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Abstract—We study Cohen-Grossberg BAM neural networks
with time delays and impulses. Via inverse function technique
and Leray-Schauder theorem, 2n+m periodic solutions for the
model are derived. Further, by constructing a suitable Lyapunov
function, global exponential stability of periodic solutions of the
model is achieved.

Index Terms—Cohen-Grossberg; mixed delays; multiple pe-
riodic solutions; impulse.

I. INTRODUCTION

IN the past decades, since Cohen-Grossberg neural net-
works (CGNNs) with their various generalizations shows

their potential applications in classification, associative mem-
ory, parallel computation and their ability to solve optimiza-
tion problems,the studies of CGNNs have attracted consider-
able research interests (see [1-6]). Pro- posed by Cohen and
Grossberg [1] in 1983, this class of neural networks can be
described as follows:

dxi
dt

= −ai(xi(t))
[
bi(xi(t))−

n∑
j=1

cji(t)gj [xj(t)]− Ii

]
,

where i = 1, 2, . . . , n.
At the same time, bidirectional associative memory (BAM)

neural network presented by Kosko [7] has also been applied
in many fields such as pattern recognition and automatic
control, image and signal processing. In recent years, many
investigations about the existence and stability of equilib-
rium of CGNNs and BAM neural networks. Recently, some
researchers begin to consider Cohen-Grossberg BAM neural
networks (see [8-11]).

In addition, experimental proofs show that time delays [12-
14] can affect the stability of neural networks and cause
some other dynamical behaviors (such as periodic, anti-
periodic and almost periodic oscillation, bifurcation, chaos,
etc). Moreover, the property of periodic oscillatory solutions
to neural networks is also of incredible importance and have
wide applications. In recent years, scholars have studied the
periodicity of neural networks, and they derive sufficient
conditions for the existence and stability of periodic solutions
to delayed BAM neural networks. For example, see [15-18],
and the references therein.
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In [19], Chen and Cao considered the following Cohen-
Grossberg BAM networks with distributed delays:

x′i(t) = −ai(xi(t))
[
bi(t, xi(t))−

m∑
j=1

pji(t)

×
∫ ∞

0

Kji(s)fj(t, λjyj(t− s)]ds− Ii(t)

]
,

y′j(t) = −cj(yj(t))
[
dj(t, yj(t))−

n∑
i=1

qji(t)

×
∫ ∞

0

Lij(s)gi(t, µixi(t− s)]ds− Jj(t)

]
,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. By using the
Lyapunov functional method and some analytical techniques,
the authors establishes some sufficient conditions for the
existence, uniqueness and global exponential stability of the
periodic solution for the system above.

In [20], the authors discussed a class of Cohen-Grossberg
BAM neural networks with periodic coefficients and mixed
delays as follows:

x′i(t) = −ai(xi(t))

×
{
αi(xi(t))−

m∑
j=1

[
pji(t)fj(yj(t− τji(t)))

+hji(t)

∫ t

−∞
Kji(t− s)fj(yj(s))ds

]
+ Ii(t)

}
,

y′j(t) = −bj(yj(t))

×
{
βj(yj(t))−

n∑
i=1

[
qij(t)gi(xi(t− σij(t)))

+wij(t)

∫ t

−∞
Nij(t− s)gi(xi(s))ds

]
+ Jj(t)

}
,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. By using M -matrix
theory and some analysis techniques, they investigate the
existence and exponential stability of periodic solutions for
this kind of neural networks.

The systems above are all continuous systems, which don’t
consider the dynamics behaviors of impulse points. However,
many evolution processes contain impulsive effects, where
their states are changed abruptly at certain moments of time.
The theory of impulsive differential systems have been devel-
oped by numerous mathematicians (see [21-25]). Impulsive
differential equations with or without delays have extensive
use like the application in biology, medicine, mechanics,
engineering, chaos theory and so on (see [26-28]). During
these years, plenty of scholars have focused their attention
on the dynamics of impulsive Cohen-Grossberg BAM neural
networks (see [29-32]).
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For example, in [33], Li considered the following Cohen-
Grossberg-type BAM neural networks with time-varying
delays and impulses:



x′i(t) = −ai(xi(t))
[
bi(xi(t))−

m∑
j=1

hij(t)

×fj(λjyj(t− τij(t)))− Ī

]
, t ̸= tk, t ≥ t0,

∆xi(tk) = Ik(xi(t
−
k )), k ∈ N ≜ {1, 2, . . . },

y′j(t) = −cj(yj(t))
[
dj(yj(t))−

n∑
i=1

wji(t)

×gi(µixi(t− σji(t)))− J̄

]
, t ̸= tk, t ≥ t0,

∆yj(tk) = Jk(yj(t
−
k )), k ∈ N ≜ {1, 2, . . . },

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. By using Lyapunov
functionals, the analysis method and impulsive control, Li
studies the existence, uniqueness and exponential stability
of the equilibrium point for the Cohen-Grossberg-type BAM
neural networks with time-varying delays.

In [34], Li and Zhang proposed the following impul-
sive Cohen-Grossberg-type BAM neural networks with dis-
tributed delays:



x′i(t) = −ai(xi(t))
[
bi(xi(t))−

m∑
j=1

cijgj(yj(t))

−
m∑
j=1

dij

∫ +∞

0

Kij(s)gj(yj(t− s))ds

−Ii
]
, t ̸= tk,

xi(t
+) = xi(t

−) + Pik(xi(t
−)), t = tk,

k ∈ N ≜ {1, 2, . . . }, i = 1, 2, . . . , n,

y′j(t) = −āj(yj(t))
[
b̄j(yj(t))−

n∑
i=1

c̄ji(t)fi(xi(t))

−
n∑

i=1

d̄ji

∫ +∞

0

K̄jifi(xi(t− s))ds

−Īj
]
, t ̸= tk,

yj(t
+) = yj(t

−) +Qjk(yj(t
−)), t = tk,

k ∈ N ≜ {1, 2, . . . }, j = 1, 2, . . . ,m.

some sufficient conditions ensuring the existence, unique-
ness and global exponential stability of equilibrium point for
the above system are obtained By establishing an integro-
differential inequality and employing the homeomorphism
theory.

Although many results on the existence of periodic solu-
tions to impulsive Cohen-Grossberg BAM neural networks
are already got, the results on the multiplicity of periodic
solutions for impulsive Cohen-Grossberg BAM neural net-
works with mixed delays are still absent. Therefore, new
sufficient conditions for the multiplicity of periodic solutions
to the following impulsive Cohen-Grossberg BAM are pro-

posed in this paper:

x′i(t) = −ai(xi(t))
[
αi(t, xi(t))

−
m∑
j=1

Pji(t)fj(t, yj(t− τji(t)))

−
m∑
j=1

Uji(t)λj

(∫ ∞

0

Xji(s)yj(t− s)ds

)
+ci(t)

]
, t > 0, t ̸= tk,

y′j(t) = −bj(yj(t))
[
βj(t, yj(t))

−
n∑

i=1

Qij(t)gi(t, xi(t− σij(t)))

−
n∑

i=1

Vij(t)µi

(∫ ∞

0

Yij(s)xi(t− s)ds

)
+dj(t)

]
, t > 0, t ̸= tk,

∆xi(tk) = xi(t
+
k )− xi(t

−
k ) = Iik(xi(tk)),

∆yj(tk) = yj(t
+
k )− yj(t

−
k ) = Jjk(yj(tk)),

(1.1)

where xi(t) and yj(t) are the activations of the ith neuron
in neural field Fx and the jth neuron in neural field Fy;
fj , gi, λj , µi denote the normal and the delayed activation
functions; Pji(t), Uji(t) denote the connection strengths of
the ith neuron on the jth neuron in neural field Fx at
time t − τji and t, respectively; Qij(t), Vij(t) denote the
connection strengths of the jth neuron on the ith neu-
ron in neural field Fy at time t − σij , t, respectively;
ci(t), dj(t) are the external input to Pji(t) and Qij(t) at
time t, respectively; the functions ai, bj represent two abstract
amplification functions; while the functions αi, βj represent
the self-excitation rate functions at time t; time delays τji(t)
and σij(t) correspond to the finite speed of the axonal
signal transmission at time t, respectively; xi(t+k ), xi(t

−
k ),

yj(t
+
k ), yj(t

−
k ) represent the right and left limit of xi(tk)

and yj(tk), respectively. {tk} is a sequence of real numbers
such that 0 < t1 < t2 < · · · < tk → ∞ as k → ∞,
i = 1, 2, . . . , n, j = 1, 2, . . . ,m, t > 0.

