
 

  

Abstract—The thinning algorithm is one of the fastest 

approaches to extract skeletons from an object, especially when 

adopting the parallel strategy. Skeletons are very useful 

descriptors and can be applied in many recognition fields. 

However, one of the drawbacks that limits the use of these 

techniques is that thinning algorithms are not robust against 

inner noise and outer noise, which may produce many 

unwanted branches. To alleviate the influence of noise and 

increase the robustness, pruning methods and scale-space 

methods have been proposed in the past, in which pruning 

methods are aimed at suppressing the outer noise (boundary 

noise) and scale-space methods are aimed at suppressing the 

inner noise (such as scratch noise and dithering noise). In this 

paper, we proposed an improved framework that can deal with 

both inner noise and outer noise. The experiment proved that 

the proposed framework has better visual effects than the 

existing pruning method and existing scale-space method. In 

addition, the proposed framework is an adaptive framework 

that does not require manual tuning of parameters. 

 
Index Terms—Adaptive framework, Thinning algorithm, 

Robustness against noise, pruning algorithm, scale-space 

filtering. 

 

I. INTRODUCTION 

hinning algorithms are classical digital approaches of 

skeletonization methods [1] used in many different fields 

of pattern recognition, such as biometric authentication using 

retinal images [2], fingerprint identification [3-5], and sketch 

matching [6]. Thinning algorithms have been used to extract 

skeletons (also named medial axes) from given patterns. The 

extracted skeletons are important descriptors because they 

provide a low-dimensional and intuitive shape representation. 

Thinning methods can be classified into iterative algorithms 

and noniterative algorithms [7]. Iterative algorithms can be 

further divided into parallel and sequential algorithms in 

terms of their computational efficiency [8, 9]. Desirable 

thinning algorithms should have some of the following 

properties: they should preserve the original pattern's 

connectivity, maintain its visual topology, and be robust 
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against noise [10]. Although many thinning algorithms have 

been proposed in the past and have satisfying requirements 

regarding connectivity and topology, they tend to be sensitive 

to noise [7,10-14]. 

There are two major noise types: outer noise (border noise) 

and inner noise (including scratch noise and dithering noise) 

[15]. All these noises greatly alter the resulting skeleton 

extracted by the thinning algorithm, which may enhance the 

difficulties of the later recognition operation. 

To reduce the interference of outer noise, the most popular 

type of method is based on skeleton pruning, and many 

pruning methods have been proposed in the past [16-20]. 

These methods can dramatically alleviate the influence of 

border noise and avoid producing redundant skeleton 

branches. However, these methods fail to suppress inner 

noise. 

Another type of method uses scale space to make thinning 

algorithms robust against noise [21-23]. These methods can 

offset the effects of all types of noise. However, these 

methods fail to remove all the redundant skeletal branches 

and sometimes may violate the connectivity and topology of 

the original pattern. 

In this paper, we propose a novel framework that combines 

the merits of the pruning method and methods based on scale 

space. The proposed framework can offset the influence of all 

types of noise but also maintain the connectivity and 

topology of the original patterns. In addition, the proposed 

framework has the property of automatic parameter tuning. 

The remainder of this paper is organized as follows: Some 

pruning algorithms and scale-space methods are briefly 

reviewed in Section 2. Then, the proposed framework is 

described in Section 3. Next, experiments are conducted in 

Section 4, and the results are discussed. Finally, the 

conclusion and future work are given in Section 5. 

II. RELATED WORKS 

A. Pruning Methods 

The purpose of the pruning methods is to delete unwanted 

skeleton branches caused by the boundary noise. They are 

generally applied after skeletonization. The core problem of 

the pruning method is finding a suitable saliency 

measurement for evaluating skeletal points or branches. The 

skeletal branches or points whose saliency measurement is 

above the given threshold will be preserved, and others will 

be removed. 

