v_{l}\right)$ are adjacent if and only if either
(i) $u_{r}=u_{s}$ and $u_{k} v_{l} \in E(H)$ or
(ii) $u_{r} u_{s} \in E(G)$ and $u_{k}=v_{l}$.

In the tensor product $G \times H$, two vertices $\left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right)$ are adjacent if and only if $u_{r} \sim u_{s}$ and $v_{k} \sim v_{l}$ in $G$.

In the strong product $G \boxtimes H$, two vertices $\left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right)$ are adjacent if and only if
(i) $u_{r}=u_{s}$ and $v_{k} \sim v_{l}$ or
(ii) $v_{k}=v_{l}$ and $u_{r} \sim u_{s}$ or
(iii) $u_{r} \sim u_{s}$ and $v_{k} \sim v_{l}$ [8].

In the composition which is also called as lexicographic product $G[H]$, two vertices $\left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right)$ are adjacent if and only if
(i) $u_{r} \sim u_{s}$ or
(ii) $u_{r}=u_{s}$ and $v_{k} \sim v_{l}$ [11].

In the symmetric product $G \oplus H$, two vertices $\left(u_{r}, v_{k}\right)$, $\left(u_{s}, v_{l}\right)$ are adjacent if and only if either
(i) $u_{r} \sim u_{s}$ and $v_{k} \nsucc v_{l}$ or
(ii) $v_{k} \sim v_{l}$ and $u_{r} \nsim u_{s}$ [12].

The hierarchical product $G \sqcap H$ is the graph with vertices $\left(x_{1}, x_{2}\right), x_{1} \in V(G), x_{2} \in V(H)$ and edges $\left\{x_{1} x_{2}, y_{1} y_{2}\right\}$ where either
(i) $x_{1}=y_{1}$ and $x_{2} \sim y_{2}$ in $G_{2}$ or
(ii) $x_{2}=0$ and $x_{1} \sim y_{1}$ in $G_{1}$ [13].

Theorem 1: [14] If two vertices $v_{i}, v_{j}$ of a graph $G$ have $k$ common neighbors, then

$$
H_{d}\left(v_{i}, v_{j}: G\right)=\operatorname{deg}_{G} v_{i}+\operatorname{deg}_{G} v_{j}-2\left|N\left(v_{i}, v_{j}: G\right)\right|
$$

## III. Main results

We now find the Hamming index of corona product of two graphs $G_{1}$ and $G_{2}$.

Theorem 2: For two graphs $G_{1}\left(n_{1}, m_{1}\right)$ and $G_{2}\left(n_{2}, m_{2}\right)$,

$$
\begin{aligned}
H_{A}\left(G_{1} \circ G_{2}\right) & =H_{A}\left(G_{1}\right)+n_{1} H_{A}\left(G_{2}\right)+n_{1} n_{2}\left(2 n_{1} n_{2}\right. \\
& \left.+2 n_{1}-n_{2}-1\right)+2 n_{1} m_{2}\left(n_{1} n_{2}+n_{1}-n_{2}-2\right) \\
& +2 m_{1} n_{2}\left(n_{1}-2\right)
\end{aligned}
$$

Proof:


Figure 2. Corona product of the graphs $C_{4}$ and $P_{2}$.
Let $v_{1}, v_{2}, \ldots, v_{n_{1}} \in V\left(G_{1}\right)$ and $u_{1}, u_{2}, \ldots, u_{n_{2}} \in V\left(G_{2}\right)$. The Hamming index of $G_{1} \circ G_{2}$ is given by,

$$
\begin{align*}
H_{A}\left(G_{1} \circ G_{2}\right) & =\sum_{v_{i}, v_{j} \in V\left(G_{1}\right)} H_{d}\left(v_{i}, v_{j}\right) \\
& +\sum_{u_{i}, u_{j} \in V\left(G_{2}\right)} H_{d}\left(u_{i}, u_{j}\right) \\
& +\sum_{\substack{v_{i} \in V\left(G_{1}\right), u_{j} \in V\left(G_{2}\right)}} H_{d}\left(v_{i}, u_{j}\right) . \tag{1}
\end{align*}
$$

1) To determine $\sum_{v_{i}, v_{j} \in V\left(G_{1}\right)} H_{d}\left(v_{i}, v_{j}\right)$.

From Theorem 1, we have

$$
\begin{aligned}
H_{d}\left(v_{i}, v_{j}: G_{1} \circ G_{2}\right) & =\operatorname{deg}_{G_{1}} v_{i}+n_{2}+\operatorname{deg}_{G_{1}} v_{j}+n_{2} \\
& -2\left|N\left(v_{i}, v_{j}: G_{1}\right)\right| \\
& =H_{d}\left(v_{i}, v_{j}: G_{1}\right)+2 n_{2}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\sum_{v_{i}, v_{j} \in V\left(G_{1}\right)} H_{d}\left(v_{i}, v_{j}\right) & =\sum_{\substack{n_{1} \\
2 \\
\hline}}\left(H_{d}\left(v_{i}, v_{j}: G_{1}\right)+2 n_{2}\right) \\
& =H\left(G_{1}\right)+n_{1} n_{2}\left(n_{1}-1\right) \tag{2}
\end{align*}
$$

2) To determine $\sum_{u_{i}, u_{j} \in V\left(G_{2}\right)} H_{d}\left(u_{i}, u_{j}\right)$.

