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Abstract—A fuzzy version of Gauss Elimination Approach
(GEA) for the solution of fully fuzzy multi objective linear
fractional programming (FFMOLFP) problems involving trian-
gular fuzzy numbers (TFNs) is presented in this article. Fully
fuzzy linear fractional programming problem is first reduced to
an equivalent fully fuzzy linear programming (FFLP) problem
by suitable transformation and then the optimum value of
each objective function is obtained individually with respect
to the same set of constraints. Secondly by using all these
objective values, the FFMOLFP problem is then converted to a
single objective non fractional FFLP problem and its optimum
solution is obtained which in turn provides the Pareto optimum
solution the given FFMOLFP problem. To indicate the efficacy
of the proposed procedure, a numerical illustration is given.

Index Terms—Multi-objective linear fractional programming,
Pareto optimum, Gauss elimination method, TFNs, Parametric
form, Fuzzy arithmetic, Ranking.

I. INTRODUCTION

L INEAR fractional programming (LFP) problems are
used to solve problems in organizations, industries,

etc. When some or all the decision parameters of the
problem are uncertain and are modeled as fuzzy numbers,
then the underlying LFP problem becomes fuzzy linear
fractional programming (FLFP) problem. When the problem
posses more than one objective then it is a fuzzy multi-
objective linear fractional programming (FMOLFP) prob-
lem. FMOLFP problems are applied to solve real world
problems. Bellman and Zadeh [1] introduced a system for
making decisions in a fuzzy environment. Guzel and Sivri [5]
solved the MOLFP problem with multiple efficient solution.
Nuran Guzel [13] introduced a new solution method for
resolving multi-objective fractional programming problems
by converting MOLFP problem into LPP. Farhana Akond
Pramy [3] solved fuzzy MOLFP problem using graded mean
integration method. Bhargava [2] solving linear programming
problem with integer solution using Gauss method. Jain
et al. [6],[7],[8] studied MOLFP problem by using the
concept of bounds and used Gauss Elimination Method. Lo-
ganathan and Ganesan [10], [11] proposed a fuzzy approach
to solve single and multi objective FFLFP problems. Rizk
Allah [15] discussed two optimization approaches for bi-
level MOLFP problems. Sapan Kumar Dasa [17] discussed
FLFP problem using LU- decomposition method. Payan [14]
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proposed a linear modeling to solve MOLFP problem with
fuzzy parameters. Surapati [19] discussed fuzzy MOLFPP
with Taylor series method. Yonghong et al. [20] solved the
generalized linear fractional programming using new lin-
ear relaxation technique.Yong-Hong Zhang and Chun-Feng
Wang [21] proposed a new branch-and-reduce approach for
solving generalized linear fractional programming problems.
Rubi Arya and Pitam Singh [16] conducted a survey on
fractional programming problems. Stephen Gbenga Fashoto
and Sulaiman [18] presented an approach for solving a class
of complexity in multi objective linear programming(MOLP)
problems with fuzzy objective functions. Jiang and Qiu [9]
proposed an optimization criterion of fuzzy linear problems.

In this paper, each linear fractional objective function is
transformed to an equivalent linear objective function and is
then converted to linear inequality and then the set of linear
inequalities is solved using Gauss Elimination method. After
getting the optimum value of each objective function, the
FFMOLFP problem is then reduced into a single objective
FFLP problem and then the FFLP problem is solved using
Gauss Elimination method.

This article is organized as follows: Section 2 introduces
fuzzy numbers and offers basic principles and outcomes,
while Section 3 explains the mathematical formulation and
methods for solving the FFMOLFP problem. The fourth
section contains numerical examples, and the final section
contains the conclusion.

II. PRELIMINARIES
Definition 2.1: “ A fuzzy number h̃ on R is a triangular

fuzzy number if its membership function h̃ : R → [0, 1] has
the following characteristics:

h̃(x) =


x− h1

h2 − h1
, for h1 ≤ x ≤ h2

h3 − x

h3 − h2
, for h2 ≤ x ≤ h3

0, otherwise.
We denote this triangular fuzzy number as h̃ = (h1, h2, h3).
We use F(R) to denote the set of all triangular fuzzy numbers
defined on R.
”

Definition 2.2: “ A triangular fuzzy number h̃ =
(h1, h2, h3) in F (R) can also be represented as a pair
h̃ = (h, h) of functions h(a), h(a) for 0 ≤ a ≤ 1, which
satisfies the following requirements:

• h(a) is a bounded monotonic increasing left continuous
function.