The initial conditions of (1.1) are of the form

xi(s) = φi(s), s ∈ [−τ, 0],

τ = max
1⩽i⩽n,1⩽j⩽m

{τji}, i = 1, 2, . . . , n,

yj(s̃) = ψj(s̃), s̃ ∈ [−σ, 0],

σ = max
1⩽i⩽n,1⩽j⩽m

{σij}, j = 1, 2, . . . ,m, (1.2)

where the function φ(s) = [φ1(s), φ2(s), . . . , φn(s)]
T ∈ Rn

and ψ(s̃) = [ψ1(s̃), ψ2(s̃), . . . , ψm(s̃)]T ∈ Rm are piecewise
continuous and bounded with respect to the norm

∥φ∥∞ = max
1⩽i⩽n

{
sup

θ∈[−τ,0]

|φi(θ)|
}
,

∥ψ∥∞ = max
1⩽j⩽m

{
sup

ϑ∈[−σ,0]

|ψj(ϑ)|
}
.

The main methods used in this paper is inverse function
technique, Leray-Schauder fixed point theorem [35]. Several
sufficient conditions are obtained for the existence of at least
2n+m periodic solutions for system (1.1).
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Let R+ = [0,+∞). Throughout this paper, we proposed
the assumption that:

(A1) Ui(t) > 0, Vi(t) > 0, Pji(t) > 0, Qij(t) > 0, ci(t)
and di(t) are continuous ω-periodic functions, ω > 0 is
a constant, i = 1, 2, . . . , n, j = 1, 2, . . . ,m. There are
positive constants U , Ū , V , V̄ , P , P̄ , Q and Q̄, such
that

U ≤ Ui(t) ≤ Ū , V ≤ Vi(t) ≤ V̄ ,

P ≤ Pji(t) ≤ P̄ , Q ≤ Qij(t) ≤ Q̄.

(A2) The delay kernels Xji, Yij : R+ → R+ are bounded,
piecewise continuous and satisfy∫ ∞

0

Xji(s)ds = 1 and ∃κ > 0,

s.t.
∫ ∞

0

Xji(s)e
κsds <∞,∫ ∞

0

Yij(s)ds = 1 and ∃υ > 0,

s.t.
∫ ∞

0

Yij(s)e
υsds <∞,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
(A3) The time-varying delays σij(t), τji(t) : R+ → R+

are continuously ω-periodic functions and there exist
positive constants σ̄ij , τ̄ji such that

σij(t) < σ̄ij , τji(t) < τ̄ji, ∀t > 0.

(A4) The jump operators

Ii = [Ii1, Ii2, . . . , Iin]
T : PC([0, tk],Rn) → Rn,

Jj = [Jj1, Jj2, . . . , Jjm]T : PC([0, tk],Rm) → Rm

are continuous.
(A5) {Iik}, {Jjk} and {tk} are ω-periodic sequence, i.e.,

there exists a positive integer l such that [0, ω]∩{tk, k ∈
N∗} = {t1, t2, . . . , tl}, we assume that tk+l = tk + ω,
Iik+l = Iik, Jjk+l = Jjk, k = 1, 2, . . . , i = 1, 2, . . . , n,
j = 1, 2, . . . ,m;

(A6) ai(x) and bj(y) are continuous and there exist positive
constants āi, ai, b̄j and bj such that 0 < ai ⩽ ai(x) ⩽
āi, 0 < bj ⩽ bj(y) ⩽ b̄j , x, y ∈ R, i = 1, 2, . . . , n,
j = 1, 2, . . . ,m;

(A7) αi(t, x) ∈ C(R2,R) and βj(t, y) ∈ C(R2,R) are ω-
periodic about the first argument. There is a positive
constant ᾱi, β̄j , αi, βj

such that

αi ≤ ∂αi(t, x)/∂x ≤ ᾱi and β
j
≤ ∂βj(t, y)/∂y ≤ β̄j ,

and αi(t, 0) = 0, βj(t, 0) = 0, i = 1, 2, . . . , n, j =
1, 2, . . . ,m.

The main contributions of this thesis are highlighted below.
(1) Because of the derivative theorem for inverse function
and the constant variation method, the original equation (1.1)
can be translated into integral equation (3.1). (2) Through
utilizing the Leray-Schauder theorem and several reasonable
assumptions, at least 2n+m periodic solutions for impulsive
Cohen-Grossberg BAM neural networks with mixed delays
are obtained. (3) Based on some suitable Lyapunov functions,
a unique ω-periodic solution of system (2.2) is acquired,

moreover, all solutions of system (2.2) can be converge
exponentially to its unique ω-periodic solution.

This paper consists of four parts. The other three are stated
below. In Section II, brief introduction of the basic notations
and assumptions are presented. In Section III, we bear out the
existence of the 2n+m periodic solutions of system (1.1). In
Section IV, by means of using Lyapunov function method, we
obtain some sufficient conditions which ensure the globally
stable of a unique periodic solution that belongs to some
special set for system (1.1). Finally, in Section V, an example
is given to illustrate the effectiveness of our main results.
Conclusions and future works are presented in Section VI.

II. PRELIMINARIES AND NOTATIONS

The transform system (1.1) and state some notations that
will be used in later are briefly introduced in this section.

From (A6), the antiderivative of 1/ai(xi) and 1/bj(yj)
exists. We choose an antiderivative hi(xi) of 1/ai(xi) and
an antiderivative zj(yj) of 1/bj(yj) that satisfies hi(0) = 0
and zj(0) = 0. Obviously, (d/dxi)hi(xi) = 1/ai(xi),
(d/dyj)zj(yj) = 1/bj(yj). Since ai(xi) > 0, bj(yj) > 0, we
obtain that hi(u) and zj(u) are strictly monotone increasing
about u(u ∈ R). In view of derivative theorem for inverse
function, the inverse function h−1

i (xi) of hi(xi) and z−1
j (yj)

of zj(yj) are differential, as well as (d/dxi)h
−1
i (xi) =

ai(xi) and (d/dyj)z
−1
j (yj) = bj(yj). From (A7), compo-

sition function αi(t, h
−1(u)) and βj(t, z−1(v)) are differen-

tiable. Denote ui(t) = hi(xi(t)), vj(t) = zj(yj(t)). It is easy
to see that u′i(t) = x′i(t)/ai(xi(t)), v

′
j(t) = y′j(t)/bj(yj(t))

and xi(t) = h−1
i (ui(t)), yj(t) = z−1

j (vj(t)), Substituting
these equalities into system(1.1), we get



u′i(t) = −αi(t, h
−1
i (ui(t)))

+
m∑
j=1

Pji(t)fj(t, z
−1
j (vj(t− τji(t))))

+
m∑
j=1

Uji(t)λj

(∫ ∞

0

Xji(s)z
−1
j (vj(t− s))ds

)
−ci(t), t ̸= tk,

v′j(t) = −βj(t, z−1
j (vj(t)))

+
n∑

i=1

Qij(t)gi(t, h
−1
i (ui(t− σij(t))))

+
n∑

i=1

Vij(t)µi

(∫ ∞

0

Yij(s)h
−1
i (ui(t− s))ds

)
−dj(t), t ̸= tk,

∆ui(tk) = hi[h
−1
i (ui(tk)) + Iik(h

−1
i (ui(tk)))]− ui(t

−
k )

≜ ri(ui(tk)), t = tk,

∆vj(tk) = zj [z
−1
j (vj(tk)) + Jjk(z

−1
j (vj(tk)))]− vj(t

−
k )

≜ δj(vj(tk)), t = tk,

(2.1)

where t > 0, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, k ∈ N .
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System (2.1) can be rewritten as

u′i(t) = −θi(t, ui(t))ui(t)

+
m∑
j=1

Pji(t)fj(t, z
−1
j (vj(t− τji(t))))

+
m∑
j=1

Uji(t)λj

(∫ ∞

0

Xji(s)z
−1
j (vj(t− s))ds

)
−ci(t), t ̸= tk,

v′j(t) = −φj(t, (vj(t))vj(t)

+
n∑

i=1

Qij(t)gi(t, h
−1
i (ui(t− σij(t))))

+
n∑

i=1

Vij(t)µi

(∫ ∞

0

Yij(s)h
−1
i (ui(t− s))ds

)
−dj(t), t ̸= tk,

∆ui(tk) = ri(ui(tk)), t = tk,

∆vj(tk) = δj(vj(tk)), t = tk,

(2.2)

where

θi(t, ui(t)) ≜ ∂αi(t, h
−1(u))/∂u|u=ξi ,

φj(t, (vj(t)) ≜ ∂βj(t, z
−1(v))/∂v|v=ζj ,

∂αi(t, h
−1(u))/∂u|u=ξi denotes the partial derivative of

αi(t, h
−1(u)) at point u = ξi, ∂βj(t, z−1(v))/∂v|v=ζj de-

notes the partial derivative of βj(t, z−1(v)) at point v = ζj ,
ξi is between 0 and ui(t), ζj is between 0 and vj(t),
t > 0, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, k ∈ N .