There are $n_{1}$ copies of $G_{2}$ in $G_{1} \circ G_{2}$ which is of the form $G_{2, i}, 1 \leq i \leq n_{1}$.
Case(i): Suppose both $u_{i}$ and $u_{j}$ belong to one of $V\left(G_{2, i}\right), 1 \leq i \leq n_{1}$.
Then,

$$
\begin{aligned}
H_{d}\left(u_{i}, u_{j}: G_{1} \circ G_{2}\right) & =\operatorname{deg}_{G_{2}} u_{i}+1+\operatorname{deg}_{G_{2}} u_{j}+1 \\
& -2\left(\left|N\left(u_{i}, u_{j}: G_{2}\right)\right|+1\right) \\
& =H_{d}\left(u_{i}, u_{j}: G_{2}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sum_{u_{i}, u_{j} \in V\left(G_{2, i}\right)} H_{d}\left(u_{i}, u_{j}\right) & =\sum_{\substack{n_{2} \\
2}} H_{d}\left(u_{i}, u_{j}: G_{2}\right) \\
& =H\left(G_{2}\right)
\end{aligned}
$$

Since there are $n_{1}$ copies of $G_{2}$,

$$
\sum_{u_{i}, u_{j} \in V\left(G_{2, i}\right)} H_{d}\left(u_{i}, u_{j}\right)=n_{1} H\left(G_{2}\right) .
$$

Case(ii): Suppose $u_{i} \in V\left(G_{2, i}\right)$ and $u_{j} \in V\left(G_{2, j}\right)$, $1 \leq i<j \leq n_{2}$.
Then,

$$
\begin{aligned}
H_{d}\left(u_{i}, u_{j}: G_{1} \circ G_{2}\right) & =\operatorname{deg}_{G_{2}} u_{i}+1+\operatorname{deg}_{G_{2}} u_{j} \\
& +1-2(0) \\
& =\operatorname{deg}_{G_{2}} u_{i}+\operatorname{deg}_{G_{2}} u_{j}+2
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{\substack{v_{i} \in V\left(G_{2, i}\right), v_{j} \in V\left(G_{2, j}\right)}} H_{d}\left(v_{i}, v_{j}\right) & =n_{2}\binom{n_{1}}{2} 4 m_{2}+\sum_{\substack{n_{1} \\
2}}^{2}-n_{1}\binom{n_{2}}{2} \\
& =2 n_{1} n_{2}\left(n_{1}-1\right) m_{2}+n_{1}^{2} n_{2}^{2} \\
& -n_{1} n_{2}^{2}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\sum_{u_{i}, u_{j} \in V\left(G_{2}\right)} H_{d}\left(u_{i}, u_{j}\right) & =n_{1} H\left(G_{2}\right) \\
& +2 n_{1} n_{2} m_{2}\left(n_{1}-1\right) \\
& +n_{1}^{2} n_{2}^{2}-n_{1} n_{2}^{2} \tag{3}
\end{align*}
$$

3) To determine $\sum_{\substack{v_{i} \in V\left(G_{1}\right), u_{j} \in V\left(G_{2}\right)}} H_{d}\left(v_{i}, u_{j}\right)$.

Case(i): Consider $v_{i} \in V\left(G_{1}\right)$ and $u_{j} \in V\left(G_{2, i}\right)$.

$$
\begin{aligned}
H_{d}\left(v_{i}, u_{j}: G_{1} \circ G_{2}\right) & =\operatorname{deg}_{G_{1}} v_{i}+n_{2}+\operatorname{deg}_{G_{2}} u_{j} \\
& +1-2\left(\operatorname{deg}_{G_{2}} u_{i}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sum_{\substack{v_{i} \in V\left(G_{1}\right), u_{j} \in V\left(G_{2, i}\right)}} H_{d}\left(v_{i}, u_{j}\right) & =\sum_{n_{1} n_{2}}\left(\operatorname{deg}_{G_{1}} v_{i}+\operatorname{deg}_{G_{2}} u_{j}\right. \\
& \left.+n_{2}+1\right)-2 \sum_{n_{1} n_{2}} \operatorname{deg}_{G_{2}} u_{j} .
\end{aligned}
$$

Case(ii): Consider $v_{i} \in V\left(G_{1}\right)$ and $u_{j} \in V\left(G_{2, j}\right)$ such that $v_{i} \sim v_{j}$ in $G_{1}$, where $v_{j}$ is the vertex of $G_{1}$ which is joined to $G_{2, j}$ in $G_{1} \circ G_{2}$. Now, the number of adjacent pairs of vertices in $G_{1}$ is equal to $m_{1}$. Then,

$$
\begin{aligned}
H_{d}\left(v_{i}, u_{j}: G_{1} \circ G_{2}\right) & =\operatorname{deg}_{G_{1}} v_{i}+n_{2}+\operatorname{deg}_{G_{2}} u_{j} \\
& +1-2(1) \\
& =\operatorname{deg}_{G_{1}} v_{i}+\operatorname{deg}_{G_{2}} u_{j}+n_{2}-1
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\sum_{d_{G_{1}}\left(v_{i}, v_{j}\right)=1} H_{d}\left(v_{i}, u_{j}\right) & =\sum_{2 n_{1} n_{2}}\left(\operatorname{deg}_{G_{1}} v_{i}+\operatorname{deg}_{G_{2}} u_{j}\right. \\
& \left.+n_{2}-1\right)
\end{aligned}
$$