• h(a) is a bounded monotonic decreasing left continuous
function.
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• h(a) ≤ h(a), 0 ≤ a ≤ 1.
It is also represented by h̃ = (h0, h∗, h

∗) where h∗ = (h0 −
h), h∗ = (h−h0) are called the left fuzziness index function
and the right fuzziness index function respectively. For an
arbitrary triangular fuzzy number h̃ = (h, h), the number

h0 =

(
h(1) + h(1)

2

)
is said to be a location index number

of h̃.” “

A. Ranking of TFNs

Several approaches for the ranking of fuzzy numbers have
been proposed in the literature. An efficient approach for
comparing the fuzzy numbers is by the use of a ranking
function based on their graded means. We define the magni-
tude of the triangular fuzzy number h̃ = (h0, h∗, h

∗) by

R(h̃) =

(
h∗ + 4h0 − h∗

4

)
=

(
h+ h+ h0

4

)
.

For any two triangular fuzzy numbers h̃ = (h0, h∗, h
∗) and

k̃ = (k0, k∗, k
∗) in F(R) we have

• h̃ ≻ k̃ ⇔ R(h̃) > R(k̃)
• h̃ ≺ k̃ ⇔ R(h̃) < R(k̃)
• h̃ ≈ k̃ ⇔ R(h̃) = R(k̃)

”
If R(h̃) ≥ R(0̃), then the triangular fuzzy number h̃ =

(h0, h∗, h
∗) is said to be non-negative and is denoted by

h̃ ≽ 0̃. “

B. Arithmetic Operations of TFN’s

Ming Ma et al.[12] have proposed a new fuzzy arith-
metic based upon both location index and fuzziness index
functions with ordinary arithmetic and lattice rule. i.e. ∇ =
{+.−,×,÷} the arithmetic operations on the fuzzy numbers
are defined by

h̃∇k̃ = (h0, h∗, h
∗)∇(k0, k∗, k

∗)

= (h0∇k0,max(h∗, k∗),max(h∗, k∗))

Note: Division is possible only when the location index
number of the denominator fuzzy number is non-zero. ”

III. FULLY FUZZY MOLFP PROBLEM

The general form of FFMOLFP problem is given by

PI : max z̃(h̃) =[z̃i(h̃)], i = 1, 2..., n

subject to Ãh̃ ≼ b̃

and h̃ ≽ 0̃.

(1)

where z̃i(h̃)=
fi(h̃)

gi(h̃)
=

c̃ih̃+ α̃i

d̃ih̃+ β̃i

, Ã = (ãij)(m×n), h̃ =

(h̃1, h̃2, ...., h̃n), b̃ = (b̃1, b̃2, ..., b̃m), c̃ = (c̃1, c̃2, ....., c̃n),
d̃ = (d̃1, d̃2, ...., d̃n), α̃i, β̃i ∈ F (R).

Definition 3.1: “ Let S̃ be the set of all feasible solutions
of the FFMOLFP problem (1). A feasible solution h̃∗ is said
to be Pareto optimum solution of the FFMOLFP problem (1),
if there does not exist another feasible solution h̃ ∈ S̃ such
that z̃i(h̃) ≽ z̃i(h̃

∗) for all i and z̃j(h̃) ≻ z̃j(h̃
∗) atleast one

j.
”

A. Transformation of FFMOLFPP into FFMOLPP

The FFMOLFP prroblem (1) is transformed in to a non-
fractional FFMOLPP as

PII : max
h̃∈S

{fi(h̃)− z̃i
∗(gi(h̃))}

subject to Ãh̃ ≼ b̃

and h̃ ≽ 0̃.

(2)

where z̃i
∗ is the optimum value of z̃i(h̃), i = 1, 2, 3, · · · , n.