The most cited pruning method is the discrete curve 

evolution (DCE) pruning algorithm [16], which was 

proposed by Xiang Bai and his team. The DCE method first 

conducts contour partitioning and then removes all the 

skeleton points whose corresponding boundary points lie on 

the same contour segment. Generally, the DCE method 

requires manually tuning the parameter according to the input 

images, which costs much effort; therefore, an automatic 
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DCE framework was recently proposed [17]. The advantage 

of the DCE is that it maintains the skeleton topology, does not 

shift the original skeleton, and does not shrink the remaining 

branches. However, the obtained skeletons may contain some 

redundant points and some unimportant branches. 

 To overcome the mentioned drawbacks and obtain a better 

skeleton, Wei Shen proposed a pruning method based on the 

bending potential ratio (BPR) [18], in which the deletion 

decision of a skeletal branch depends on the context of the 

boundary segment that corresponds to the branch. As a 

saliency measure, BPR can better evaluate the contribution of 

the boundary segment to the overall shape. The skeleton 

obtained by their pruning method was proven to be medially 

placed and insensitive to boundary noise. 

Another interesting pruning method is based on 

information fusion, which was proposed by Liu et al. [19]. In 

their opinion, different objective measurements have 

different advantages and limitations. Therefore, they 

proposed skeleton pruning based on various measurements of 

branch significance, including region reconstruction, contour 

reconstruction and visual contribution. The merits of their 

method are that they are stable and robust to boundary noise 

and can effectively generate multiscale skeletons according 

to visual judgment. 

Recently, a skeleton pruning method based on saliency sort 

[20] was proposed by Guo et al. Their method aims to 

overcome the flaw of the saliency measures of existing 

pruning methods, which are not intuitive and have difficulty 

finding a suitable threshold. The results proved that their 

method is simple for conducting manual tuning and can 

generate a satisfying skeleton. 

B. Scale-Space Method 

The scale-space method generally conducts the noise 

filtering operation on the original pattern by using a Gaussian 

filter before skeletonization to degrade the influence of the 

noise. 

The advantage of the scale-space method is that it can deal 

with all three types of noise to some extent. The anti-noise 

ability of the scale-space methods depends on the value of the 

smoothing parameter σ, which is used in the Gaussian filter. 

A larger value of σ denotes that it can filter out larger noises, 

but the original pattern may suffer deformation, which may 

cause a change in the partial topology of the skeleton. 

Therefore, existing scale-space methods employ various 

judgment conditions to find a suitable σ, by which most of the 

noise can be filtered out and the topology of the original 

pattern can be maintained. 

Hoffman and Wong proposed a scale-space method [21] 

for thinning binary and grayscale images. Their method first 

yields filtered versions of an image and then extracts the 

union of topologically significant points, which include peak, 

ridge and saddle points. The skeleton is formed by these 

extracted pixels, which are also named “The Most Prominent 

Ridge-Line pixels (MPRL)”. The sensitivity of the skeleton 

to noise strongly depends on the parameter manually set by 

the user. 

Cai presented a scale-space method based on oriented 

Gaussian filters [22] to decrease the influence of noise caused 

by pen perturbations and scanning of documents and images, 

during thinning of handwriting and fingerprint images. In his 

method, all the pixels are first classified into edges, valleys 

and ridges by using oriented Gaussian filters, and then noise 

points are removed by trimming negative parts of ridge 

energy images. Finally, skeletons can be extracted based on 

the smooth intensity surfaces of ridge energy images and 

principal directions. 

Houssem Chatbri and Keisuke Kameyama proposed an 

adaptive thinning framework (ATF) [23] to make thinning 

algorithms robust against noise in sketch images. Their 

framework applied scale-space filtering to produce multiple 

representations of an original pattern within multiple scales. 

Then, their framework estimates the optimal filtering scale 

automatically according to the value of the sensitivity 

measure conducted in their framework. In addition, the 

authors also note that any thinning algorithm can be used in 

their framework. Experiments have proven that their 

framework is robust against different types of noise that exist 

in sketch images. 