Case(iii): Consider $v_{i} \in V\left(G_{1}\right)$ and $u_{j} \in V\left(G_{2, j}\right)$ such that the distance between $v_{i}$ and $v_{j}$ in $G_{1}$ is greater than or equal to 2 , where $v_{j}$ is the vertex of $G_{1}$ which is joined to $G_{2, j}$ in $G_{1} \circ G_{2}$. We observe that, the number of non-adjacent pairs of vertices of $G_{1}$ equals to $\binom{n_{1}}{2}-m_{1}$.
Then,

$$
\begin{aligned}
H_{d}\left(v_{i}, u_{j}: G_{1} \circ G_{2}\right) & =\operatorname{deg}_{G_{1}} v_{i}+n_{2}+\operatorname{deg}_{G_{2}} u_{j}+1 \\
& -2(0) \\
& =\operatorname{deg}_{G_{1}} v_{i}+\operatorname{deg}_{G_{2}} u_{j}+n_{2}+1
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sum_{d_{G_{1}}\left(v_{i}, v_{j}\right) \geq 2} H_{d}\left(v_{i}, u_{j}\right) & =\sum_{2 n_{2}\left(\binom{\left.n_{1}\right)-m_{1}}{2}\right.}\left(\operatorname{deg}_{G_{1}} v_{i}\right. \\
& \left.+\operatorname{deg}_{G_{2}} u_{j}+n_{2}+1\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{\substack{v_{i} \in V\left(G_{1}\right), u_{j} \in V\left(G_{2}\right)}} H_{d}\left(v_{i}, u_{j}\right) & =\sum_{n_{1} n_{2}}\left(\operatorname{deg}_{G_{1}} v_{i}+\operatorname{deg}_{G_{2}} u_{j}+n_{2}\right. \\
& +1)-2 \sum_{n_{1} n_{2}} \operatorname{deg}_{G_{2}} u_{j} \\
& +\sum_{2 m_{1} n_{2}}\left(\operatorname{deg}_{G_{1}} v_{i}+\operatorname{deg}_{G_{2}} u_{j}\right. \\
& \left.+n_{2}-1\right) \\
& +\sum_{2 n_{2}\left(\binom{n_{1}}{2}-m_{1}\right)}\left(\operatorname{deg}_{G_{1}} v_{i}\right. \\
& \left.+\operatorname{deg}_{G_{2}} u_{j}+n_{2}+1\right)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{\substack{v_{i} \in V\left(G_{1}\right), u_{j} \in V\left(G_{2}\right)}} H_{d}\left(v_{i}, u_{j}\right) & =\sum_{n_{1} n_{2}}\left(\operatorname{deg}_{G_{1}} v_{i}+\operatorname{deg}_{G_{2}} u_{j}\right) \\
& -2 \sum_{n_{1} n_{2}} \operatorname{deg}_{G_{2}} u_{j}+n_{1}^{2} n_{2}^{2} \\
& +n_{1} n_{2}-4 m_{1} n_{2} \\
& +n_{1} n_{2}\left(n_{1}-1\right)
\end{aligned}
$$

But

$$
\sum_{n_{1} n_{2}}\left(\operatorname{deg}_{G_{1}} v_{i}+\operatorname{deg}_{G_{2}} u_{j}\right)=2 n_{1} n_{2} m_{1}+2 n_{1}^{2} m_{2}
$$

and $\sum_{n_{1} n_{2}} \operatorname{deg}_{G_{2}} u_{j}=2 n_{1} m_{2}$.
Hence,

$$
\begin{align*}
\sum_{\substack{v_{i} \in V\left(G_{1}\right), u_{j} \in V\left(G_{2}\right)}} H_{d}\left(v_{i}, u_{j}\right) & =2 n_{1} n_{2} m_{1}+2 n_{1}^{2} m_{2}+n_{1}^{2} n_{2}^{2} \\
& +n_{1} n_{2}-4 m_{1} n_{2}+n_{1} n_{2}\left(n_{1}-1\right) \\
& -4 n_{1} m_{2} . \tag{4}
\end{align*}
$$

On substituting equations (2), (3) and (4) in equation (1) we get,

$$
\begin{aligned}
H_{A}\left(G_{1} \circ G_{2}\right) & =H_{A}\left(G_{1}\right)+n_{1} n_{2}\left(n_{1}-1\right)+n_{1} H_{A}\left(G_{2}\right) \\
& +2 n_{1} n_{2} m_{2}\left(n_{1}-1\right)+n_{1}^{2} n_{2}^{2}-n_{1} n_{2}^{2}+2 n_{1} n_{2} m_{1} \\
& +2 n_{1}^{2} m_{2}+n_{1}^{2} n_{2}^{2}+n_{1} n_{2}-4 m_{1} n_{2} \\
& +n_{1} n_{2}\left(n_{1}-1\right)-4 n_{1} m_{2} \\
& =H_{A}\left(G_{1}\right)+n_{1} H_{A}\left(G_{2}\right) \\
& +n_{1} n_{2}\left(2 n_{1} n_{2}+2 n_{1}-n_{2}-1\right)+2 n_{1} m_{2}\left(n_{1} n_{2}\right. \\
& \left.+n_{1}-n_{2}-2\right)+2 m_{1} n_{2}\left(n_{1}-2\right) .
\end{aligned}
$$

We now compute the Hamming index of Cartesian, tensor, strong, symmetric, and hierarchical product of complete bipartite graph $K_{m, n}$ and complete graph $K_{n}$.