B. Transformation of FFMOLPP into FFLPP

Guzel et al.[5] have transformed the given MOLFPP in to
a single objective LPP and then obtained the Pareto optimum
solution of MOLFPP from the optimum solution of the
transformed LPP. We transform the given FFMOLPP (2) in
to a single objective FFLPP as

PIII : max z̃ =

{
n∑

i=1

[fi(h̃)− z̃∗i (gi(h̃))]/h̃ ∈ S̃

}
subject to Ãh̃ ≼ b̃

and h̃ ≽ 0̃.

(3)

where z̃∗i is the optimal value of objective function z̃i, that
is

z̃∗i = zi(h̃
∗
i )= max

{
fi(h̃)

gi(h̃)
/h̃ ∈ S̃

}
and i = 1, 2, ....n.

Theorem 3.1: [11] z̃∗ ≈ f(h̃∗)

g(h̃∗)
≈ max

{
f(h̃)

g(h̃)
/h̃ ∈ S̃

}
if and only if F (z̃∗, h̃∗) ≈ max{f(h̃∗)−z̃∗g(h̃∗)/h̃∗ ∈ S̃} ≈
0̃.

Theorem 3.2: If h̃∗ is an optimum solution of the problem
(3), then h̃∗ is a pareto optimum solution of the problem (1).

Proof: Assume that h̃∗ is an optimum solution of the
problem (3). Suppose that h̃∗ is not a Pareto optimum
solution of the problem (1). Then there exists a h̃ ∈ S̃ such
that z̃i(h̃) ≽ z̃i(h̃

∗) for all i = 1, 2, ..., n and z̃j(h̃) ≻ z̃j(h̃
∗)

for at least one j = 1, 2, ..., n.

That is
fi(h̃)

gi(h̃)
≽ fj(h̃

∗)

gj(h̃∗)
for all i and

fj(h̃)

gj(h̃)
≻ fj(h̃

∗)

gj(h̃∗)
for at least one j.

⇒ fi(h̃)

gi(h̃)
≽ z̃∗i for all i and

fj(h̃)

gj(h̃)
≻ z̃∗j for at least one

j.
⇒ fi(h̃)− z̃∗i gi(h̃) ≽ 0̃ for all i and fj(h̃)− z̃∗j gj(h̃) ≻ 0̃

for at least one j.
Summing over n, we get

n∑
i=1

[fi(h̃)− z̃∗i gi(h̃)] ≽ 0̃, for all i and

n∑
j=1

[fj(h̃)− z̃∗j gj(h̃)] ≻ 0̃, for at least one j.

⇒
n∑

i=1

[fi(h̃)− z̃∗i gi(h̃)] ≽
n∑

i=1

[fi(h̃
∗)− z̃∗i gi(h̃

∗)]

for all i and
n∑

j=1

[fj(h̃)− z̃∗j gj(h̃)] ≻
n∑

i=1

[fj(h̃
∗)− z̃∗j gj(h̃

∗)]
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for at least one j, which is a contradiction to our assumption
that h̃∗ is an optimum solution of the problem (3). Hence
h̃∗ be a Pareto optimum solution of the problem (1).

C. Algorithm

Step 1: Given a FFMOLFPP. Express all the fuzzy numbers
in their parametric form.
Step 2: Convert each linear fractional objective function to an
equivalent non-fractional linear objective function in terms of

y, t using
1

g(h̃)
≼ t̃ and then ỹ ≈ h̃t̃.

Step 3: Convert each linear objective function into a linear
inequality in terms of z, y, t using z̃ ≼ max z̃. Hence each
linear fractional objective function along with the same set
of constraints provides a system of linear inequalities.
Step 4: Compute the optimum value of each fractional
objective function using the Gauss Elimination approach by
solving the systems obtained in step 3.
Step 5: Using the optimum value of each objective function
obtained in step 4, convert the given FFMOLFPP into a
single objective FFLPP.
Step 6: Transform the FFLPP obtained in step 5 to a system
of linear inequalities using z̃ ≼ max z̃.
Step 7: Solve the systems obtained in step 6 using the Gauss
Elimination approach for the optimum solution of the single
objective FFLPP obtained in step 5, which in turn provides
the pareto optimum solution of the given FFMOLFPP.