C. Summary 

Both the pruning method and the scale-space method can 

suppress the influence of noise and help to produce a clean 

skeleton. However, they have different advantages and 

disadvantages and are applied at different stages. The pruning 

methods are generally applied after skeletonization, whereas 

the scale-space methods are applied before skeletonization. 

Therefore, it is very promising to propose a framework that 

combines the merits of the two methods by introducing both a 

pruning procedure and a scale-space procedure. 

III. PROPOSED FRAMEWORK 

The proposed framework has 2 main procedures: The 

scale-space procedure and the post -pruning procedure. The 

scale-space procedure automatically determines a suitable 

smooth parameter σ that can filter out the inner noise and 

avoid significant deformation. This procedure is the modified 

version of the adaptive thinning framework [23] mentioned 

in the previous section. The post-pruning procedure is an 

automatic pruning method based on the DCE pruning method 

that computes the relative reconstruction increment between 

skeletons to select a suitable parameter to control the pruning 

power. 

A. Scale-Space Procedure 

The core of the scale-space procedure is based on the 

Gaussian filter, which is defined as: 
2
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where σ is the smooth parameter that controls the scale, 

and x and y are pixel coordinates. 

The proposed procedure works as follows: First, we blur 

the input image I and obtain a grayscale image IG by using a 

Gaussian filter of scale σi. Then, IG is binarized, and a binary 

image IB is obtained. Next, we use an embedded thinning 

algorithm to extract the skeleton Ith from IB. Finally, a 

sensitivity measure Si is calculated on skeleton Ith. The 

Gaussian scale σi is then increased, and the entire process is 

repeated. The output of the scale-space procedure is a 

skeleton image having the minimum value of the sensitivity 

measure, which is denoted by Ith(min). The pseudocode of this 

procedure is presented in Algorithm 1. 
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The sensitivity measure is used to evaluate the skeleton 

and select the minimum thinned image from the scale space. 

We modify the original sensitivity measure used in [24]. 
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Here, n is the number of foreground pixels in Ith. N and M 

are the number of rows and columns of the image Ith. TBW is 

the number of transitions from foreground pixels to 

background pixels in the 8-neighborhood window of (i, j) 

(see Fig. 1), which is defined as follows: 
8
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Formula (3) is applied to all the foreground pixels in the 

skeleton, and the first condition and second condition are 

used to penalize those foreground pixels of the skeletal 

image, which are introduced by the filters rather than 

existing in the original pattern. The difference between them 

is that the second condition is only aimed at penalizing the 

skeletal points that are outside the edge of the pattern. Here, 

FBD is an image whose foreground pixels consist of the 

background pixels that are not surrounded by the foreground 

pixels in IB(0).  

P8 P1 P2

P7 P0 P3

P6 P5 P4

 
Fig.1 Definition of the 8-neighborhood window 

 

The third condition is used to maintain that the topology of 

a filtered binary image is the same as that of the original 

image, so it is a global condition. The former part of the 

condition is used to limit the dramatic deformation of the 

pattern caused by a larger smooth parameter because a larger 

deformation may cause an alteration of the topology. If there 

is a larger difference between the filtered image and the 

original image (above 2%), a penalty needs to be introduced. 

The latter part of the condition is to compare the number of 

connected components constituted by the foreground pixels 

between the filtered binary image and the original binary 

image. Because it is easy to consider that if the number of 

connected components of two images is different, their 

topology is also unequal. Here, Area() is a function that 

counts all the foreground pixels in a given binary image. 

Region() is a function that counts the total number of distinct 

connected components. 

The output of the scale-space procedure is a skeletal image 

that has the minimal value of Sm(Ith). 