From (A6), (A7) and the definition of h−1(ui) and
z−1(vj), we obtain αi(t, h

−1(ui(t))) and βj(t, z
−1(vj(t)))

is strictly monotone increasing about ui(t) and vj(t), respec-
tively. Hence, θi(t, ui(t)) and φj(t, (vj(t)) is unique for any
ui(t) and vj(t), respectively, and continuous about ui(t) and
vj(t), respectively, therefore, from (A6) and (A7), we get

0 < pi ≜≤ aiαi ≤ θi(t, ui(t)) ≤ āiᾱi ≜ p̃i,

0 < qj ≜≤ bjβj
≤ φj(t, (vj(t)) ≤ b̄j β̄j ≜ q̃j .

Denoting I(1) = (1,+∞), I(−1) = (−∞,−1),
J(1) = (1,+∞), J(−1) = (−∞,−1), for every ε =
[ε1, . . . , εn; ε1, . . . , εm]T ∈ {±1}n+m, we define the Carte-
sian product

∆ε = I(ε1)×I(ε2)×· · ·×I(εn)×J(ε1)×J((ε2)×· · ·×J(εm).

The following hypothesis will be considered:
(H1) The activation functions λj(t) and µi(t) are globally

Lipschitz continuous, and Θj ,Φi denotes the Lipschitz
constant corresponding to the intervals (−∞,−1) and
(1,+∞), i.e.

|λj(u)− λj(v)| ≤ Θj |u− v|,

|µi(u)− µi(v)| ≤ Φi|u− v|,

for ∀u, v ∈ (−∞,−1) or ∀u, v ∈ (1,+∞), i =
1, 2, . . . , n, j = 1, 2, . . . ,m;

(H2) The activation functions fj(t, y) ∈ (R2, R) and
gi(t, x) ∈ (R2, R) are ω-periodic about the first ar-
gument. There are ω-periodic solutions γj(t), rj(t),

Πi(t) and πi(t) such that γj(t) = max
y∈R

|fj(t, y)|,
rj(t) = inf

y∈R
|fj(t, y)|, Πi(t) = max

x∈R
|gi(t, x)|, πi(t) =

inf
x∈R

|gi(t, x)| and there are positive ω-periodic solutions

Aj(t) and Bi(t) such that

|fj(t, y1)− fj(t, y2)| ≤ Aj(t)|y1 − y2|,

|gi(t, x1)− gi(t, x2)| ≤ Bi(t)|x1 − x2|,

for all x1, x2, y1, y2 ∈ R. Let γj = max |γj(t)|, rj =
inf |rj(t)|, Πi = max |Πi(t)|, πi = inf |πi(t)|, Āj =
max |Aj(t)| and B̄i = max |Bi(t)|, t > 0.

(H3) The activation functions µi and λj are bounded, for any
s ∈ R,

|µi(s)| ≤ 1 and |λj(s)| ≤ 1,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. There exists
π, r ∈ (0, 1) such that the functions µi and λj satisfy:

µi(s) ≥ π, λj(s) ≥ r if s ≥ 1,

and
µi(s) ≤ −π, λj(s) ≤ −r if s ≤ −1,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
(H4) The external input satisfies:

|ci(t)| ≤ P iiri + U iir −
∑
j ̸=i

(P̄jiγj + Ūji)− p̃i,

|dj(t)| ≤ Q
jj
πj + V jjπ −

∑
i̸=j

(Q̄ijΠi + V̄ij)− q̃j ;

(H5) For any k ∈ N; ε ∈ {±1}n+m, there exists Γik > 0
and Σjk > 0 such that if φ(t), ψ ∈ ∆ε

0 ≤ εiIik(φ) ≤ Γik, 0 ≤ εjJjk(ψ) ≤ Σjk,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

From the definition of h−1
i (u) and z−1

j (v), using Lagrange
mean-value theorem, for all x, y ∈ R, we gets

|h−1
i (x)− h−1

i (y)| = |ai(ξ)(x− y)| ≤ āi|x− y|,
|z−1

j (x)− z−1
j (y)| = |bj(ζ)(x− y)| ≤ b̄j |x− y|, (2.3)

where ξ and ζ is between x and y. Moreover, form (H5),
we have

|ri(ui(tk))|= |hi[h−1
i (ui(tk)) + Iik(h

−1
i (ui(tk)))]

−hi(xi(tk))| ≤
Γik

ai

and

|δj(vj(tk))|= |zj [z−1
j (vi(tk)) + Jjk(z

−1
i (vj(tk)))]

−zj(yj(tk))| ≤
Σjk

bj
,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
The initial condition of (2.2) are of the form

ui(θ) = hi(φi(θ)), θ ∈ [−τ, 0], i = 1, 2, . . . , n

vj(ϑ) = zj(ψj(ϑ)), ϑ ∈ [−σ, 0], j = 1, 2, . . . ,m,(2.4)

where τ = max
1⩽i⩽n,1⩽j⩽m

{τji}, σ = max
1⩽i⩽n,1⩽j⩽m

{σij}.
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III. EXISTENCE OF MULTIPLE SOLUTIONS FOR SYSTEM
(1.1)

Using Mawhin’s continuation theorem, we investigate the
existence of at least 2n+m periodic solution of system (1.1).

Lemma 1. The function x(t) =
(u1(t), u2(t), . . . , un(t), v1(t), v2(t), . . . , vm(t))T is an
ω-periodic solution of system (2.2) if and only if it is an
ω-periodic solution of the following

ui(t) =

∫ ω

0

G1
i (t, s)Hi(ui(s))ds

+
l∑

k=1

G1
i (t, tk)ri(ui(tk)),

vj(t) =

∫ ω

0

G2
j (t, s)Hj(vj(s))ds

+
l∑

k=1

G2
j (t, tk)δj(vj(tk)),

(3.1)

where

Hi(ui(t)) =
m∑
j=1

Pji(t)fj(t, z
−1
j (vj(t− τji(t))))− ci(t)

+

m∑
j=1

Uji(t)λj

(∫ ∞

0

Xji(s)z
−1
j (vj(t− s))ds

)
,

Hj(vj(t)) =
n∑

i=1

Qij(t)gi(t, h
−1
i (ui(t− σij(t))))− dj(t)

+
n∑

i=1

Vij(t)µi

(∫ ∞

0

Yij(s)h
−1
i (ui(t− s))ds

)
,

and

G1
i (t, s) =

1

1− e−
∫ ω
0

θi(r,ui(r))dr

×


e−

∫ t
s
θi(r,ui(r))dr, 0 ⩽ s ⩽ t ⩽ ω,

e−
( ∫ ω

0
θi(r,ui(r))dr−

∫ s
t
θi(r,ui(r))dr

)
,

0 ⩽ t ⩽ s ⩽ ω,

G2
j (t, s) =

1

1− e−
∫ ω
0

φj(r,vj(r))dr

×


e−

∫ t
s
φj(r,vj(r))dr, 0 ⩽ s ⩽ t ⩽ ω,

e−
( ∫ ω

0
φj(r,vj(r))dr−

∫ s
t
φj(r,vj(r))dr

)
,

0 ⩽ t ⩽ s ⩽ ω,

i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Proof: On the one hand, let tp ⩽ t ⩽ tp+1, p ⩽ l.
From the first expression of (2.2), we have[

ui(t)e
∫ t
0
θi(r,ui(r))dr

]′
= Hi(ui(t))e

∫ t
0
θi(r,ui(r))dr, (3.2)

Integrating (3.2) on intervals (0, t−1 ), (t
+
1 , t

−
2 ), . . . , (t

+
p , t),

and adding all of them, by the third expression of (2.2), we
obtain ∫ t

0

[
ui(s)e

∫ s
0
θi(r,ui(r))dr

]′
ds

=

∫ t

0

Hi(ui(s))e
∫ s
0
θi(r,ui(r))drds

+

p∑
k=1

∫ t+k

t−k

[
ui(s)e

∫ s
0
θi(r,ui(r))dr

]′
ds

=

∫ t

0

Hi(ui(s))e
∫ s
0
θi(r,ui(r))drds

+

p∑
k=1

ri(ui(tk))e
∫ tk
0 θi(r,ui(r))dr,

that is

ui(t) = ui(0)e
−

∫ t
0
θi(r,ui(r))dr

+

∫ t

0

Hi(ui(s))e
−

∫ t
s
θi(r,ui(r))drds

+

p∑
k=1

riui(tk)e
−

∫ t
tk

θi(r,ui(r))dr, (3.3)

where i = 1, 2, . . . , n.
Because ui(ω) = ui(0), from(3.3), we obtain

ui(0) =

∫ ω

0

e−
∫ ω
s

θi(r,ui(r))dr

1− e−
∫ ω
0

θi(r,ui(r))dr
Hi(ui(s))ds

+

l∑
k=1

riui(tk)
e
−

∫ ω
tk

θi(r,ui(r))dr

1− e−
∫ ω
0

θi(r,ui(r))dr
. (3.4)

Notice, assume there are t1, t2, . . . , tp impulse points in
(0, t], but there are t1, t2, . . . , tl impulse points in (0, ω].