IV. NUMERICAL EXAMPLE

Example 1: Consider a FFMOLFPP discussed by Surapati
Pramanik and Indrani Maiti [19]

max z̃1 ≈ 2̃h̃1 + 4h̃2 + 5̃

2̃h̃1 + 6

max z̃2 ≈ h̃1 + 6̃h̃2 + 50

h̃1 + 1̃h̃2 + 8̃

subject to 2̃h̃1 + 2h̃2 ≼ ˜140

h̃2 ≽ 8̃

h̃1 ≽ 1̃6

and h̃1, h̃2 ≽ 0̃

(4)

Solution: We assume that all the fuzzy numbers are trian-
gular fuzzy numbers. Here 4 = 4̃ = (4, 0, 0), 5̃ = (5, 5 −
5a, 5− 5a), 2 = 2̃ = (2, 1− a, 1− a), 6 = 6̃ = (6, 0, 0), 8̃ =
(8, 3 − 3a, 3 − 3a), ˜140 = (140, 1 − a, 1 − a), 1 = 1̃ =
(1, 0, 0), 50 = 5̃0 = (50, 0, 0) and 1̃6 = (16, 3− 3a, 3− 3a)
.
Sub-problem I

max z̃1 ≈ 2̃h̃1 + 4̃h̃2 + 5̃

2̃h̃1 + 6̃

subject to 2̃h̃1 + 2̃h̃2 ≼ ˜140

h̃2 ≽ 8̃

h̃1 ≽ 1̃6

and h̃1, h̃2 ≽ 0̃

(5)

The corresponding system of linear inequalities is given by

z̃1 − (2, 1− a, 1− a)ỹ1 − (4, 0, 0)ỹ2

− (5, 5− 5a, 5− 5a)t̃ ≼ (0, 0, 0)

− (2, 1− a, 1− a)ỹ1 − (6, 0, 0)t̃ ≼ −(1, 0, 0)

(2, 1− a, 1− a)ỹ1 + (2, 1− a, 1− a)ỹ2

− (140, 1− a, 1− a)t̃ ≼ (0, 0, 0)

− (1, 0, 0)ỹ2 + (8, 3− 3a, 3− 3a)t̃ ≼ (0, 0, 0)

− (1, 0, 0)ỹ1 + (16, 3− 3a, 3− 3a)t̃ ≼ (0, 0, 0)

− (1, 0, 0)ỹ1 ≼ (0, 0, 0)

(6)

Applying fuzzy version of GEA, eliminating ỹ1 in (6), we
have the reduced system

(4, 1− a, 1− a)ỹ2 − (1, 5− 5a, 5− 5a)t̃

− (1, 1− a, 1− a)z̃1 ≼ −(1, 1− a, 1− a)

− (2, 1− a, 1− a)ỹ2 − (145, 5− 5a, 5− 5a)t̃

+ (1, 1− a, 1− a)z̃1 ≼ (0, 1− a, 1− a)

− (1, 1− a, 1− a)ỹ2 + (8, 5− 5a, 5− 5a)t̃

+ (0, 1− a, 1− a)z̃1 ≼ (0, 1− a, 1− a)

(2, 1− a, 1− a)ỹ2 + (1.85, 5− 5a, 5− 5a)t̃

− (0.5, 1− a, 1− a)z̃1 ≼ (0, 1− a, 1− a)

(2, 1− a, 1− a)ỹ2 + (2.5, 5− 5a, 5− 5a)t̃

− (0.5, 1− a, 1− a)z̃1 ≼ (0, 1− a, 1− a)

− (1, 0, 0)ỹ2 ≼ (0, 0, 0)
(7)

Eliminating ỹ2 in (7), we have the reduced system

− (145.5, 5− 5a, 5− 5a)t̃+ (0.5, 1− a, 1− a)z̃1

≼ −(0.5, 1− a, 1− a)

(19, 5− 5a, 5− 5a)t̃+ (0, 1− a, 1− a)z̃1

≼ (0.5, 1− a, 1− a)

(3, 5− 5a, 5− 5a)t̃+ (0, 1− a, 1− a)z̃1

≼ (0.5, 1− a, 1− a)