B.  Post-pruning Procedure 

The post-pruning procedure is a modification of the DCE 

pruning method that introduces the concept of a relative 

reconstruction increment to enable the automatic selection of 

a reasonable pruning strength. For convenience, the details of 

the implementation of DCE pruning are not covered in this 

section. Here, it is only considered as a black box whose 

inputs are the pruning strength k, skeleton Ith, and the 

corresponding contour C and the output is a pruned skeleton 

If. 

The proposed procedure works as follows: First, it is 

necessary to compute the number of skeleton branches of the 

original skeleton and denote it as Nb. The DCE pruning 

algorithm is only called when the number of skeletal 

branches is not less than three. Here, let us assume that Nb is 

greater than three. Then, we call the DCE algorithm with 

different pruning parameters, which will increment from 3 to 

Nb, and a series of various pruned skeletons is obtained. 

These various skeletons reconstruct patterns with different 

areas. It is obvious that the area of the patterns constructed by 

the skeleton with the minimum number of branches is the 

smallest, whereas that of the skeleton with Nb number of 

branches is the largest. The pattern reconstructed by the 

skeleton with the minimum branches is named the initial 

pattern, and this skeleton is named the initial skeleton. Except 

for the initial skeleton, for each later skeleton, it is necessary 

to calculate the differences in the area between the patterns 

reconstructed by the current skeletons and those 

reconstructed by the former skeletons. This area difference is 

called the reconstruction increment of the skeleton in this 
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paper. In addition, the relative reconstruction increment is a 

value that divides the reconstruction increment by the current 

area of reconstruction. Finally, the default result skeleton is 

set as the initial skeleton and compared with the later skeleton. 

If the relative reconstruction increment is above a given value 

(here, we set it as 0.02), then we will update the result 

skeleton with the latter skeleton and continue conducting the 

comparison. Otherwise, we only maintain the result skeleton 

and continue conducting the comparison. The pseudocode of 

this procedure is presented in Algorithm 2. 

 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Platform 

1. Hardware 

The computations were conducted on a standard PC laptop 

with a Core i7-4720Q CPU (2.6 GHz) and 16 GB memory. 

2. Software 

All experiments were performed in MATLAB R2017b. 

The operating system of the PC was Windows 8.1. 

B. Basic Information of Experiments  

1. Dataset 

To objectively evaluate the performance of the proposed 

framework, all the test images are obtained from the 

well-known dataset MPEG7, which includes 70 different 

classes, each class with 20 images. 

2. Implemented Thinning Methods for the Experiments 

The experiments were conducted using four latest thinning 

algorithms: the SIPS method [12], MZS method [14], IOPTA 

method [13] and FPSA method [11].  

The SIPS method conducts thinning of binary images by 

repeating two sub-iterations. In each sub-iteration, the 

candidate pixels that match the deletion templates or logical 

conditions but do not match the restoring templates are 

removed. 

The MZS method is a parallel thinning algorithm that 

combines the property of the sub-iterative approach and 

subfield approach. The removal of the candidate pixels not 

only depends on the predefined logical conditions but also 

depends on the counts of the past iterations. 

The IOPTA thinning method is a one-pass thinning 

method in which eight elimination templates and six 

restoring templates are used. The merit of the one-pass 

thinning method is that it requires fewer iterations than other 

methods to extract skeletons from binary images. 

FPSA is the latest one-pass thinning method. It introduces 

a series of restoring templates, compulsory deletion 

templates, and extra deletion templates to remove the pixels 

layer-by-layer. In addition, the FPSA has proven to have 

good performance in terms of (8,4) connectivity preservation. 

3. Evaluation measures 

To evaluate the performance of the topology preservation 

of the proposed framework, we calculate the measures T1 [25] 

and T2 [26]. The definitions of T1 and T2 are shown in 

Formulas (6) and (7). 

1

rea( )
=

( )

MDA I
T

Area I
                                   (6) 

IMD is the image reconstructed from the skeleton by 

referring to the max disc of the skeleton point. Area() is a 

function that counts all foreground pixels in a given binary 

image, which was introduced in the previous section. I is the 

original image. The value of T1 is between 0 and 1. Larger 

values denote that the result well preserves the original 

topology, whereas small values near 0 express that there is 

significant distortion. 