Substituting (3.4) into (3.3), we have

ui(t) =

∫ t

0

[
e−

∫ t
0
θi(r,ui(r))dr

1− e−
∫ ω
0

θi(r,ui(r))dr
e−

∫ ω
s

θi(r,ui(r))dr

+e−
∫ t
s
θi(r,ui(r))dr

]
Hi(u(s))ds

+

∫ ω

t

e−
∫ t
0
θi(r,ui(r))dr

1− e−
∫ ω
0

θi(r,ui(r))dr

×e−
∫ ω
s

θi(r,ui(r))drHi(u(s))ds

+
l∑

k=1

ri(ui(tk))

[
e
−

∫ ω
tk

θi(r,ui(r))dr

1− e−
∫ ω
0

θi(r,ui(r))dr

×e−
∫ t
0
θi(r,ui(r))dr

]

+

p∑
k=1

ri(ui(tk))e
−

∫ t
tk

θi(r,ui(r))dr

=

∫ ω

0

G1
i (t, s)Hi(ui(s))ds

+
l∑

k=1

G1
i (t, tk)ri(ui(tk)), (3.5)

where i = 1, 2, . . . , n.
Similarly, we assume tq ⩽ t ⩽ tq+1, q ⩽ l. From the

second and forth expression of (2.2), and form the proof of
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ui(t), we obtain

vj(t) =

∫ ω

0

G2
j (t, s)Hj(vj(s))ds+

l∑
k=1

G2
j (t, tk)δj(vj(tk)),

where j = 1, 2, . . . ,m.
On the other hand, let x(t) be an ω-periodic solution of

(3.1). If t ̸= tk, k ∈ N , from (3.1), we can get

u′i(t) =

[ ∫ t

0

G1
i (t, s)Hi(ui(s))ds

+

∫ ω

t

G1
i (t, s)Hi(ui(s))ds

]′
t

=
e−

∫ t
t
θi(r,ui(r))dr

1− e−
∫ ω
0

θi(r,ui(r))dr
Hi(ui(t))

−e
−
( ∫ ω

0
θi(r,ui(r))dr−

∫ t
t
θi(r,ui(r))dr

)
1− e−

∫ ω
0

θi(r,ui(r))dr
Hi(ui(t))

+

∫ t

0

∂G1
i (t, s)

∂t
Hi(ui(s))ds

+

∫ ω

t

∂G1
i (t, s)

∂t
Hi(ui(s))ds

=Hi(ui(t))−
[ ∫ t

0

G1
i (t, s)Hi(ui(s))ds

+

∫ ω

t

G1
i (t, s)Hi(ui(s))ds

]
θi(t, ui(t))

=Hi(ui(t))− θi(t, ui(t))ui(t),

where i = 1, 2, . . . , n.
If t = tk, k ∈ N , then by the first expression of (3.1), we

obtain

ui(t
+
k )− ui(t

−
k )

=
l∑

k=1

G1
i (t

+
k , tk)ri(ui(tk))−

l∑
k=1

G1
i (t

−
k , tk)ri(ui(tk))

= ri(ui(tk)),

where i = 1, 2, . . . , n.
Similarly, we can also prove the vj(t) to satisfy the second

and forth expression of (2.2) and thus we get that, x(t) is
also an ω-periodic solution of system (2.2). This completes
the proof of Lemma (3.1).

Notice. According to 0 < pi ≤ θi(t, ui(t)) ≤ p̃i, 0 <
qj ≤ φj(t, (vj(t)) ≤ q̃j , we easily get

G1
i (t, s) ≤

epiω

1− e−piω
, G2

j (t, s) ≤
eqjω

1− e−qjω
,

1

p̃i
≤

∫ ω

0

G1
i (t, s)ds ≤

1

pi
,

1

q̃j
≤

∫ ω

0

G2
j (t, s)ds ≤

1

qj
,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Consider the Banach space X of piecewise continuous ω-

periodic functions

X = { x = (u1, . . . , un, v1 . . . , vm)T : ui = ui(t),

vj = vj(t) ∈ PC([0, ω],R),

ui(t+ ω) = ui(t), vj(t+ ω) = vj(t)},

endowed with the norm

∥x∥=
n∑

i=1

∥ui∥+
m∑
j=1

∥vj∥

= sup
t∈[0,ω]

( n∑
i=1

|ui(t)|+
m∑
j=1

|vj(t)|
)
, ∀ x ∈ X

and define the operator U : X → X given by U(x) =
(U(u1), . . . , U(un), U(v1) . . . , U(vm))T , where

U(ui(t)) =

∫ ω

0

G1
i (t, s)Hi(ui(s))ds+

l∑
k=1

G1
i (t, tk)ri(ui(tk)),

U(vj(t)) =

∫ ω

0

G2
j (t, s)Hj(vj(s))ds+

l∑
k=1

G2
j (t, tk)δj(vj(tk)),

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Denote x = (u, v)T , u = (u1, u2, . . . , un), v =

(v1, v2, . . . , vm) for ∀ x ∈ X .
Clearly, from Lemma (3.1) that x(t) = (u(t), v(t))T is an

ω-periodic solution of (2.2) if and only if it is a fixed point
of the operator U . For every set

ε = [ε1, ε2, . . . , εn; ε1, ε2, . . . , εm]T ∈ {±1}n+m,

we define the closed convex set

Kε = {x ∈ X : x = (u, v)T , εiui(t) ≥ 1, εjvj(t) ≥ 1},

where ∀t ∈ R, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
The following fixed point theorem can help prove our main

results in this section.

Theorem 1. (Leray-Schauder)[35]. Let X be a Banach
space, K ⊂ X a closed convex subset, B ⊂ X a bounded
subset, open in K, and x0 ∈ K a fixed element. Assume
that the operator U : B̄ → K is completely continuous and
satisfies the boundary condition

x ̸= (1− λ)x0 + λU(x), ∀x ∈ ∂B, λ ∈ (0, 1). (3.6)

Then the operator U has at least one fixed point in B̄.

Moreover, the following theorem, it based on from ([22]),
will be used.

Theorem 2. (Compactness criterion). The set F ⊂ X is
relatively compact if and only if the following hold:
(1) F is bounded, that is, there exists K > 0 such that

||x|| ≤ K, for any x ∈ F ;
(2) F is quasi-equicontinuous in [0, ω], i.e., for any ε > 0,

there exists δ > 0 such that for any x ∈ F , l ∈ N∗,
T1, T2 ∈ (tl−1, tl] ∩ [0, ω], such that T1 − T2 < δ, one
has ||x(T1)− x(T2)||l < ε.

Lemma 2. Let ε ∈ {±1}n+m. If (H1) − (H2) holds, the
operator U is continuous on Kε.

Proof: Let ∀ x,y ∈ Kε ⊂ X , x = (u, v)T , y =
(ũ, ṽ)T , then

∥x− y∥=
n∑

i=1

∥ui − ũi∥+
m∑
j=1

∥vj − ṽj∥

= sup
t∈[0,ω]

( n∑
i=1

|ui(t)− ũi(t)|+
m∑
j=1

|vj(t)− ṽj(t)|
)
.
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By means of (H1)−(H2), inequality (2.3) and assumption
(A2), we first evaluate:

|Hi(ui(t))−Hi(ũi(t))|

≤
m∑
j=1

|Pji(t)||fj(t, z−1
j (vj(t− τji(t))))

−fj(t, z−1
j (ṽj(t− τji(t))))|

+
m∑
j=1

|Uji(t)|
∣∣∣∣λj(∫ ∞

0

Xji(s)z
−1
j (vj(t− s))ds

)

−λj
(∫ ∞

0

Xji(s)z
−1
j (ṽj(t− s))ds

)∣∣∣∣
≤
( m∑

j=1

P̄jiĀj b̄j +
m∑
j=1

ŪjiΘj b̄j

)
∥vj − ṽj∥

≤Mi(
m∑
j=1

∥vj − ṽj∥),

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Similarly,

|Hj(vj(t))−Hj(ṽj(t))|

≤
( n∑

i=1

Q̄ijB̄āi +
n∑

i=1

V̄ijΦiāi

)
∥ui − ũi∥

≤Mj(
n∑

i=1

∥ui − ũi∥),

where Mi = max{P̄jiĀb̄j + ŪjiΘj b̄j}, Mj =
max{Q̄ijB̄āi + V̄ijΦiāi}, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

Next, for t > 0, we evaluate:

||U((ui(t))− U((ũi(t))||

≤
∫ ω

0

G1
i (t, s)|Hi(ui(s))−Hi(ũi(s))|ds

+
l∑

k=1

G1
i (t, tk)|(ri(ui(tk))− ri(ũi(tk)))|

≤ Mi

pi
(

m∑
j=1

∥vj − ṽj∥)

+
epiω

1− e−piω

l∑
k=1

[(
āi
ai

+ 1

)
|ui(tk)− ũi(tk)|

+
1

ai
|Iik(h−1

i (ui(tk)))− Iik(h
−1
i (ũi(tk)))|

]
and

||U((vj(t))− U((ṽj(t))||

≤
∫ ω

0

G2
j (t, s)|Hj(vj(s))−Hj(ṽj(s))|ds

+
l∑

k=1

G2
j (t, tk)|δj(vj(tk))− δj(ṽj(tk))|

≤ Mj

qj
(

n∑
i=1

∥ui − ũi∥)