(7.75, 5− 5a, 5− 5a)t̃− (0.25, 1− a, 1− a)z̃1

≼ −(0.25, 1− a, 1− a)

− (0.25, 5− 5a, 5− 5a)t̃− (0.25, 1− a, 1− a)z̃1

≼ −(0.25, 1− a, 1− a)

− (1, 0, 0)t̃ ≼ (0, 0, 0)

(8)

Eliminating t̃ in (8), we have the reduced system

z̃1 ≼ (6.658, 5− 5a, 5− 5a)

z̃1 ≼ (47.497, 5− 5a, 5− 5a)

z̃1 ≽ (1.238, 5− 5a, 5− 5a)

z̃1 ≽ (0.993, 5− 5a, 5− 5a)

z̃1 ≽ −(1, 5− 5a, 5− 5a)

(9)

which implies z̃1 ≼ (6.658, 5 − 5a, 5 − 5a) ⇒ max z̃1 ≈
(6.658, 5− 5a, 5− 5a).
That is, on applying the fuzzy version of GEA,
the solution of the system (6) is given by
ỹ1 = (0.4, 5 − 5a, 5 − 5a), ỹ2 = (0.4, 5 − 5a, 5 − 5a), t̃ =
(0.026, 5−5a, 5−5a) and max z̃1 ≈ (6.658, 5−5a, 5−5a)
which provides the optimum solution of (5) as
h̃1 = (15.38, 5 − 5a, 5 − 5a), h̃2 = (53.8, 5 − 5a, 5 − 5a)
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and max z̃1 ≈ (6.658, 5− 5a, 5− 5a).

Sub-problem II

max z̃2 ≈ 1̃h̃1 + 6̃h̃2 + 5̃0

1̃h̃1 + 1̃h̃2 + 8̃

subject to 2̃h̃1 + 2̃h̃2 ≼ ˜140

h̃2 ≽ 8̃

h̃1 ≽ 1̃6

and h̃1, h̃2 ≽ 0̃

(10)

The corresponding system of linear inequalities is given by

z̃2 − (1, 0, 0)ỹ1 − (6, 3− 3a, 3− 3a)ỹ2

− (50, 0, 0)t̃ ≼ (0, 0, 0)

−(1, 0, 0)ỹ1 − (1, 2− 2a, 2− 2a)ỹ2

− (8, 5− 5a, 5− 5a)t̃ ≼ −(1, 0, 0)

(2, 1− a, 1− a)ỹ1 + (2, 0, 0)ỹ2

− (140, 1− a, 1− a)t̃ ≼ (0, 0, 0)

−(1, 0, 0)ỹ2 + (8, 3− 3a, 3− 3a)t̃ ≼ (0, 0, 0)

−(1, 0, 0)ỹ1 + (16, 3− 3a, 3− 3a)t̃ ≼ (0, 0, 0)

−(1, 0, 0)ỹ1 ≼ (0, 0, 0)
(11)

On applying the fuzzy version of GEA, the solution of the
system (11) is given by ỹ1 = (0.2, 5 − 5a, 5 − 5a), ỹ2 =
(0.69, 5 − 5a, 5 − 5a), t̃ = (0.0128, 5 − 5a, 5 − 5a) and
max z̃2 ≈ (5, 5 − 5a, 5 − 5a). which provides the optimum
solution of (10) as h̃1 = (15.6, 5 − 5a, 5 − 5a), h̃2 =
(54, 5− 5a, 5− 5a) and max z̃2 ≈ (5, 5− 5a, 5− 5a).