2

1
=1-

2

th

c

N
T

N
−                                      (7) 

Nth is the number of skeletal pixels, and Nc is the number 

of contour pixels in the original image. The idea behind this 

measure is that the original binary image generally has a 

relatively smooth contour, whose number of foreground 

pixels may be roughly twice the number of foreground 

pixels in the skeleton. To make the values limited in the 

range of 0 to 1, the measures are normalized. The T2 value 

and distortion are negatively correlated, whereas the T2 

value and topology preservation are positively correlated. 

In addition, we count the total number of end-points (EPs) 

and cross-points (CPs) in the final skeleton for convenience 

of comparison. 

4. Introduce of the Experiment 

We conducted two experiments to illustrate the 

performance of the proposed framework.  

The first experiment aims to analyze the effects by using 

different pruning methods; therefore, we compare the 

results of the pruned skeleton processed by the automatic 

DCE method [17], the adaptive thinning framework [23], 

and the proposed framework. In the first experiment, the 

embedded thinning algorithm is the FPSA thinning 

algorithm. 

The second experiment investigates the improvement 

degree of the robustness for different thinning algorithms 

caused by introducing the proposed framework. 

C. First Experiment. 

Figs. 2 to 6 present the results by using different pruning 

methods for different images. Note that the original pattern 
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and skeleton are colored gray and black, respectively. 

    
(a) (b) (c) (d) 

Fig. 2.  Resulting skeleton from Camel-17: (a) Original skeleton directly extracted by FPSA; (b) pruned skeleton by using the automatic DCE method;(c) pruned 

skeleton by using the adaptive thinning framework; (d) pruned skeleton by using the proposed framework. 

  
  

(a) (b) (c) (d) 
Fig. 3.  Resulting skeleton from Camel-18: (a) Original skeleton directly extracted by FPSA; (b) pruned skeleton by using automatic DCE method; (c) pruned 

skeleton by using the adaptive thinning framework; (d) pruned skeleton by using the proposed framework. 

    
(a) (b) (c) (d) 

Fig.4.  Resulting skeleton from Camel-8: (a) Original skeleton directly extracted by FPSA; (b) pruned skeleton by using the automatic DCE method; (c) Pruned 

skeleton by using the adaptive thinning framework; (d) pruned skeleton by using the proposed framework. 

    
(a) (b) (c) (d) 

Fig.5.  Resulting skeleton from Turtle-12: (a) Original skeleton directly extracted by FPSA; (b) pruned skeleton by the using automatic DCE method;(c) pruned 
skeleton by using the adaptive thinning framework; (d) pruned skeleton by using the proposed framework. 

    
(a) (b) (c) (d) 

Fig.6.  Resulting skeleton from Device 0-10: (a) Original skeleton directly extracted by FPSA; (b) pruned skeleton by using the automatic DCE method;  

(c) pruned skeleton by using the adaptive thinning framework; (d) pruned skeleton by using the proposed framework.  
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From the perspective of the visual effects, it is obvious 

that the method based on automatic DCE outperformed the 

adaptive thinning framework in two aspects. The first is that 

the method based on the automatic DCE method can 

completely remove the unwanted branches (see Fig. 2(b) 

and Fig. 3(b)). In contrast, the adaptive thinning framework 

sometimes may only shorten the unnecessary branches (see 

Fig. 3(c)). In addition, the method based on automatic DCE 

can maintain the original skeleton connectivity, which may 

alter the adaptive thinning framework. Fig. 2(c) is a good 

example. It is obvious that the tail of the camel and its leg 

compose a ring, which alters the original structure. However, 

in terms of the inner noise, the adaptive thinning framework 

has a better result than the automatic DCE method. In Fig. 5, 

it is easy to observe that the skeleton in (c) is more concise 

than that in (b). The proposed framework combines the 

advantages of these two methods. From Figs. 2 to 6, it can 

be seen the proposed framework can well preserve the 

original connectivity, totally delete the unwanted branches, 

and suppress the inner noise. Table 1 presents a quantitative 

comparison of these images. We can see that compared with 

the pruned skeletons, the original skeletons have more EP 

and CP, so their T1 and T2 are closer to 1. The function of 

the pruning method or framework is to remove unwanted 

branches, so in the pruned skeletons, all the parameters are 

decreased to different degrees. 