+
eqjω

1− e−qjω

l∑
k=1

[(
b̄j
bj

+ 1

)
|vj(tk)− ṽj(tk)|

+
1

bj
|Jjk(z−1

j (vj(tk)))− Jjk(h
−1
j (ṽj(tk)))|

]
,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Then

∥U(x)− U(y)∥

≤
n∑

i=1

|U((ui(t))− U((ũi(t))|

+
m∑
j=1

|U((vj(t))− U((ṽj(t))|

≤M(1 + l)∥x− y∥+
l∑

k=1

[ n∑
i=1

epiω

ai(1− e−piω)

×|Iik(h−1
i (ui(tk)))− Iik(h

−1
i (ũi(tk)))|

+
m∑
j=1

eqjω

bj(1− e−qjω)

×|Jjk(z−1
j (vj(tk)))− Jjk(z

−1
j (ṽj(tk)))|

]
,

where M = max

{ n∑
i=1

Mi

pi
,

m∑
j=1

Mj

qi
,

epiω

1− e−piω

( āi
ai

+

1
)
,

eqjω

1− e−qjω

( b̄j
bj

+ 1
)}
.

Based on the continuity of the operators Iik and Jjk, we
get that the operator U is continuous on Kε. This completes
the proof.

Lemma 3. If (A1) and (H2) − (H5) holds, for every
ε ∈ {±}n+m, the operator U maps Kε into itself, that is
U(Kε) ⊂ Kε.

Proof: Let ε ∈ {±1}n+m, x = (u, v)T ∈ Kε. Form
(H2) − (H4), the strictly monotonicity of hi(u) and zj(u)
about u(u ∈ R), we obtain

εiHi(ui(t)) = εiPii(t)fi(t, z
−1
i (vi(t− τji(t)))

+εiUii(t)λi

(∫ ∞

0

Xii(s)z
−1
i (vi(t− s))ds

)
+
∑
j ̸=i

Pji(t)εifj(t, z
−1
j (vj(t− τji(t))))

+
∑
j ̸=i

Uji(t)εiλj

×
(∫ ∞

0

Xji(s)z
−1
j (vj(t− s))ds

)
− εici(t)

≥ P iiri + U iir −
∑
j ̸=i

(P̄jiγj + Ūji)− |ci(t)|

≥ p̃i, i = 1, 2, . . . , n.

Similarly, we get

εjHj(vj(t))≥Q
jj
πj + V jjπ −

∑
i̸=j

(Q̄ijΠi + V̄ij)− |dj(t)|
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≥ q̃j , j = 1, 2, . . . ,m.

Thus, by means of (H5), it follows that

εiU(ui(t)) =

∫ ω

0

G1
i (t, s)εiHi(ui(s))ds

+
l∑

k=1

G1
i (t, tk)εjri(ui(tk))

≥ 1

p̃i
p̃i = 1, i = 1, 2, . . . , n

and

εjU(vj(t)) =

∫ ω

0

G2
j (t, s)εiHj(vj(s))ds

+
l∑

k=1

G2
j (t, tk)εjδj(vj(tk))

≥ 1

q̃j
q̃j = 1, j = 1, 2, . . . ,m.

Hence, the proof is now finished.

Lemma 4. Suppose (A1) and (H2) − (H5) holds. Let
ε ∈ {±}n+m and xε ∈ Kε the constant function defined by
xε(t) = ε, for any t ∈ R. If there exists x = (u, v)T ∈ Kε

and λ ∈ (0, 1) such that

x = (1− λ)xε + λU(x), (3.7)

then ∥x− xε∥ < R, where x = (u, v)T ∈ X and

R=
n∑

i=1

(
P̄ii(ri + γi) + Ūii(r + 1)

pi
− 2

+
epiω

1− e−piω

l∑
k=1

Γik

)

+
m∑
j=1

(
Q̄jj(πj +Πj) + V̄jj(π + 1)

qj
− 2

+
eqjω

1− e−qjω

l∑
k=1

Σjk

)
. (3.8)

Proof: Assume that x ∈ Kε and λ ∈ (0, 1) satisfy Eq.
(3.9). Then

ui(t)− εi = λ[U(ui(t))− εi],

vj(t)− εj = λ[U(vj(t))− εj ],

where ∀t ∈ [0, ω], i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Since x ∈ Kε, for any t ∈ [0, ω], it follows that

εiui(t) ≥ 1, εjvj(t) ≥ 1,

εi(ui(t)− εi) ≥ 0, εj(vj(t)− εj) ≥ 0,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m. Therefore, for any
t ∈ [0, ω], we get:

|ui(t)− εi|= |εi(ui(t)− εi)| = εi(ui(t)− εi)

= εiλ[U(ui)(t)− εi] = λ[εiU(ui)(t)− 1]

and

|vj(t)− εj |= |εj(vj(t)− εj)| = εj(vj(t)− εj)

= εjλ[U(vj)(t)− εj ] = λ[εjU(vj)(t)− 1],

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Form (H2)-(H4), we evaluate

εiHi(ui(t))≤
m∑
j=1

(P̄jiγj + Ūji) + |ci(t)|

≤ P̄ii(ri + γi) + Ūii(r + 1)− pi

and

εjHj(vj(t)) ≤ Q̄jj(πj +Πj) + V̄jj(π + 1)− qj ,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
By using (H5), for any t ∈ [0, ω], we can get

εiU(ui(t))≤
P̄ii(ri + γi) + Ūii(r + 1)

pi
− 1

+
epiω

1− e−piω

l∑
k=1

Γik,

εjU(vj(t))≤
Q̄jj(πj +Πj) + V̄jj(π + 1)

qj
− 1

+
eqjω

1− e−qjω

l∑
k=1

Σjk,

hence, for any t ∈ [0, ω], we have

|ui(t)− εi| ≤
P̄ii(ri + γi) + Ūii(r + 1)

pi
− 2

+
epiω

1− e−piω

l∑
k=1

Γik,

|vj(t)− εj | ≤
Q̄jj(πj +Πj) + V̄jj(π + 1)

qj
− 2

+
eqjω

1− e−qjω

l∑
k=1

Σjk,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
That is

∥x− xε∥= sup
t∈[0,ω]

( n∑
i=1

|ui(t)− εi|+
m∑
j=1

|vj(t)− εj |
)

<

n∑
i=1

(
P̄ii(ri + γi) + Ūii(r + 1)

pi
− 2

+
epiω

1− e−piω

l∑
k=1

Γik

)

+
m∑
j=1

(
Q̄jj(πj +Πj) + V̄jj(π + 1)

qj
− 2

+
eqjω

1− e−qjω

l∑
k=1

Σjk

)
.

Hence, the proof is now finished.

Theorem 3. Let ε ∈ {−1}n+m, the operator U : Bε ⊂
Kε → Kε has at least one fixed point in Bε, if hypotheses
(H1)-(H5) hold, where Bε = {x ∈ Kε : ∥x − xε∥ < R}
with xε and R given by Lemma 4.

Proof: According to Leray-Schauder theorem, we only
need to show that the operator U : Bε ⊂ Kε → Kε is
completely continuous.
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Assume Ω ⊂ Bε a bounded set. By means of Theorem 2,
we will show that U(Ω) is relatively compact.

For any x ∈ Bε, we get

∥U(x)∥= sup
t∈[0,ω]

( n∑
i=1

|U(ui(t))|+
m∑
j=1

|U(vj(t))|
)

≤
n∑

i=1

(
P̄ii(ri + γi) + Ūii(r + 1)

pi
− 1

+
epiω

1− e−piω

l∑
k=1

Γik

)

+
m∑
j=1

(
Q̄jj(πj +Πj) + V̄jj(π + 1)

qj
− 1

+
eqjω

1− e−qjω

l∑
k=1

Σjk

)
.