Using the optimum values of the above subproblems (5)
and (10), the given FFMOLFPP (4) is converted to an
equivalent single objective FFLPP as

max z̃ ≈ −(15.316, 5− 5a, 5− 5a)h̃1

+ (5, 5− 5a, 5− 5a)h̃2 − (24.918, 5− 5a, 5− 5a)

subject to

(2, 1− a, 1− a)h̃1 + (2, 1− a, 1− a)h̃2

≼ (140, 1− a, 1− a)

− (1, 2− 2a, 2− 2a)h̃2 ≼ −(8, 3− 3a, 3− 3a)

− (1, 2− 2a, 2− 2a)h̃1 ≼ −(16, 3− 3a, 3− 3a)

− (1, 0, 0)h̃1 ≼ (0, 0, 0)

(12)

It can be reduced to a system of linear inequalities as

Z̃ + (15.316, 5− 5a, 5− 5a)h̃1

−(5, 5− 5a, 5− 5a)h̃2 ≼ −(24.918, 5− 5a, 5− 5a)

(2, 1− a, 1− a)h̃1+(2, 0, 0)h̃2

≼ (140, 1− a, 1− a)

−(1, 0, 0)h̃2 ≼ −(8, 3− 3a, 3− 3a)

−(1, 0, 0)h̃1 ≼ −(16, 3− 3a, 3− 3a)

−(1, 0, 0)h̃1 ≼ (0, 0, 0)
(13)

On applying the fuzzy version of GEA, the system (13) is
solved which in turn provides the optimum solution of the
FFLPP (12) as h̃1 = (16, 5 − 5a, 5 − 5a), h̃2 = (54, 5 −

5a, 5 − 5a). By theorem (3.2) the optimum solution of the
FFLPP (12) is the Pareto optimum solution of the given
FFMOLFPP (4).

Hence the Pareto optimum solution of the given
FFMOLFPP (4) is h̃1 = (16, 5 − 5a, 5 − 5a), h̃2 =
(54, 5 − 5a, 5 − 5a) with max z̃1 ≈ (6.694, 5 − 5a, 5 − 5a)
and max z̃2 ≈ (5.008, 5− 5a, 5− 5a).

For the same problem, the authors Surapati Pramanik et
al.[19] have obtained only the crisp solution.

Also the following tables provides different solutions
based on the preference of the decision makers by choosing
suitable value for a.

TABLE I
h̃1, h̃2 FOR DIFFERENT VALUES OF ”a”

Value of a h̃1 h̃2

a=1 (16,16,16) (54,54,54)

a=0.5 (13.5,16,18.5) (51.5,54,56.5)

a=0.25 (12.25,16,19.75) (50.25,54,57.75)

a=0 (11,16,21) (49,54,59)

TABLE II
z̃1, z̃2 FOR DIFFERENT VALUES OF ”a”

Value of a z̃1 z̃2

a=1 (6.694,6.694,6.694) (5.008,5.008,5.008)

a=0.5 (4.194,6.694,9.194) (2.508,5.008,7.508)

a=0.25 (2.944,6.694,10.444) (1.258,5.008,8.758)

a=0 (1.694,6.694,11.694) (0.008,5.008,10.008)

Fig. 1. Graphical representation of the optimal values of z̃1 for different
’a’

Fig. 2. Graphical representation of the optimal values of z̃2 for different
’a’
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Example 2:
Consider a FFMOLFPP discussed by Durga Prasad Dash et
al.[4]

max z̃1 ≈ 6̃h̃1 + 5̃h̃2

2̃h̃1 + 7̃

max z̃2 ≈ 2̃h̃1 + 3̃h̃2

1̃h̃1 + 1̃h̃2 + 7̃

subject to 1̃h̃1 + 2̃h̃2 ≼ 3̃

3̃h̃1 + 2̃h̃2 ≼ 6̃

and h̃1, h̃2 ≽ 0̃

(14)

Solution: We assume that all the fuzzy numbers are
triangular fuzzy numbers. Here 5̃ = (5, 0.1 − 0.1a, 0.1 −
0.1a), 2 = 2̃ = (2, 0.1 − 0.1a, 0.1 − 0.1a), 6̃ =
(6, 0.5−0.5a, 0.5−0.5a), 7̃ = (7, 0.3−0.3a, 0.3−0.3a), 3̃ =
(3, 0.1− 0.1a, 0.1− 0.1a) and 1 = 1̃ = (1, 0, 0).