TABLE I 

QUANTITATIVE COMPARISON OF DIFFERENT IMAGES 

 
Parameter Original Skeleton Pruned Skeleton using DCE Pruned Skeleton using ATF Pruned Skeleton using the proposed Method  

Camel-17 

EP 10 8 6 8 

CP 8 6 6 6 

T1 0.8859 0.8761 0.8520 0.8756 
T2 0.7853 0.7762 0.7775 0.7779 

Camel-18 

EP 10 7 8 7 

CP 8 5 6 5 
T1 0.9030 0.8835 0.8739 0.8738 

T2 0.8370 0.8073 0.8111 0.8035 

Camel-8 

EP 12 10 10 10 

CP 10 8 10 8 

T1 0.9138 0.9103 0.9104 0.9113 
T2 0.8301 0.8121 0.8130 0.8076 

Turtle-12 

EP 7 2 4 4 
CP 47 44 2 2 

T1 0.9273 0.9189 0.6402 0.6403 

T2 0.9091 0.9321 0.6808 0.6808 

Device0-10 

EP 20 5 5 5 

CP 22 7 3 3 
T1 0.9616 0.8160 0.7861 0.7965 

T2 0.9498 0.7164 0.6827 0.6847 

 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 7.  Resulting skeleton from Device4-11: (a) Skeleton extracted by SIPS; (b) skeleton extracted by MZS;(c) skeleton extracted by IOPTA;  

(d) skeleton extracted by FPSA; (e) skeleton extracted by SIPS with the proposed framework; (f) skeleton extracted by MZS with the proposed 
framework; (g) skeleton extracted by IOPTA with the proposed framework; (h) skeleton extracted by FPSA with the proposed framework. 
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(a) (b) (c) (d) 

 
   

(e) (f) (g) (h) 
Fig. 8.  Resulting skeleton from Device4-12: (a) Skeleton extracted by SIPS; (b) skeleton extracted by MZS; (c) skeleton extracted by IOPTA; 

(d) skeleton extracted by FPSA; (e) skeleton extracted by SIPS with the proposed framework; (f) skeleton extracted by MZS with the proposed framework; 
(g) skeleton extracted by IOPTA with the proposed framework; (h) skeleton extracted by FPSA with the proposed framework. 

 

  
  

(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 9.  Resulting skeleton from Device4-17: (a) Skeleton extracted by SIPS; (b) skeleton extracted by MZS; (c) skeleton extracted by IOPTA; 

(d) skeleton extracted by FPSA; (e) skeleton extracted by SIPS with the proposed framework; (f) skeleton extracted by MZS with the proposed framework; 
(g) skeleton extracted by IOPTA with the proposed framework; (h) skeleton extracted by FPSA with the proposed framework. 

 

D. Second Experiment. 

Figs. 7-9 show the results of four different thinning 

algorithms when used directly and when plugged into the 

proposed framework. From Fig. 7, in which the input image 

is smooth and without any noise, it can be seen there is no 

prominent difference between the results when using the 

thinning algorithms alone and when they are embedded in the 

proposed framework. All of them can produce relatively 

satisfying skeletons. However, in Fig. 8 and Fig. 9, there are 

many boundary noises in the input image, and the skeletons 

processed by the thinning algorithms combined with the 

framework have fewer skeletal branches than those processed 

by using the thinning algorithms alone. In addition, it is 

obvious that the proposed framework can improve the 

stability of the extracted skeleton if we plug the thinning 

algorithm into the proposed framework. Therefore, the 

proposed framework can effectively offset the influence 

caused by the noise. 