Therefore, the set U(Ω) is bounded.
In the following, we will show that U(X) is quasi-

equicontinuous in [0, ω]. Let x ∈ Ω, k ∈ {1, 2, . . . , l} and
T1, T2 ∈ (tk, tk+1] ∩ [0, ω]. Let’s assume T1 < T2, and
evaluate:

|U(ui(T1))− U(ui(T2))|

≤
[
P̄ii(ri + γi) + Ūii(r + 1)− pi

]
×
∫ ω

0

|G1
i (T1, s)−G1

i (T2, s)|ds

+

l∑
k=1

Γik

ai

∣∣G1
i (T1, tk)−G1

i (T2, tk)
∣∣ ,

where i = 1, 2, . . . , n. First, form (3.7) and 0 < pi ≤
θi(r, ui(r)) ≤ p̃i, we have∫ ω

0

∣∣G1
i (T1, s)−G1

i (T2, s)
∣∣ds

=
1

1− e−
∫ ω
0

θi(r,ui(r))dr

×
[ ∫ T1

0

∣∣∣∣e− ∫ T1
s

θi(r,ui(r))dr − e−
∫ T2
s

θi(r,ui(r))dr

∣∣∣∣ds
+

∫ T2

T1

∣∣∣∣e− ∫ T2
s

θi(r,ui(r))dr

−e−
∫ T1
0 θi(r,ui(r))dr−

∫ ω
s

θi(r,ui(r))dr

∣∣∣∣ds
+

∫ ω

T2

∣∣∣∣e− ∫ ω
0

θi(r,ui(r))dr+
∫ s
T1

θi(r,ui(r))dr

−e−
∫ ω
0

θi(r,ui(r))dr+
∫ s
T2

θi(r,ui(r))dr

∣∣∣∣ds]
≤ 2epiω

pi

(
ep̃i(T2−T1) − 1

)
+

1

pi

(
1− e−pi(T2−T1)

)
,

where epix < ep̃ix < epiω(x ∈ (0, ω)), e−x < 1(x > 0),
i = 1, 2, . . . , n. Consequently,∫ ω

0

∣∣G1
i (T1, s)−G1

i (T2, s)
∣∣ds→ 0, as T1 → T2,

where i = 1, 2, . . . , n.
Next, we calculate

l∑
k=1

Γik

ai
|G1

i (T1, tk)−G1
i (T2, tk)|

≤
p∑

k=1

Γik

ai(1− e−
∫ ω
0

θi(r,ui(r))dr)

∣∣∣∣e∫ T2
T1

θi(r,ui(r))dr − 1

∣∣∣∣
+

l∑
k=p+1

Γik

ai

∣∣∣∣e−
∫ T1
0 θi(r,ui(r))dr − e−

∫ T2
0 θi(r,ui(r))dr

1− e−
∫ ω
0

θi(r,ui(r))dr

∣∣∣∣
≤

l∑
k=1

Γik

ai(1− e−piω)

(
ep̃i(T2−T1) − 1

)
,

that is
l∑

k=1

Γik

ai
|G1

i (T1, tk)−G1
i (T2, tk)| → 0, as T1 → T2,

where i = 1, 2, . . . , n.
Therefore, we have

|U(ui(T1))− U(ui(T2))|

≤
[
P̄ii(ri + γi) + Ūii(r + 1)− pi

]
×2epiω + 1

pi

(
ep̃i(T2−T1) − 1

)
+

l∑
k=1

Γik

ai(1− e−piω)

(
ep̃i(T2−T1) − 1

)
,

that is

|U(ui(T1))− U(ui(T2))| → 0, as T1 → T2,

where i = 1, 2, . . . , n. Similarly,

|U(vj(T1))− U(vj(T2))|

≤
[
Q̄jj(πj +Πj) + V̄jj(π + 1)− qj

]
×2epiω

pi

(
ep̃i(T2−T1) − 1

)
+

1

pi

(
1− e−pi(T2−T1)

)
+

l∑
k=1

Σjk

bj(1− e−qjω)

(
eq̃j(T2−T1) − 1

)
,

that is

|U(vj(T1))− U(vj(T2))| → 0, as T1 → T2,

where i = 1, 2, . . . , n.
Hence, for any x ∈ Ω, k ∈ {1, 2, . . . , l} and T1, T2 ∈

(tk, tk+1] ∩ [0, ω], the following estimate holds

∥U(x)(T1)− U(x)(T2)∥

= sup
t∈[0,ω]

( n∑
i=1

|U(ui(T1))− U(ui(T2))|

+

m∑
j=1

|U(vj(T1))− U(vj(T2))|
)
,

that is

∥U(x)(T1)− U(x)(T2)∥ → 0, as T1 → T2,
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which suggests that U(X) is quasi-equicontinuous in [0, ω].
Further, U(X) is relatively compact and the proof is now
complete.

Corollary 1. If hypotheses (H1) − (H5) hold, then there
exists at least 2n+m periodic solutions of system (1.3), that
is, at least one periodic solution in every set Bε for every
ε ∈ {±1}n+m.

IV. GLOBAL EXPONENTIAL STABILITY OF THE PERIODIC
SOLUTION

Some suitable Lyapunov functionals to derive sufficient
conditions ensuring that system (2.2) has a unique ω-periodic
solution and all solutions of system (2.2) exponentially
converge to its unique ω-periodic solution are constructed
in this section.

Lemma 5. Let ε ∈ {±1}n+m. If hypotheses (H1)-(H5) are
fulfilled, then the set ∆ε is invariant.

Proof: Let ε ∈ {±}n+m, consider an initial function
satisfying u(θ), v(ϑ) ∈ ∆ε, for any θ ∈ [−σ, 0] and ϑ ∈
[−τ, 0]. Let x(t) = (u(t), v(t))T = x(t; (u(θ), v(ϑ))T ) is a
solution of system (2.2).

Assume that there exists η ∈ (0, t1] such that x(t) ∈ ∆ε,
for any t ∈ (0, η) and x(η) ∈ ∂∆ε. Hence, there exists
i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m} such that ui(η) = εi,
vj(η) = εj . According to (H3)-(H4) we get

εiu̇i(t) = εi

[
− θi(t, ui(t))ui(t)

+
m∑
j=1

Pji(t)fj(t, z
−1
j (vj(t− τji(t))))− ci(t)

+
m∑
j=1

Uji(t)λj

(∫ ∞

0

Xji(s)z
−1
j (vj(t− s))ds

)]
≥−θi(t, ui(t)) + P iiri + U iir

−
∑
j ̸=i

(P̄jiγj + Ūji)− |ci(t)|

≥ −p̃i + P iiri + U iir

−
∑
j ̸=i

(P̄jiγj + Ūji)− |ci(t)| > 0

and

εj v̇j(t) = εj

[
− φj(t, vj(t))vj(t)

+
n∑

i=1

Qij(t)gi(t, h
−1
i (ui(t− σij(t))))− dj(t)

+
n∑

i=1

Vij(t)µi

(∫ ∞

0

Yij(s)h
−1
i (ui(t− s))ds

)]
≥−q̃j +Q

jj
πj + V jjπ

−
∑
i̸=j

(Q̄ijΠi + V̄ij)− |dj(t)| > 0,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Therefore, the function εiui and εjvj are strictly increas-

ing on some small interval (η − δ, η] ⊂ (0, η]. Hence

εiui(t) < εiui(η) = ε2i = 1, εjvj(t) < 1 for any
t ∈ (η − δ, η]. This is absurd, since x(t) ∈ ∆ε, for any
t ∈ (0, η).

It follows that x(t) ∈ ∆ε, for any t ∈ (t0, t1] (where
t0 = 0). Hypothesis (H5) guarantees that x(t+1 ) as well.

By mathematical induction, it can be easily shown that
x(t) ∈ ∆ε for any t ∈ (tk−1, tk] and x(t+k ) ∈ ∆ε for any
k ∈ N .

Therefore, the solution x(t; (u(θ), v(ϑ))T ) with the initial
condition θ ∈ [−σ, 0], ϑ ∈ [−τ, 0] will remain in ∆ε for any
t ≥ 0. This completes the proof.

Theorem 4. Assume that all hypotheses (H1)− (H5) hold.
Suppose further that

(H6) pi−āi
m∑
j=1

(
Q̄ijB̄i+V̄ijΦi

)
> 0, qj− b̄j

n∑
i=1

(
P̄jiĀj+

ŪjiΘj

)
> 0, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

(H7) Impulsive operators Iik(xi(tk)), Jjk(yj(tk)) satisfy

Iik(xi(tk)) = −ϖikxi(tk), 1− ai
āi

≤ ϖik ≤ 1 +
ai
āi
,

Jjk(yj(tk)) = −ϱjkyj(tk), 1−
bj

bj
≤ ϱjk ≤ 1 +

bj

bj
,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m, k ∈ N .
Then for every ε ∈ {±1}n+m, there exists a unique expo-
nentially stable periodic solution in Bε in and its region of
attraction includes ∆ε.

Proof: Let ε ∈ {±1}n+m, x(t) = (u(t), v(t))T =
x(t; (u(θ), v(ϑ))T ) and y(t) = (ũ(t), ṽ(t))T =
y(t; (ũ(θ), ṽ(ϑ))T ) are two solution of the system (2.2)
with the initial functions

(u(θ), v(ϑ))T , (ũ(θ), ṽ(ϑ))T ∈ ∆ε, θ ∈ [−τ, 0], ϑ ∈ [−σ, 0].