Sub-problem I

max z̃1 ≈ 6̃h̃1 + 5̃h̃2

2̃h̃1 + 7̃

subject to 1̃h̃1 + 2̃h̃2 ≼ 3̃

3̃h̃1 + 2̃h̃2 ≼ 6̃

and h̃1, h̃2 ≽ 0̃

(15)

The corresponding system of linear inequalities is given by

z̃1 − (6, 0.5− 0.5a, 0.5− 0.5a)ỹ1

− (5, 0.1− 0.1a, 0.1− 0.1a)ỹ2 ≼ (0, 0, 0)

− (2, 0.1− 0.1a, 0.1− 0.1a)ỹ1

− (7, 0.3− 0.3a, 0.3− 0.3a)t̃ ≼ −(1, 0, 0)

(1, 0.1− 0.1a, 0.1− 0.1a)ỹ1 + (2, 0, 0)ỹ2

− (3, 0.1− 0.1a, 0.1− 0.1a)t̃ ≼ (0, 0, 0)

(3, 0.1− 0.1a, 0.1− 0.1a)ỹ1 + (2, 0, 0)ỹ2

− (6, 0.1− 0.1a, 0.1− 0.1a)t̃ ≼ (0, 0, 0)

− (1, 0, 0)ỹ1 ≼ (0, 0, 0)

(16)

On applying the fuzzy version of GEA, the solution of the
system (16) is ỹ1 = (0.15, 0.5 − 0.5a, 0.5 − 0.5a), ỹ2 =
(0.07, 0.5−0.5a, 0.5−0.5a), t̃ = (0.1, 0.5−0.5a, 0.5−0.5a)
and z̃1 = (1.27, 0.5 − 0.5a, 0.5 − 0.5a) which
provides the optimum solution of (15) as h̃1 =
(1.5, 0.5−0.5a, 0.5−0.5a), h̃2 = (0.7, 0.5−0.5a, 0.5−0.5a)
and max z̃1 ≈ (1.27, 0.5− 0.5a, 0.5− 0.5a).

Sub-problem II

max z̃2 ≈ 2̃h̃1 + 3̃h̃2

1̃h̃1 + 1̃h̃2 + 7̃

subject to 1̃h̃1 + 2̃h̃2 ≼ 3̃

3̃h̃1 + 2̃h̃2 ≼ 6̃

and h̃1, h̃2 ≽ 0̃

(17)

The corresponding system of linear inequalities is given by

z̃2 − (2, 0.1− 0.1a, 0.1− 0.1a)ỹ1

− (3, 0.3− 0.3a, 0.3− 0.3a)ỹ2 ≼ (0, 0, 0)

− (1, 0.2− 0.2a, 0.2− 0.2a)ỹ1

− (1, 0.1− 0.1a, 0.1− 0.1a)ỹ2

− (7, 0.1− 0.1a, 0.1− 0.1a)t̃ ≼ −(1, 0, 0)

(1, 0.1− 0.1a, 0.1− 0.1a)ỹ1 + (2, 0, 0)ỹ2

− (3, 0.1− 0.1a, 0.1− 0.1a)t̃ ≼ (0, 0, 0)

(3, 0.1− 0.1a, 0.1− 0.1a)ỹ1 + (2, 0, 0)ỹ2

− (6, 0.1− 0.1a, 0.1− 0.1a)t̃ ≼ (0, 0, 0)

− (1, 0, 0)ỹ1 ≼ (0, 0, 0)

(18)

On applying the fuzzy version of GEA, the solution of the
system (18) is ỹ1 = (0.164, 0.3− 0.3a, 0.3− 0.3a), ỹ2 =
(0.08, 0.3 − 0.3a, 0.3 − 0.3a), t̃ = (0.108, 0.3 − 0.3a, 0.3 −
0.3a) and z̃2 = (0.568, 0.3 − 0.3a, 0.3 − 0.3a) which
provides the optimum solution of (17) as h̃1 = (1.5, 0.3 −
0.3a, 0.3 − 0.3a), h̃2 = (0.7, 0.3 − 0.3a, 0.3 − 0.3a) and
max z̃2 ≈ (0.568, 0.3− 0.3a, 0.3− 0.3a).