## Theorem 3:

$$
\begin{aligned}
H_{A}\left(K_{m, n} \square K_{p}\right) & =m n p\left(2 p^{2}+2 m p+2 n p-m-n\right. \\
& -6 p+4)+m p\left(m p^{2}-p^{2}+2 p-m p-1\right) \\
& +n p\left(n p^{2}-p^{2}+2 p-n p-1\right) .
\end{aligned}
$$

## Proof:


$K_{3}:$


Figure 3. Graphs $K_{2,3}$ and $K_{3}$.


Figure 4. Cartesian product of the graphs $K_{2,3}$ and $K_{3}$.
Let $u_{1}, u_{2}, \ldots, u_{m}, u_{m+1}, u_{m+2}, \ldots, u_{n}$ be vertices of $K_{m, n}$ and $v_{1}, v_{2}, \ldots, v_{p}$ be vertices of $K_{p}$. Then the vertices of Cartesian product $K_{m, n} \square K_{p}$ are $\left(u_{i}, v_{j}\right), i=$ $1,2, \ldots, m, m+1, m+2, \ldots, n$ and $1 \leq j \leq p$.
By adding all the Hamming distances listed in Table I,

$$
\begin{aligned}
H_{A}\left(K_{m, n} \square K_{p}\right) & =\binom{m}{2} p(2 p-2)+\binom{n}{2} p(2 p-2) \\
& +\binom{p}{2} m(2 n+2)+\binom{p}{2} n(2 m+2) \\
& +\binom{m}{2} p(p-1)(2 n+2 p-2) \\
& +\binom{n}{2} p(p-1)(2 m+2 p-2) \\
& +m n p(m+n+2 p-2) \\
& +m n p(p-1)(m+n+2 p-6) \\
& =m n p\left(2 p^{2}+2 p m+2 p n-6 p-m\right. \\
& -n+4)+m p\left(m p^{2}-p^{2}+2 p-p m-1\right) \\
& +n p\left(n p^{2}-p^{2}+2 p-p n-1\right) .
\end{aligned}
$$

Corollary 1: Hamming index of a Book graph $B_{m}(G)$ of order $2 m+2$ is $10 m^{2}+4 m+2$.

Proof:


Figure 5. Book graph.
The Book graph $B_{m}(G)$ is a Cartesian product of star graph $K_{1, m}$ and complete graph $K_{2}$. Substituting the values of $m, n$ and $p$ in Theorem 3, we get

$$
H_{A}\left(B_{m}(G)\right)=10 m^{2}+4 m+2
$$

Theorem 4:

$$
H_{A}\left(K_{m, n} \times K_{p}\right)=m n p\left(m p^{2}+n p^{2}-m-n\right) .
$$

## Proof:



Figure 6. Tensor product of the graphs $K_{2,3}$ and $K_{3}$.

Let $u_{1}, u_{2}, \ldots, u_{m}, u_{m+1}, u_{m+2}, \ldots, u_{n}$ be vertices of $K_{m, n}$ and $v_{1}, v_{2}, \ldots, v_{p}$ be vertices of $K_{p}$. Then the vertices of tensor product $K_{m, n} \times K_{p}$ are $\left(u_{i}, v_{j}\right), i=$ $1,2, \ldots, m, m+1, m+2, \ldots, n$ and $1 \leq j \leq p$.

Thus, from Table II,

$$
\begin{aligned}
H_{A}\left(K_{m, n} \times K_{p}\right) & =\binom{m}{2} p(2 p-2)+2 m\binom{p}{2} \\
& +p(p-1)\binom{m}{2}(2 p-2)+2 m n\binom{p}{2} \\
& +2 n p(p-1)\binom{m}{2}+2 m n\binom{p}{2} \\
& +2 m p(p-1)\binom{n}{2} \\
& +m n p^{2}(m p+n p-m-n) \\
& =m n p\left(m p^{2}+n p^{2}-m-n\right)
\end{aligned}
$$

## Theorem 5:

$H_{A}\left(K_{m, n} \boxtimes K_{p}\right)=m n p\left(2 p^{2}+2 p m+2 p n-6 p-m-n\right.$

$$
\begin{aligned}
& +4)+m p\left(m p^{2}-p^{2}+2 p-p m-1\right) \\
& +n p\left(n p^{2}-p^{2}+2 p-p n-1\right)
\end{aligned}
$$

Proof:


Figure 7. Strong product of the graphs $K_{2,3}$ and $K_{3}$.