V. CONCLUSION AND FUTURE WORKS 

In this paper, we proposed a novel framework for 

enhancing the robustness of thinning algorithms. Our 

framework consists of a scale-space procedure and a 

post-pruning procedure. The scale-space procedure is used 

to suppress the inner noise, and the post-pruning procedure 

enhances the robustness to the boundary noise. Therefore, 

the proposed framework can deal with different types of 

noise. The first experiment proved that the proposed 

framework has better performance than existing pruning 

methods. In addition, the second experiment proved that any 

thinning algorithm could be plugged into the proposed 

framework to improve the robustness. Furthermore, the 

proposed framework is an adaptive framework without 

manual tuning, so it is very convenient for different 

applications.  
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In the future, we would like to apply our framework in 

parallel devices such as GPUs and FPGAs to achieve a 

satisfying processing speed.  

REFERENCES 

[1] P. K. Saha, G. Borgefors, and G. Sanniti di Baja, “A survey on 

skeletonization algorithms and their applications,” Pattern Recognition 
Letters, vol. 76, pp. 3-12, 2016. 

[2] C. G. Owen and S. A. Barman, “Blood vessel segmentation 

methodologies in retinal images-A survey,” Computer Methods 
Programs Biomed, vol. 108, no. 1, pp. 407-433, 2012. 

[3] M. Fons, F. Fonsaa and E. Canto, “Fingerprint Image Processing 

Acceleration Through Run-Time Reconfigurable Hardware,” IEEE 
Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 12, 

pp. 991-995, Dec. 2010.  
[4] M. Sepasian, W. Balachandran, and C. Mares, "Image enhancement for 

fingerprint minutiae-based algorithms using CLAHE, standard 

deviation analysis and sliding neighborhood," Lecture Notes in 
Engineering and Computer Science: Proceedings of The World 

Congress on Engineering and Computer Science 2008, WCECS 2008, 
22-24 October, 2008, San Francisco, USA, pp. 22-24. 

[5] I. G. Babatunde, A. O. Charles, A. B. Kayode and O. Olatubosun, "A 

multi-level model for fingerprint image enhancement, "Lecture Notes 
in Engineering and Computer Science: Proceedings of The 

International Multiconference of Engineers and Computer Scientists 
2012, IMECS 2012, 14-16 March, 2012, Hong Kong, pp.155-174. 

[6] A. Chalechale, G. Naghdy and A. Mertins, “Sketch–based image 

matching Using Angular partitioning,” IEEE Transactions on Systems, 
Man, and Cybernetics-Part A: Systems and Humans, vol. 35, no. 1, pp. 

28-41, Jan. 2005. 
[7] Jun Ma, Xun-Huan Ren, and T. V. Yurevich, “A Novel Fast Iterative 

Parallel Thinning Algorithm,” in Proceedings of the 2020 4th 

International Conference on Vision, Image and Signal Processing, 
2020. 

[8] L. Lam, S. W. Lee and C. Y. Suen, “Thinning methodologies–a 
comprehensive survey,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 14, no. 9, pp. 869-885, Sep. 1992. 

[9] B. B. Lynda, B. Solaiman, and A. Tari, “Implementation and 
comparison of binary thinning algorithms on GPU,” Computing 101, 

pp. 1091-1117, 2019. 
[10] P. Tarabek, “A robust parallel thinning algorithm for pattern 

recognition,” 2012 7th IEEE International Symposium on Applied 

Computational Intelligence and Informatics (SACI), pp. 75-79, 2012. 

[11] Jun Ma, Xun-Huan Ren, T. V. Yurevich, and V. K. Kanapelka, “A 

novel fully parallel skeletonization algorithm,” Pattern Analysis 
Application, 2021. 