Using the optimum values of the above subproblems (15)
and (17), the given FFMOLFPP (14) is converted to an
equivalent single objective FFLPP as

max z̃ ≈ (4.892, 0.5− 0.5a, 0.5− 0.5a)h̃1

+ (7.432, 0.3− 0.3a, 0.3− 0.3a)h̃2

− (12.866, 0.5− 0.5a, 0.5− 0.5a)

subject to

(1, 0.1− 0.1a, 0.1− 0.1a)h̃1 + (2, 0, 0)h̃2

≼ (3, 0.1− 0.1a, 0.1− 0.1a)

(3, 0.1− 0.1a, 0.1− 0.1a)h̃1 + (2, 0, 0)h̃2

≼ (6, 0.1− 0.1a, 0.1− 0.1a)

− (1, 0, 0)h̃1 ≼ (0, 0, 0)

− (1, 0, 0)h̃2 ≼ (0, 0, 0)

(19)

It can be reduced to a system of linear inequalities as

z̃ − (4.892, 0.5− 0.5a, 0.5− 0.5a)h̃1

− (7.432, 0.3− 0.3a, 0.3− 0.3a)h̃2

≼ −(12.866, 0.5− 0.5a, 0.5− 0.5a)

(1, 0.1− 0.1a, 0.1− 0.1a)h̃1 + (2, 0, 0)h̃2

≼ (3, 0.1− 0.1a, 0.1− 0.1a)

(3, 0.1− 0.1a, 0.1− 0.1a)h̃1 + (2, 0, 0)h̃2

≼ (6, 0.1− 0.1a, 0.1− 0.1a)

− (1, 0, 0)h̃1 ≼ (0, 0, 0)

− (1, 0, 0)h̃2 ≼ (0, 0, 0)

(20)

On applying the fuzzy version of GEA, the system (20) is
solved which in turn provides the optimum solution of the
FFLPP (19) as h̃1 = (1.5, 0.5 − 0.5a, 0.5 − 0.5a), h̃2 =
(0.75, 0.5− 0.5a, 0.5− 0.5a).

By theorem (3.2) the optimum solution of the FFLPP (19)
is the Pareto optimum solution of the given FFMOLFPP
(14).

Hence the Pareto optimum solution of the given FF-
MOLFPP (14) is h̃1 = (1.5, 0.5− 0.5a, 0.5− 0.5a), h̃2 =
(0.75, 0.5 − 0.5a, 0.5 − 0.5a) with max z̃1 ≈ (1.27, 0.5 −
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0.5a, 0.5−0.5a) and max z̃2 ≈ (0.568, 0.5−0.5a, 0.5−0.5a).
For the same problem, the authors Durga Prasad Dash et
al.[4] have obtained only the crisp solution.
Also the following tables provides different solutions based
on the preference of the decision makers by choosing suitable
value for a.

TABLE III
h̃1, h̃2 FOR DIFFERENT VALUES OF ”a”

Value of a h̃1 h̃2

a=1 (1.5,1.5,1.5) (0.75,0.75,0.75)

a=0.5 (1.25,1.5,1.75) (0.5,0.75,1)

a=0.25 (1.125,1.5,1.875) (0.375,0.75,0.125)

a=0 (1,1.5,2) (0.25,0.75,1.25)

TABLE IV
z̃1, z̃2 FOR DIFFERENT VALUES OF ”a”

Value of a z̃1 z̃2

a=1 (1.27,1.27,1.27) (0.568,0.568,0.568)

a=0.5 (1.02,1.27,1.52) (0.318,0.568,0.818)

a=0.25 (0.895,1.27,1.645) (0.193,0.568,0.943)

a=0 (0.77,1.27,1.77) (0.068,0.568,1.068)

Fig. 3. Graphical representation of the optimal values of z̃1 for different
’a’

Fig. 4. Graphical representation of the optimal values of z̃2 for different
’a’

V. CONCLUDING REMARKS

We have developed a new approach for solving FFMOLFP
problems involving triangular fuzzy numbers. The proposed
method facilitate the decision maker to solve FFMOLFP
problem without transforming to an equivalent crisp problem.
It also allows the decision maker the freedom of selecting his
or her desired solution by choosing suitably the value of ”a”.
Two numerical examples are provided to show the efficiency
of the proposed approach. The proposed approach generates
less ambiguous results without losing the fuzzy nature of the
given problems.
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