Let $u_{1}, u_{2}, \ldots, u_{m}, u_{m+1}, u_{m+2}, \ldots, u_{n}$ be vertices of $K_{m, n}$ and $v_{1}, v_{2}, \ldots, v_{p}$ be vertices of $K_{p}$. Then the vertices of strong product $K_{m, n} \boxtimes K_{p}$ are $\left(u_{i}, v_{j}\right), i=$ $1,2, \ldots, m, m+1, m+2, \ldots, n$ and $1 \leq j \leq p$.
From Table III, we get

$$
\begin{aligned}
H_{A}\left(K_{m, n} \boxtimes K_{p}\right) & =p\binom{n}{2}(2 p-2)+2 n\binom{p}{2} \\
& +p(p-1)(2 p-2)\binom{n}{2}+p\binom{n}{2}(2 p-2) \\
& +2 n\binom{p}{2}+p(p-1)(2 p-2)\binom{n}{2} \\
& +m n p^{2}(m p+n p-2 p+2) \\
& =m n p\left(n p^{2}+m p^{2}-2 p^{2}+2 p\right) \\
& +m p\left(m p^{2}-p^{2}+2 p-m p-1\right) \\
& +n p\left(n p^{2}-p^{2}+2 p-n p-1\right)
\end{aligned}
$$

Remark 1: The composition and strong product of $K_{m, n}$ and $K_{p}$ are isomorphic since every pair of vertices of $K_{p}$ are adjacent. Therefore, $H_{A}\left(K_{m, n}\left[K_{p}\right]\right)=H_{A}\left(K_{m, n} \boxtimes K_{p}\right)$. That is,

$$
\begin{aligned}
H_{A}\left(K_{m, n}\left[K_{p}\right]\right) & =m n p\left(n p^{2}+m p^{2}-2 p^{2}+2 p\right) \\
& +m p\left(m p^{2}-p^{2}+2 p-m p-1\right) \\
& +n p\left(n p^{2}-p^{2}+2 p-n p-1\right)
\end{aligned}
$$

## Theorem 6:

$$
\begin{aligned}
H_{A}\left(K_{m, n} \oplus K_{p}\right) & =m n p\left(m p^{2}+n p^{2}+m p+n p-m-n\right. \\
& -4 p+4)+m p\left(2 m^{2} p-2 m^{2}-2 m p\right. \\
& +2 m+p-1)+n p\left(2 n^{2} p-2 n^{2}-2 n p\right. \\
& +2 n+p-1) .
\end{aligned}
$$

Proof:


Figure 8. Symmetric product of the graphs $K_{2,3}$ and $K_{3}$.

Let $u_{1}, u_{2}, \ldots, u_{m}, u_{m+1}, u_{m+2}, \ldots, u_{n}$ be vertices of $K_{m, n}$ and $v_{1}, v_{2}, \ldots, v_{p}$ be vertices of $K_{p}$. Then the vertices of symmetric product $K_{m, n} \oplus K_{p}$ are $\left(u_{i}, v_{j}\right), i=$ $1,2, \ldots, m, m+1, m+2, \ldots, n$ and $1 \leq j \leq p$.

By adding all the Hamming distances from Table IV,

$$
\begin{aligned}
H_{A}\left(K_{m, n} \oplus K_{p}\right) & =p\binom{m}{2}(2 m p-2 m-2 p+2) \\
& +m\binom{p}{2}(2 m+2 n) \\
& +p(p-1)\binom{m}{2}(2 m+2 n) \\
& +p(2 n p-2 n-2 p+2)\binom{n}{2} \\
& +n(2 m+2 n)\binom{p}{2} \\
& +p(p-1)\binom{n}{2}(2 m+2 n) \\
& +m n p(m p+n p) \\
& +m n p(p-1)(m p+n p-4) \\
& =m n p\left(2 p^{2}+2 p m+2 p n-6 p-m-n\right. \\
& +4)+m p\left(m p^{2}-p^{2}+2 p-p m-1\right) \\
& +n p\left(n p^{2}-p^{2}+2 p-p n-1\right) .
\end{aligned}
$$

## Theorem 7:

$$
\begin{aligned}
H_{A}\left(K_{m, n} \sqcap K_{p}\right) & =p^{2}(p-1)\left(m^{2}+n^{2}\right) \\
& +m n(m+n)(2 p-1) \\
& -p(p-1)^{2}(m+n) \\
& +2 m n(p-1)\left(p^{2}-2\right) .
\end{aligned}
$$

## Proof:



Figure 9. Hierarchical product of the graphs $K_{2,3}$ and $K_{3}$ with $u_{1}$ and $v_{1}$ as the root vertices.

Let $u_{1}, u_{2}, \ldots, u_{m}, u_{m+1}, u_{m+2}, \ldots, u_{n}$ be vertices of $K_{m, n}$ with any one vertex say, $u_{1}$ as the root vertex and $v_{1}, v_{2}, \ldots, v_{p}$ be vertices of $K_{p}$ with any vertex say, $v_{1}$ as the root vertex. Then the vertices of hierarchical product $K_{m, n} \sqcap K_{p}$ are $\left(u_{i}, v_{j}\right), i=1,2, \ldots, m, m+1, m+2, \ldots, n$ and $1 \leq j \leq p$.
Thus from Table V,

$$
\begin{aligned}
H_{A}\left(K_{m, n} \sqcap K_{p}\right) & =2 p^{2}(p-1)\left(m^{2}+n^{2}\right)+m n(m+n) \\
& (2 p-1)-p(p-1)^{2}(m+n) \\
& +2 m n(p-1)\left(p^{2}-2\right) .
\end{aligned}
$$

Engineering Letters, 30:3, EL_30_3_17

Table I
Hamming distance between all pairs of vertices of $K_{m, n} \square K_{p}$.