From Lemma 4.1, we get that
x(t; (u(θ), v(ϑ))T ,y(t; (ũ(θ), ṽ(ϑ))T ) ∈ ∆ε for ∀t > 0.
When t > 0, t ̸= tk, from (A1), H1-H2 and (2.3), we can
get

D+|ui(t)− ũi(t)|

= sgn(ui(t)− ũi(t))(u̇i(t)− ˙̃ui(t))

= sgn(ui(t)− ũi(t))

{
− θi(t, ui(t))(ui(t)− ũi(t))

+
m∑
j=1

Pji(t)

×
[
fj(t, z

−1
j (vj(t− τji(t))))− fj(t, z

−1
j (ṽj(t− τji(t))))

]
+

m∑
j=1

Uji(t)

[
λj

(∫ ∞

0

Xji(s)z
−1
j (vj(t− s))ds

)

−λj
(∫ ∞

0

Xji(s)z
−1
j (ṽj(t− s))ds

)]}
≤−pi|ui(t)− ũi(t)|

+
m∑
j=1

b̄j

[
P̄jiĀj |vj(t− τji(t))− ṽj(t− τji(t))|
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+ŪjiΘj

∫ ∞

0

(
Xji(s)|vj(t− s))− ṽj(t− s)|

)
ds

]
,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Similarly,

D+|vj(t)− ṽj(t)|

= sgn(vj(t)− ṽj(t))(v̇j(t)− ˙̃vj(t))

≤−qj |vj(t)− ṽj(t)|

+
n∑

i=1

āi

[
Q̄ijB̄i|ui(t− σij(t))− ũi(t− σij(t))|

+V̄ijΦi

∫ ∞

0

(
Yij(s)|ui(t− s))− ũi(t− s)|

)
ds

]
,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Let

Fi(x) = pi − x

−āi
m∑
j=1

[
Q̄ijB̄ie

xσij + V̄ijΦi

∫ ∞

0

Yij(s)e
xsds

]
,

Gj(y) = qj − y

−b̄j
n∑

i=1

[
P̄jiĀje

yτji + ŪjiΘj

∫ ∞

0

Xji(s)e
ysds

]
,

where x, y ∈ [0,+∞), i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Together (H6), it implies that

Fi(0) = pi − āi
m∑
j=1

(
Q̄ijB̄i + V̄ijΦi

)
> 0,

Gj(0) = qj − b̄j
n∑

i=1

(
P̄jiĀj + ŪjiΘj

)
> 0,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
It is clear that Fi,Gj are continuous and strictly decreasing

on [0,+∞) and Fi → −∞,Gj → −∞, as x → +∞, y →
+∞, there exist x0, y0 such that Fi(x0) = 0, Gj(y0) = 0.
Thus, we choose 0 < µ0 < min{x0

2 ,
y0

2 }, then

Fi(µ0) = pi − µ0 − āi

m∑
j=1

[
Q̄ijB̄ie

µ0σij

+V̄ijΦi

∫ ∞

0

Yij(s)e
µ0sds

]
> 0,

Gj(µ0) = qj − µ0 − b̄j

n∑
i=1

[
P̄jiĀje

µ0τji

+ŪjiΘj

∫ ∞

0

Xji(s)e
µ0sds

]
> 0,

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Denote Ci(t) = eµ0t|ui(t) − ũi(t)|, Cj(t) = eµ0t|vj(t) −

ṽj(t)| for t > 0, t ̸= tk, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, we
obtain

D+Ci(t) = µ0Ci(t) + eµ0tD+|ui(t)− ũi(t)|

≤ (µ0 − pi)Ci(t) +
m∑
j=1

b̄j

×
[
P̄jiĀje

µ0t|vj(t− τji(t))− ṽj(t− τji(t))|

+ŪjiΘj

×
∫ ∞

0

(
Xji(s)e

µ0t|vj(t− s)− ṽj(t− s)|
)
ds

]
≤ (µ0 − pi)Ci(t)

+
m∑
j=1

b̄j

[
P̄jiĀje

µ0τjiCj(t− τji(t))

+ŪjiΘj

∫ ∞

0

(
Xji(s)e

µ0sCj(t− s)

)
ds

]
(4.1)

and

D+Cj(t) = µ0Cj(t) + eµ0tD+|vj(t)− ṽj(t)|

≤ (µ0 − qj)Cj(t)

+
n∑

i=1

āi

[
Q̄ijB̄ie

µ0σijCi(t− σij(t))

+V̄ijΦi

∫ ∞

0

(
Yij(s)e

µ0sCi(t− s)

)
ds

]
, (4.2)

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Consider the following Lyapunov function:

V (t) =
n∑

i=1

{
Ci(t) +

m∑
j=1

b̄j

×
[
P̄jiĀje

µ0τji

∫ t

t−τji(t)

Cj(r)dr

+ŪjiΘj

∫ ∞

0

(
Xji(s)e

µ0s

∫ t

t−s

Cj(r)dr
)
ds

]}

+
m∑
j=1

{
Cj(t) +

n∑
i=1

āi

×
[
Q̄ijB̄ie

µ0σij

∫ t

t−σij(t)

Ci(r)dr

+V̄ijΦi

∫ ∞

0

(
Yij(s)e

µ0s

∫ t

t−s

Ci(r)dr
)
ds

]}
(4.3)

and we note that V (t) > 0 for t > 0 and V (0) is positive
and finite. For t > 0, t ̸= tk, calculating the derivatives of V
along (4.1) and (4.2), we have

D+V (t) =
n∑

i=1

{
D+Ci(t) +

m∑
j=1

b̄j

×
[
P̄jiĀje

µ0τji
(
Cj(t)− Cj(t− τji(t))

)
+ŪjiΘj

×
∫ ∞

0

(
Xji(s)e

µ0s
(
Cj(t)− Cj(t− s)

))
ds

]}

+
m∑
j=1

{
D+Cj(t) +

n∑
i=1

āi

×
[
Q̄ijB̄ie

µ0σij
(
Ci(t)− Ci(t− σij(t))

)
+V̄ijΦi

×
∫ ∞

0

(
Yij(s)e

µ0s
(
Ci(t)− Ci(t− s)

))
ds

]}
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≤
n∑

i=1

[
(µ0 − pi)Ci(t)

+
m∑
j=1

b̄j

(
P̄jiĀje

µ0τjiCj(t)

+ŪjiΘj

∫ ∞

0

Xji(s)e
µ0sCj(t)ds

)]

+
m∑
j=1

[
(µ0 − qj)Cj(t)

+
n∑

i=1

āi

(
Q̄ijB̄ie

µ0σijCi(t)

+V̄ijΦi

∫ ∞

0

Yij(s)e
µ0sCi(t)ds

)]

=−
n∑

i=1

F(µ0)Ci(t)−
m∑
j=1

G(µ0)Cj(t) < 0. (4.4)

Therefore, form (4.4), the function V is strictly decreasing
on every interval (tk, tk+1). Hence V (t) < V (t+k ) for any
t ∈ (tk, tk+1].

Moreover, hi(u) and zj(u) are strictly monotone increas-
ing about u(u ∈ R), we obtain

|hi(x)− hi(y)| =
1

ai(ξ)
|(x− y)| ≤ 1

ai
|x− y|,

|zj(x)− zj(y)| =
1

bj(ζ)
|(x− y)| ≤ 1

bj
|x− y|, (4.5)

where ∀x, y ∈ R.
Therefore, when t = tk, from (4.5) and (H7) we have{

xi(t
+
k )− x̃i(t

+
k ) = (1−ϖik)(xi(tk)− x̃i(tk)),

yj(t
+
k )− ỹj(t

+
k ) = (1−ϖik)(yj(tk)− ỹj(tk)),

where i = 1, 2, . . . , n,, j = 1, 2, . . . ,m. That is

|ui(t+k )− ũi(t
+
k )|= |hi(xi(t+k ))− hi(x̃i(t

+
k ))|

≤ āi

ai
|1−ϖik||ui(tk)− ũi(tk)|,

|vj(t+k )− ṽj(t
+
k )|= |zj(yi(t+k ))− zj(ỹj(t

+
k ))|

≤ b̄j
bj
|1− ϱjk||vj(tk)− ṽj(tk)|,

where i = 1, 2, . . . , n,, j = 1, 2, . . . ,m.
Therefore, we have

Ci(t
+
k ) = e−µ0t

+
k |ui(t+k )− ũi(t

+
k )|

≤ e−µ0tk
āi
ai
|1−ϖik||ui(tk)− ũi(tk)|

≤ Ci(tk),

Cj(t+k ) = e−µ0t
+
k |vj(t+k )− ṽj(t

+
k )|

≤ e−µ0tk
b̄i
bi
|1− ϱjk||vj(tk)− ṽj(tk)|

≤ Cj(tk),
where i = 1, 2, . . . , n,, j = 1, 2, . . . ,m.