[12] Jun Ma, Xun-Huan Ren, T. V. Yurevich, and V. K. Kanapelka, “A 

Novel Sub–Iterative Parallel Skeletonization Method,” Journal of 
Computers (Taiwan), vol. 32, no. 6, pp. 83-97, 2021. 

[13] Rui-Zheng Wang, et al., “Fingerprint Refinement Model Based on 
Improved OPTA,” Journal of Computers (Taiwan), pp. 274-283, 2020. 

[14] L. Ben Boudaoud, B. Solaiman, and A. Tari, “A modified ZS thinning 

algorithm by a hybrid approach,” Vision Computer, vol. 34, no. 5, pp. 
689-706, 2018. 

[15] H. Chatbri and K. Kameyama, “Towards making thinning algorithms 
robust against noise in sketch images,” in Proceedings of the 21st 

International Conference on Pattern Recognition (ICPR2012), 2012, 

pp. 3030-3033. 
[16] X. Bai, L. J. Latecki and W. Liu, “Skeleton Pruning by Contour 

Partitioning with Discrete Curve Evolution,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 29, no. 3, pp. 449-462, 

Mar. 2007. 

[17] Jun Ma, Xun-Huan Ren, T. V. Yurevich, and V. K. Kanapelka, “An 

automatic pruning method for skeleton images”, in Pattern Recognition 

and Information Processing (PRIP'2021): Proceedings of the 15th 
International Conference, 2021, pp.232-235. 

[18] Shen Wei, Xiang Bai, Rong Hu, Hong-Yuan Wang, and L. J. Latecki, 

“Skeleton growing and pruning with bending potential ratio,” Pattern 
Recognition, vol. 44, no. 2, pp. 196-209, 2011. 

[19] Hong-Zhi. Liu, Zhong-Hai. Wu, Xing Zhang, and D. F. Hsu, “A 
skeleton pruning algorithm based on information fusion,” Pattern 

Recognition Letters, vol. 34, no. 10, pp. 1138-1145, 2013. 

[20] Si-yu Guo, Ping-ping Hu, Zhi-gang Ling, He Wen and Min Liu, “A 
skeleton pruning method based on saliency sorting,” 2019 14th IEEE 

International Conference on Electronic Measurement & Instruments 
(ICEMI), 2019, pp. 593-599. 

[21] M. E. Hoffman and E. K. Wong, “Scale-space approach to image 

thinning using the most prominent ridge-line in the image pyramid data 

structure,” in Photonics West’98 Electronic Imaging, International 
Society for Optics and Photonics, 1998. 

[22] J. Cai, “Robust Filtering-Based Thinning Algorithm for Pattern 
Recognition,” The Computer Journal, vol. 55, no. 7, pp. 887-896, 2012. 

[23] H. Chatbri and K. Kameyama, “Using scale space filtering to make 

thinning algorithms robust against noise in sketch images q,” Pattern 
Recognition, vol. 42, pp. 1-10, 2014. 

[24] R. W. Zhou, C. Quek, and G. S. Ng, “A novel single–pass thinning 
algorithm and an effective set of performance criteria,” Pattern 

Recognition Letters, vol. 16, no. 12, pp. 1267-1275, 1995. 

[25] B. K. Jang and R. T. Chin, “One-pass parallel thinning: analysis, 
properties, and quantitative evaluation,” IEEE Transactions on Pattern 

Analysis and Machine Intelligence, vol. 14, no. 11, pp. 1129-1140, 
Nov. 1992. 

[26] J. Dong, W. Lin and C. Huang, “An improved parallel thinning 

algorithm,” in 2016 International Conference on Wavelet Analysis and 
Pattern Recognition (ICWAPR), 2016, pp. 162-167. 

Engineering Letters, 30:3, EL_30_3_25

Volume 30, Issue 3: September 2022

 
______________________________________________________________________________________ 