| Pairs of vertices | Degree of vertices | Number of pairs of vertices | Number of common neighbors | Hamming distance between vertices |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r, s \leq m, \\ & 1 \leq k, l \leq p, k=l \end{aligned}$ | $n+p-1$ | $p\binom{m}{2}$ | $n$ | $2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r, s \leq m, \\ & 1 \leq k, l \leq p, r=s \end{aligned}$ |  | $m\binom{p}{2}$ | $p-2$ | $2 n+2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r, s \leq m, \\ & 1 \leq k, l \leq p, r, s \neq k, l \end{aligned}$ |  | $p(p-1)\binom{m}{2}$ | 0 | $2 n+2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r, s \leq n, \\ & 1 \leq k, l \leq p, k=l \end{aligned}$ | $m+p-1$ | $p\binom{n}{2}$ | $m$ | $2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r, s \leq n \\ & 1 \leq k, l \leq p, r=s \end{aligned}$ |  | $n\binom{p}{2}$ | $p-2$ | $2 m+2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r, s \leq n, \\ & 1 \leq k, l \leq p, r, s \neq k, l \end{aligned}$ |  | $p(p-1)\binom{n}{2}$ | 0 | $2 m+2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right) \\ & 1 \leq r \leq m, 1 \leq k \leq p \end{aligned}$ | $n+p-1$ | $m n p$ | 0 | Hamming distance between one vertex of degree $n+p-1$ and another vertex of degree$\begin{aligned} & m+p-1 \text { with } v_{k}=v_{l} \\ & \quad \text { is } m+n+2 p-2 \end{aligned}$ |
| $\begin{aligned} & \left(u_{s}, v_{l}\right), \\ & m+1 \leq s \leq n, 1 \leq l \leq p \end{aligned}$ | $m+p-1$ |  |  |  |
| $\begin{aligned} & \left(u_{r}, v_{k}\right) \\ & 1 \leq r \leq m, 1 \leq k \leq p \end{aligned}$ | $n+p-1$ | $m n p(p-1)$ | 0 | Hamming distance between one vertex of degree $n+p-1$ and another vertex of degree $m+p-1$ with $v_{k} \neq v_{l}$ is $m+n+2 p-2$ |
| $\begin{aligned} & \left(u_{s}, v_{l}\right), \\ & m+1 \leq s \leq n, 1 \leq l \leq p \end{aligned}$ | $m+p-1$ |  |  |  |

Table II
Hamming distance between all pairs of vertices of $K_{m, n} \times K_{p}$.

| Pairs of vertices | Degree of vertices | Number of pairs of vertices | Number of common neighbors | Hamming distance between vertices |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r, s \leq m \\ & 1 \leq k, l \leq p, k=l \end{aligned}$ | $n p+p-1$ | $p\binom{m}{2}$ | $n p$ | $2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r, s \leq m, \\ & 1 \leq k, l \leq p, r=s \end{aligned}$ |  | $m\binom{p}{2}$ | $p-2+n p$ | 2 |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right) \\ & 1 \leq r, s \leq m, \\ & 1 \leq k, l \leq p, r, s \neq k, l \end{aligned}$ |  | $p(p-1)\binom{m}{2}$ | $n p$ | $2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r, s \leq m \\ & 1 \leq k, l \leq p, k=l \end{aligned}$ | $n(p-1)$ | $p\binom{m}{2}$ | $n(p-1)$ | 0 |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r, s \leq m, \\ & 1 \leq k, l \leq p, r=s \end{aligned}$ |  | $m\binom{p}{2}$ | $n(p-2)$ | $2 n$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r \leq m \\ & 1 \leq k \leq p, r, s \neq k, l \end{aligned}$ |  | $p(p-1)\binom{m}{2}$ | $n(p-2)$ | $2 n$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r, s \leq n \\ & 1 \leq k, l \leq p, k=l \end{aligned}$ | $m(p-1)$ | $p\binom{n}{2}$ | $m(p-1)$ | 0 |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r \leq n, \\ & 1 \leq k \leq p, r=s \end{aligned}$ |  | $n\binom{p}{2}$ | $m(p-2)$ | $2 m$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r \leq n \\ & 1 \leq k \leq p, r, s \neq k, l \end{aligned}$ |  | $p(p-1)\binom{n}{2}$ | $m(p-2)$ | $2 m$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right), \\ & 1 \leq r \leq m, \\ & 1 \leq k \leq p \end{aligned}$ | $n(p-1)$ | $m n p^{2}$ | 0 | Hamming distance between one vertex of degree $n(p-1)$ and another vertex of degree $m(p-1)$ is $m p+n p-m-n$ |
| $\begin{aligned} & \left(u_{s}, v_{l}\right) \\ & m+1 \leq s \leq n \\ & 1 \leq l \leq p \end{aligned}$ | $m(p-1)$ |  |  |  |

Engineering Letters, 30:3, EL_30_3_17

Table III
Hamming distance between all pairs of vertices of $K_{m, n} \boxtimes K_{p}$.