Also,

V (t+k ) =
n∑

i=1

{
Ci(t

+
k )

+
m∑
j=1

b̄j

[
P̄jiĀje

µ0τji

∫ t+k

t+k −τji(t
+
k )

Cj(r)dr

+ŪjiΘj

∫ ∞

0

(
Xji(s)e

µ0s

∫ t+k

t+k −s

Cj(r)dr
)
ds

]}

+
m∑
j=1

{
Cj(t+k )

+
n∑

i=1

āi

[
Q̄ijB̄ie

µ0σij

∫ t+k

t+k −σij(t
+
k )

Ci(r)dr

+V̄ijΦi

∫ ∞

0

(
Yij(s)e

µ0s

∫ t+k

t+k −s

Ci(r)dr
)
ds

]}
≤ V (tk), k ∈ Z+. (4.6)

Hence, form (4.4) and (4.6), the function V is strictly
decreasing for t ≥ 0, which demonstrates that V (t) ≤ V (0)
for t ≥ 0. By (4.3), we have

n∑
i=1

Ci(t) +
m∑
j=1

Cj(t) ≤ V (t) ≤ V (0)

≤
n∑

i=1

[
1 + āi

m∑
j=1

(
Q̄ijB̄i

(eµ0σij − 1)

µ0

+
V̄ijΦi

µ0
(

∫ ∞

0

Yij(s)e
µ0sds− 1)

)]
max

θ∈[−τ,0]
|u(θ)− ũ(θ)|

+

m∑
j=1

[
1 + b̄j

n∑
i=1

(
P̄jiĀj

(eµ0τji − 1)

µ0

+
ŪjiΘj

µ0
(

∫ ∞

0

Xji(s)e
µ0sds− 1)

)]
max

ϑ∈[−σ,0]
|v(ϑ)− ṽ(ϑ)|

≤ 1

ai

n∑
i=1

[
1 +

āi
µ0

m∑
j=1

(
Q̄ijB̄ie

µ0σij

+V̄ijΦi

∫ ∞

0

Yij(s)e
µ0sds

)]
∥φi − φ̃i∥∞

+
1

bj

m∑
j=1

[
1 +

b̄j
µ0

n∑
i=1

(
P̄jiĀje

µ0τji

+ŪjiΘj

∫ ∞

0

Xji(s)e
µ0sds

)]
∥ψj − ψ̃j(ψ)∥∞.

In view of the definiens of Ci(t), Cj(t) and the inequality
above, we get

n∑
i=1

|ui(t)− ũi(t)|+
m∑
j=1

|vj(t)− ṽj(t)|

≤ Ae−µ0t

( n∑
i=1

∥φi − φ̃i∥∞ +
m∑
j=1

∥ψj − ψ̃(ψ)j∥∞
)
,

where

A = max

{
1

ai

n∑
i=1

[
1 +

āi
µ0

m∑
j=1

(
Q̄ij̄Bie

µ0σij

+V̄ijΦi

∫ ∞

0

Yij(s)e
µ0sds

)]
,
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1

bj

m∑
j=1

[
1 +

b̄j
µ0

n∑
i=1

(
P̄jiĀje

µ0τji

+ŪjiΘj

∫ ∞

0

Xji(s)e
µ0sds

)]}
> 0.

Finally, it follows that

∥x(t)− y(t)∥= sup
t∈[0,ω]

( n∑
i=1

|ui − ũi|+
m∑
j=1

|vj − ṽj |
)

≤Ae−µ0t

( n∑
i=1

∥φi − φ̃i∥∞

+
m∑
j=1

∥ψj − ψ̃(ψ)j∥∞
)
.

Thanks to (H4)-(H7), it easily follows that a unique
periodic solution x∗

ε(t) ≤ ∆ε, for any t ∈ R are exists, which
is globally exponentially stable and its region of attraction
includes ∆ε. This completes the proof.

Conclusion 4.1. From Theorem 4, it is easy to obtain
that the existence of unique exponentially stable periodic
solution for system (1.1) in every Bε.

V. AN EXAMPLE

Giving the following Cohen-Grossberg BAM neural net-
works system with mixed delays and impulses

x′i(t) =−ai(xi(t))
[
αi(t, xi(t))

−P1i(t)f1(t, y1(t− τ1i(t)))

−P2i(t)f2(t, y2(t− τ2i(t)))

−U1i(t)λ1
( ∫ ∞

0

X1i(s)y1(t− s)ds
)

−U2i(t)λ2
( ∫ ∞

0

X2i(s)y2(t− s)ds
)

+0.5 sin t
]
,

y′j(t) =−bj(yj(t))
[
βj(t, yj(t))

−Q1j(t)g1(t, x1(t− σ1j(t)))

−Q2j(t)g2(t, x2(t− σ2j(t)))

−V1j(t)µ1

( ∫ ∞

0

Y1j(s)x1(t− s)ds
)

−V2j(t)µ2

( ∫ ∞

0

Y2j(s)x2(t− s)ds
)

+0.5 cos t
]
,

t > 0, t ̸= tk = 2k,

∆xi(tk) =−0.1xi(tk), t = tk = 2k,

∆yj(tk) =−0.2yj(tk), t = tk = 2k,

(5.1)

where i = 1, 2, j = 1, 2, k ∈ N.
Let

a1(u) = 2+cosu, a2(u) = 2−cosu, b1(u) = 1.5+sinu

b2(u) = 3− sinu, α1(t, u) = α2(t, u) = (8− sin t) + u,

β1(t, v) = β2(t, v) = (16− cos t) + v.

The activation functions

f1(t, y1(t− e2 sin t)) = 0.05 sin
πt

2
y1(t− e2 sin t),

f2(t, y2(t− e2 sin t)) = 0.01 sin
πt

2
y2(t− e2 sin t),

g1(t, x1(t− ecos t)) = 0.1 cos
πt

2
sin(x1(t− ecos t)),

g2(t, x2(t− ecos t)) = 0.1 cos
πt

2
sin(x2(t− ecos t),

τij(t) = e2 sin t, σji(t) = ecos t, λj(u) = tanh(4u),

µi(u) = tanh(5u) tanh(10u2 − 1).
P11(t) P12(t) P21(t) P22(t)
Q11(t) Q12(t) Q21(t) Q22(t)
U11(t) U12(t) U21(t) U22(t)
V11(t) V12(t) V21(t) V22(t)
X11(s)X12(s)X21(s)X22(s)
Y11(s) Y12(s) Y21(s) Y22(s)



=


6− cos t 2− sin t 2− cos t 6 + sin t
6− sin t 2− cos t 1− 0.5 cos t 5 + sin t
5 + cos 2t 1.2− cos t 0 5
2− cos t 0 1 4 + sin t
e−s 2e−2s 3e−3s e−s

2e−2s e−s 3e−3s e−s

 .

Through simple computation, we get
P̄11 P̄12 P̄21 P̄22

Q̄11 Q̄12 Q̄21 Q̄22

Ū11 Ū12 Ū21 Ū22

V̄11 V̄12 V̄21 V̄22

 =


7 3 3 7
7 3 1.5 6
6 2.2 0 5
2 0 1 5

 ,

P 11 P 12 P 21 P 22

Q
11
Q

12
Q

21
Q

22
U11 U12 U21 U22

V 11 V 12 V 21 V 22

 =


5 1 1 5
5 1 0.5 4
4 0.2 0 5
1 0 1 3

 ,
[
σ̄ij āi b̄j ᾱi β̄j p̃i q̃j
τ̄ji ai bj αi βj

pi qj

]
=

[
e2 3 2.5 1 1 3 2.5
e 2 0.5 1 1 2 0.5

]
,

[
γj Πi Āj

rj πi B̄i

]
=

[
0.1 0.1 0.05
0.1 0.1 0.01

]
.

It is easy to illustrate that hypothesis (A1)− (A7), (H2),
(H4) and (H5) hold. The activation function λj and µi

satisfies hypothesis (H1) and (H3) with Θj = 0.0008,
r ≃ 0.9001, Φi ≃ 0.0009, π ≃ 0.9999. Therefore, there
exist at least 4 periodic solutions of system (5.1).

Moreover, we calculate pi − āi
2∑

j=1

(
Q̄ijB̄i + V̄ijΦi

)
≃

0.499 > 0, qj − b̄j
2∑

i=1

(
P̄jiĀj + ŪjiΘj

)
≃ 0.24 > 0. Let

ϖik = ϱjk = 1. Therefore, (H6), (H7) are satisfied, and
from Theorem 4, system (5.1) has 4 exponentially stable
periodic solutions.

VI. CONCLUSIONS AND FUTURE WORKS

This paper considers a class of impulsive Cohen-Grossberg
BAM neural networks with mixed delays. First of all, the
differential system is changed into integral system by using
the derivative theorem for inverse function and the constant
variation method. Then, under some suitable hypotheses and
the Leray-Schauder theorem, at least 2n+m periodic solutions
for impulsive Cohen-Grossberg BAM neural networks with
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mixed delays are obtained. By some suitable Lyapunov
functions, this article investigates a unique ω-periodic so-
lution of system (2.2) and demonstrates that all solutions of
system (2.2) converge exponentially to its unique ω-periodic
solution. An example is given to illustrate the validity of the
main conclusions in this paper.

In the future, the following aspects can be explored further:
(1) The fractional order models could be considered, see

[36], [37].
(2) Some other dynamic behaviors could be learned.
(3) The dynamic behaviours for discrete Cohen-Grossberg

neural networks could be investigated.
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