| Pairs of vertices | Degree of vertices | Number of pairs of vertices | Number of common neighbors | Hamming distance between vertices |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r, s \leq n, \\ & 1 \leq k, l \leq p, k=l \end{aligned}$ | $m p+p-1$ | $p\binom{n}{2}$ | $m p$ | $2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r, s \leq n, \\ & 1 \leq k, l \leq p, r=s \end{aligned}$ |  | $n\binom{p}{2}$ | $p-2+m p$ | 2 |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right) \\ & m+1 \leq r, s \leq n \\ & 1 \leq k, l \leq p, r, s \neq k, l \end{aligned}$ |  | $p(p-1)\binom{n}{2}$ | $m p$ | $2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r, s \leq n, \\ & 1 \leq k, l \leq p, k=l \end{aligned}$ | $m p+p-1$ | $p\binom{n}{2}$ | $m p$ | $2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r, s \leq n, \\ & 1 \leq k, l \leq p, r=s \end{aligned}$ |  | $n\binom{p}{2}$ | $p-2+m p$ | 2 |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right) \\ & m+1 \leq r, s \leq n \\ & 1 \leq k, l \leq p, r, s \neq k, l \end{aligned}$ |  | $p(p-1)\binom{n}{2}$ | $m p$ | $2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right), \\ & 1 \leq r \leq m, \\ & 1 \leq k \leq p \end{aligned}$ | $n p+p-1$ | $m n p^{2}$ | $2 p-2$ | Hamming distance between one vertex of degree $n p+p-1$ and another vertex of degree $m p+p-1$ is $m p+n p-2 p+2$ |
| $\begin{aligned} & \left(u_{s}, v_{l}\right) \\ & m+1 \leq s \leq n, \\ & 1 \leq l \leq p \end{aligned}$ | $m p+p-1$ |  |  |  |

Table IV
Hamming distance between all pairs of vertices of $K_{m, n} \oplus K_{p}$.

| Pairs of vertices | Degree of vertices | Number of pairs of vertices | Number of common neighbors | Hamming distance between vertices |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r, s \leq m, \\ & 1 \leq k, l \leq p, k=l \end{aligned}$ | $n+m(p-1)$ | $p\binom{m}{2}$ | $n+p-1$ | $2 m p-2 m-2 p+2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r, s \leq m \\ & 1 \leq k, l \leq p, r=s \end{aligned}$ |  | $m\binom{p}{2}$ | $m(p-2)$ | $2 m+2 n$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r, s \leq m, \\ & 1 \leq k, l \leq p, r, s \neq k, l \end{aligned}$ |  | $p(p-1)\binom{m}{2}$ | $m(p-2)$ | $2 m+2 n$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r, s \leq n, \\ & 1 \leq k, l \leq p, k=l \end{aligned}$ | $m+n(p-1)$ | $p\binom{n}{2}$ |  | $2 n p-2 n-2 p+2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r, s \leq n, \\ & 1 \leq k, l \leq p, r=s \end{aligned}$ |  | $n\binom{p}{2}$ | $n(p-2)$ | $2 m+2 n$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r, s \leq n \\ & 1 \leq k, l \leq p, r, s \neq k, l \end{aligned}$ |  | $p(p-1)\binom{n}{2}$ | $n(p-2)$ | $2 m+2 n$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right) \\ & 1 \leq r \leq m \\ & 1 \leq k \leq p \end{aligned}$ | $n+m(p-1)$ | $m n p$ | 0 | Hamming distance between one vertex of degree <br> $n+m(p-1)$ and another vertex of degree $\begin{gathered} m+n(p-1) \text { with } \\ v_{k}=v_{l} \text { is } m p+n p \end{gathered}$ |
| $\begin{aligned} & \left(u_{s}, v_{l}\right) \\ & m+1 \leq s \leq n, \\ & 1 \leq l \leq p \end{aligned}$ | $m+n(p-1)$ |  |  |  |
| $\begin{aligned} & \left(u_{r}, v_{k}\right) \\ & 1 \leq r \leq m \\ & 1 \leq k \leq p \end{aligned}$ | $n+m(p-1)$ | $m n p(p-1)$ | 2 | Hamming distance between one vertex of degree $n+m(p-1)$ and another vertex of degree $m+n(p-1)$ with $v_{k} \neq v_{l}$ is $m p+n p-4$ |
| $\begin{aligned} & \left(u_{s}, v_{l}\right) \\ & m+1 \leq s \leq n, \\ & 1 \leq l \leq p \end{aligned}$ | $m+n(p-1)$ |  |  |  |

Table V
Hamming distance between all pairs of vertices of $K_{m, n} \sqcap K_{p}$.

| Pairs of vertices | Degree of vertices | Number of pairs of vertices | Number of common neighbors | Hamming distance between vertices |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \left(u_{r}, v_{1}\right),\left(u_{s}, v_{1}\right), \\ & 1 \leq r, s \leq m \end{aligned}$ | $2 n+2 p-2$ | $\binom{m}{2}$ | $n$ | $2(p-1)$ |
| $\begin{aligned} & \left(u_{r}, v_{1}\right),\left(u_{s}, v_{1}\right), \\ & m+1 \leq r, s \leq n \end{aligned}$ | $2 m+2 p-2$ | $\binom{n}{2}$ | $m$ | $2(p-1)$ |
| $\begin{aligned} & \left(u_{r}, v_{1}\right),\left(u_{s}, v_{1}\right), \\ & 1 \leq r \leq m, \\ & m+1 \leq s \leq n \end{aligned}$ | $m+n+2 p-2$ | $m n$ | 0 | $m+n+2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{r}, v_{l}\right), \\ & 1 \leq r \leq n, \\ & 2 \leq k, l \leq p \end{aligned}$ | $2 p-2$ | $(m+n)\binom{p-1}{2}$ | $p-2$ | 2 |
| $\begin{aligned} & \left(u_{r}, v_{k}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r, s \leq n, r \neq s, \\ & 2 \leq k, l \leq p \end{aligned}$ | $2 p-2$ | $(p-1)^{2}\binom{m+n}{2}$ | 0 | $2(p-1)$ |
| $\begin{aligned} & \left(u_{r}, v_{1}\right),\left(u_{r}, v_{l}\right), \\ & 1 \leq r \leq m \\ & 2 \leq l \leq p \end{aligned}$ | $n+2 p-2$ | $m(p-1)$ | $p-2$ | $n+2$ |
| $\begin{aligned} & \left(u_{r}, v_{1}\right),\left(u_{r}, v_{l}\right), \\ & m+1 \leq r \leq n, \\ & 2 \leq l \leq p \end{aligned}$ | $m+2 p-2$ | $n(p-1)$ | $p-2$ | $m+2$ |
| $\begin{aligned} & \left(u_{r}, v_{1}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r, s \leq m, r \neq s, \\ & 2 \leq l \leq p \end{aligned}$ | $n+2 p-2$ | $m(m-1)(p-1)$ | 0 | $n+2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{1}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r, s \leq n, r \neq s, \\ & 2 \leq l \leq p \end{aligned}$ | $m+2 p-2$ | $n(n-1)(p-1)$ | 0 | $m+2 p-2$ |
| $\begin{aligned} & \left(u_{r}, v_{1}\right),\left(u_{s}, v_{l}\right), \\ & 1 \leq r \leq m \\ & m+1 \leq s \leq n, \\ & 2 \leq l \leq p \end{aligned}$ | $n+2 p-2$ | $m n(p-1)$ | 1 | $n+2 p-4$ |
| $\begin{aligned} & \left(u_{r}, v_{1}\right),\left(u_{s}, v_{l}\right), \\ & m+1 \leq r \leq n, \\ & 1 \leq s \leq m, 2 \leq l \leq p \end{aligned}$ | $m+2 p-2$ | $m n(p-1)$ | 1 | $m+2 p-4$ |

## IV. CONCLUSION

The results of this article give the sum of Hamming distances between all pairs of strings generated by the adjacency matrix of a graph. Hamming distance between the pair of vertices depends on the degree and number of common neighbors. In this paper, we have studied Hamming index of Cartesian, tensor, strong, symmetric and hierarchical products of complete bipartite and complete graphs.

## References

[1] W. Imrich and S. Klavzar, "A simple $\mathrm{O}(\mathrm{mn})$ algorithm for recognizing Hamming graphs," Bulletin of the institute of combinatorics and its applications, vol. 9, pp. 45-56, 1993.
[2] A. B. Ganagi and H. S. Ramane, "Hamming distance between the strings generated by adjacency matrix of a graph and their sum," Algebra and discrete mathematics, vol. 22, no. 1, pp. 82-93, 2016.
[3] S. Bang, R. R. Van Dam and J. H. Koolen, "Spectral characterization of the Hamming graphs," Linear algebra and its applications, vol. 429, no. 11-12, pp. 2678-2686, 2008.
[4] V. Chepoi, "d-convexity and isometric subgraphs of Hamming graphs," Cybernetics, vol. 1, pp. 6-9, 1988.
[5] W. Imrich and S. Klavzar, "Recognizing Hamming graphs in linear time and space," Information processing letters, vol. 63, no. 2, pp. 91-95, 1997.
[6] H. S. Ramane and A. B. Ganagi, "Hamming index of class of graphs," International journal of current engineering and technology, Special Issue 1, pp. 205-208, 2013.
[7] R. Frucht and F. Harary, "On the corona of two graphs," Aequationes mathematicae, vol. 4, pp. 322-325, 1970.
[8] G. Sabidussi, "Graph multiplication," Mathematische zeitschrift, vol. 72, no. 1, pp. 446-457, 1959.
[9] P. M. Weichsel, "The kronecker product of graphs," Proceedings of the American mathematical society, vol. 13, no. 1, pp. 47-52, 1962.
[10] M. Yuan, F. Wen, and R. Wang, "Merging The A- and Q-spectrum of Three Kinds of Graph Product," IAENG International journal of applied mathematics, vol. 51, no. 4, pp. 990-994, 2021.
[11] G. Sabidussi, "The lexicographic product of graphs," Duke mathematical journal, vol. 28, no. 4, pp. 573-578, 1961.
[12] R. Balakrishnan, K. Ranganathan, A textbook of graph theory. New York, NY, USA: Springer, 2000.
[13] L. Barriere, F. Comellas, C. Dalfó, M. Fiol, "The hierarchical product of graphs," Discrete Applied Mathematics, vol. 157, no. 1, pp. 36-48, 2009.
[14] R. L. Pasaribu, Mardiningsih and S. Suwilo, "Hamming index of thorn and double graphs," Bulletin of mathematics, vol. 10, no. 1, pp. 25-32, 2018.


[^0]:    Manuscript received October 27, 2021; revised April 07, 2022.
    Harshitha A is a research scholar in the Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India, 576104 (e-mail: harshuarao@gmail.com).

    Swati Nayak is an assistant professor in the Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India, 576104 (e-mail: swati.nayak @manipal.edu).
    *Corresponding author: Sabitha D'Souza is an assistant professor selection grade in the Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India, 576104 (Phone: 9449727376; e-mail: sabitha.dsouza@manipal.edu).
    Pradeep G. Bhat is a professor in the Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India, 576104 (e-mail: pg.bhat@manipal.edu).

